1
|
Tota B, Cerra MC, Gattuso A. Catecholamines, cardiac natriuretic peptides and chromogranin A: evolution and physiopathology of a 'whip-brake' system of the endocrine heart. ACTA ACUST UNITED AC 2010; 213:3081-103. [PMID: 20802109 DOI: 10.1242/jeb.027391] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the past 50 years, extensive evidence has shown the ability of vertebrate cardiac non-neuronal cells to synthesize and release catecholamines (CA). This formed the mindset behind the search for the intrinsic endocrine heart properties, culminating in 1981 with the discovery of the natriuretic peptides (NP). CA and NP, co-existing in the endocrine secretion granules and acting as major cardiovascular regulators in health and disease, have become of great biomedical relevance for their potent diagnostic and therapeutic use. The concept of the endocrine heart was later enriched by the identification of a growing number of cardiac hormonal substances involved in organ modulation under normal and stress-induced conditions. Recently, chromogranin A (CgA), a major constituent of the secretory granules, and its derived cardio-suppressive and antiadrenergic peptides, vasostatin-1 and catestatin, were shown as new players in this framework, functioning as cardiac counter-regulators in 'zero steady-state error' homeostasis, particularly under intense excitatory stimuli, e.g. CA-induced myocardial stress. Here, we present evidence for the hypothesis that is gaining support, particularly among human cardiologists. The actions of CA, NP and CgA, we argue, may be viewed as a hallmark of the cardiac capacity to organize 'whip-brake' connection-integration processes in spatio-temporal networks. The involvement of the nitric oxide synthase (NOS)/nitric oxide (NO) system in this configuration is discussed. The use of fish and amphibian paradigms will illustrate the ways that incipient endocrine-humoral agents have evolved as components of cardiac molecular loops and important intermediates during evolutionary transitions, or in a distinct phylogenetic lineage, or under stress challenges. This may help to grasp the old evolutionary roots of these intracardiac endocrine/paracrine networks and how they have evolved from relatively less complicated designs. The latter can also be used as an intellectual tool to disentangle the experimental complexity of the mammalian and human endocrine hearts, suggesting future investigational avenues.
Collapse
Affiliation(s)
- Bruno Tota
- Department of Cell Biology, University of Calabria, 87030, Arcavacata di Rende, Italy.
| | | | | |
Collapse
|
2
|
Mazza R, Gattuso A, Mannarino C, Brar BK, Barbieri SF, Tota B, Mahata SK. Catestatin (chromogranin A344-364) is a novel cardiosuppressive agent: inhibition of isoproterenol and endothelin signaling in the frog heart. Am J Physiol Heart Circ Physiol 2008; 295:H113-22. [PMID: 18469147 DOI: 10.1152/ajpheart.00172.2008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The catecholamine release-inhibitory catestatin [Cts; human chromogranin (Cg) A(352-372), bovine CgA(344-364)] is a vasoreactive and anti-hypertensive peptide derived from CgA. Using the isolated avascular frog heart as a bioassay, in which the interactions between the endocardial endothelium and the subjacent myocardium can be studied without the confounding effects of the vascular endothelium, we tested the direct cardiotropic effects of bovine Cts and its interaction with beta-adrenergic (isoproterenol, ISO) and endothelin-1 (ET-1) signaling. Cts dose-dependently decreased stroke volume and stroke work, with a threshold concentration of 11 nM, approaching the in vivo level of the peptide. Cts reduced contractility by inhibiting phosphorylation of phospholamban (PLN). Furthermore, the Cts effect was abolished by pretreatment with either nitric oxide synthase (N(G)-monomethyl-l-arginine) or guanylate cyclase (ODQ) inhibitors, or an ET(B) receptor (ET(BR)) antagonist (BQ-788). Cts also noncompetitively inhibited the positive inotropic action of ISO. In addition, Cts inhibited the positive inotropic effect of ET-1, mediated by ET(A) receptors, and did not alter the negative inotropic ET-1 influence mediated by ET(BR). Cts action through ET(BR) was further suggested when, in the presence of BQ-788, Cts failed to inhibit the positive inotropism of both ISO and ET-1 stimulation and PLN phosphorylation. We concluded that the cardiotropic actions of Cts, including the beta-adrenergic and ET-1 antagonistic effects, support a novel role of this peptide as an autocrine-paracrine modulator of cardiac function, particularly when the stressed heart becomes a preferential target of both adrenergic and ET-1 stimuli.
Collapse
Affiliation(s)
- Rosa Mazza
- Department of Cell Biology, University of Calabria, Arcavacata di Rende, Italy
| | | | | | | | | | | | | |
Collapse
|
3
|
Gaitanaki C, Kalpachidou T, Aggeli IKS, Papazafiri P, Beis I. CoCl2 induces protective events via the p38-MAPK signalling pathway and ANP in the perfused amphibian heart. ACTA ACUST UNITED AC 2007; 210:2267-77. [PMID: 17575032 DOI: 10.1242/jeb.003178] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) constitute one of the most important intracellular signalling pathways. In particular, the p38-MAPK subfamily is known to be activated under various stressful conditions, such as mechanical or oxidative stress. Furthermore, cobalt chloride (CoCl2) has been shown to mimic hypoxic responses in various cell lines and cause overproduction of reactive oxygen species (ROS). In the current study, we investigated the effect of CoCl2 on p38-MAPK signalling pathway in the perfused Rana ridibunda heart. Immunoblot analysis of the phosphorylated, and thus activated, form of p38-MAPK revealed that maximum phosphorylation was attained at 500 micromol l(-1) CoCl2. A similar profile was observed for MAPKAPK2 and Hsp27 phosphorylation (direct and indirect p38-MAPK substrates, respectively). Time course analysis of p38-MAPK phosphorylation pattern showed that the kinase reached its peak within 15 min of treatment with 500 micromol l(-1) CoCl2. Similar results were obtained for Hsp27 phosphorylation. In the presence of the antioxidants Trolox or Lipoic acid, p38-MAPK CoCl2-induced phosphorylation was attenuated. Analogous results were obtained for Hsp27 and MAPKAPK2. In parallel, mRNA levels of the ANP gene, a hormone whose transcriptional regulation has previously been shown to be regulated by p38-MAPK, were examined (semi-quantitative ratiometric RT-PCR). CoCl2 treatment significantly increased ANP mRNA levels, whereas, in the presence of antioxidants, the transcript levels returned to basal values. All the above data indicate that CoCl2 stimulates compensatory mechanisms involving the p38-MAPK signalling cascade along with ANP.
Collapse
Affiliation(s)
- Catherine Gaitanaki
- Department of Animal and Human Physiology, School of Biology, University of Athens, Panepistimioupolis, 157 84 Athens, Greece
| | | | | | | | | |
Collapse
|
4
|
Vassilopoulos A, Gaitanaki C, Papazafiri P, Beis I. Atrial Natriuretic Peptide mRNA Regulation by p38- MAPK in the Perfused Amphibian Heart. Cell Physiol Biochem 2006; 16:183-192. [PMID: 16342435 DOI: 10.1159/000097100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
5
|
Donald JA, Trajanovska S. A perspective on the role of natriuretic peptides in amphibian osmoregulation. Gen Comp Endocrinol 2006; 147:47-53. [PMID: 16343494 DOI: 10.1016/j.ygcen.2005.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 10/27/2005] [Accepted: 10/29/2005] [Indexed: 11/17/2022]
Abstract
The natriuretic peptide (NP) system is a complex family of peptides and receptors that is primarily linked to the maintenance of osmotic and cardiovascular homeostasis. In amphibians, the potential role(s) of NPs is complicated by the range of osmoregulatory strategies found in amphibians, and the different tissues that participate in osmoregulation. Atrial NP, brain NP, and C-type NP have been isolated or cloned from a number of species, which has enabled physiological studies to be performed with homologous peptides. In addition, three types of NP receptors have been cloned and partially characterised. Natriuretic peptides are always potent vasodilators in amphibian blood vessels, and ANP has been shown to increase the permeability of the microcirculation. In the perfused kidney, ANP causes vasodilation, diuresis and natriuresis that are caused by an increased GFR rather than effects in the renal tubules. These data are supported by the presence of ANP receptors only on the glomeruli and renal blood vessels. In the bladder and skin, the function of NPs is enigmatic because physiological analysis of the effects of ANP on bladder and skin function has yielded conflicting data with no clear role for NPs being revealed. Overall, NPs often have no direct effect, but in some studies they have been shown to inhibit the function of AVT. In addition, there is evidence that ANP can inhibit salt retention in amphibians since it can inhibit the ability of adrenocorticotrophic hormone or angiotensin II to stimulate corticosteroid secretion. It is proposed that an important role for cardiac NPs could be in the control of hypervolaemia during periods of rapid rehydration, which occurs in terrestrial amphibians.
Collapse
Affiliation(s)
- John A Donald
- School of Biological and Chemical Sciences, Deakin University, Geelong, Vic. 3217, Australia.
| | | |
Collapse
|
6
|
Krylova MI. Immunocytochemical localization of atrial natriuretic peptide in mast cells of adult brown frog Rana temporaria. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2006; 406:79-81. [PMID: 16572820 DOI: 10.1134/s0012496606010224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
- M I Krylova
- Institute of Cytology, Russian Academy of Sciences, Tikhoretskii pr. 4, St. Petersburg, 194064 Russia
| |
Collapse
|
7
|
Izumiyama H, Tanaka H, Egi K, Sunamori M, Hirata Y, Shichiri M. Synthetic Salusins as Cardiac Depressors in Rat. Hypertension 2005; 45:419-25. [PMID: 15699450 DOI: 10.1161/01.hyp.0000156496.15668.62] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Using bioinformatic analyses of full-length, enriched human cDNA libraries, we recently identified salusins, multifunctional related peptides ubiquitously expressed in major human tissues. Salusins cause transient and profound hypotension when injected intravenously to rats, the hypotensive effect of salusin-β being especially striking. However, the mechanisms of this hypotensive action remain elusive. To determine whether salusins modulate cardiac function in rats, we studied serial changes of systemic hemodynamics and functions of isolated perfused working and nonworking hearts before and after salusin administration. Intravenous salusin-β administration to intact anesthetized rats caused a temporary rapid, profound decrease in aortic blood flow concomitantly with hypotension and bradycardia without affecting systemic vascular resistance. Salusin-β-induced hypotension and bradycardia were completely blocked by pretreatment with atropine, a muscarinic receptor antagonist, but not by propranolol. In isolated perfused working rat hearts, salusin-β significantly decreased cardiac output, aortic flow, and stroke work. However, it did not affect coronary flow in isolated working and nonworking hearts. Our results indicate that salusins induce potent hypotension via negative inotropic and chronotropic actions. Salusin-β promotes its actions by facilitating vagal outflows to the heart, whereas the negative inotropism of salusin-β is also mediated via a direct myotropic effect.
Collapse
Affiliation(s)
- Hajime Izumiyama
- Tokyo Medical and Dental University Medical Hospital, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Pagliaro P, Penna C, Rastaldo R, Mancardi D, Crisafulli A, Losano G, Gattullo D. Endothelial cytochrome P450 contributes to the acetylcholine-induced cardiodepression in isolated rat hearts. ACTA ACUST UNITED AC 2004; 182:11-20. [PMID: 15329052 DOI: 10.1111/j.1365-201x.2004.01339.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Acetylcholine (ACh) is known to reduce the contractility of the heart by acting on myocardial muscarinic M2 receptors. ACh induces also an endothelial-dependent vasodilatation by causing the release of nitric oxide (NO), prostacyclin and endothelium-derived hyperpolarizing factors from the vascular endothelium. It has been proposed that ACh elicits a hyperpolarization of the coronary endothelial cells which may be accompanied by the activation of cytochrome P450 (CYP) and the resulting release of epoxyeicosatrienoic acids (EETs). The study aims at investigating whether endothelial CYP is involved in the cardiodepression by ACh. METHODS AND RESULTS In isolated rat hearts, cardiodepression by ACh (i.e. 25-30% reduction of developed left ventricular pressure) was partially attenuated either by inhibition of CYP with 1-aminobenzotriazole (ABT) or by endothelial dysfunction obtained with Triton X-100. No attenuation of cardiodepression was seen after nitric oxide synthase and cyclooxygenase inhibition by L-nitro-arginine methyl ester and indomethacin, respectively. CONCLUSION The results suggest that the negative inotropic effect of ACh depends not only on a direct myocardial effect but also on the endothelial CYP activation.
Collapse
Affiliation(s)
- P Pagliaro
- Dipartimento di Scienze Cliniche e Biologiche dell'Università di Torino, Orbassano (TO), Italy
| | | | | | | | | | | | | |
Collapse
|
9
|
Corti A, Mannarino C, Mazza R, Angelone T, Longhi R, Tota B. Chromogranin A N-terminal fragments vasostatin-1 and the synthetic CGA 7-57 peptide act as cardiostatins on the isolated working frog heart. Gen Comp Endocrinol 2004; 136:217-24. [PMID: 15028525 DOI: 10.1016/j.ygcen.2003.12.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Revised: 11/14/2003] [Accepted: 12/17/2003] [Indexed: 10/26/2022]
Abstract
Chromogranin A (CGA) N-terminal fragments corresponding to residues 1-76 and 1-113, named vasostatins for their inhibitory effects on vascular tension, have been postulated as important homeostatic regulators of the cardiovascular system. We have used an in vitro isolated working frog (Rana esculenta) heart as a bioassay to study the effects of exogenous human recombinant CGA 1-76 (VS-1) and human CGA 7-57 synthetic peptide on cardiac performance. Under basal conditions, the concentration-response curves of the two peptides exhibited a significant negative inotropism. This vasostatin response was unaffected by pretreatment with either Triton X-100 or two nitric oxide synthase inhibitors, i.e., N(G)-monomethyl-L-arginine and L-N5 (5)(1-iminoethyl) ornithine or the soluble guanylate cyclase inhibitor 1H-(1,2,4) oxadiazolo-(4,3-a) quinoxalin-1-one, indicating an endocardial endothelium-nitric oxide-cGMP-independent mechanism. The negative inotropism was also unaffected by either adrenergic (i.e., phentolamine and propranolol) or muscarinic (atropine) receptor or G proteins (pertussis toxin) inhibition. On the contrary, it was dependent from both extracellular Ca(2+) and K(+) channels, since it was abolished by pretreatment to either the Ca(2+) channel inhibitors lanthanum and diltiazem or the K(+) channel inhibitors Ba(2+), 4-aminopyridine, tetraethylammonium chloride, and glibenclamide. In conclusion, the findings that vasostatins exert an inhibitory modulation on basal cardiac performance and counteract, as previously reported, the adrenergic-mediated positive inotropism, strongly support a cardio-regulatory role for these peptides.
Collapse
Affiliation(s)
- Angelo Corti
- Department of Biological and Technological Research, San Raffaele H Scientific Institute, Milan 20132, Italy
| | | | | | | | | | | |
Collapse
|
10
|
Toop T, Donald JA. Comparative aspects of natriuretic peptide physiology in non-mammalian vertebrates: a review. J Comp Physiol B 2004; 174:189-204. [PMID: 14735307 DOI: 10.1007/s00360-003-0408-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2003] [Indexed: 10/26/2022]
Abstract
The natriuretic peptide system is a complex family of peptides and receptors that is primarily linked to the maintenance of osmotic and cardiovascular homeostasis. A natriuretic peptide system is present in each vertebrate class but there are varying degrees of complexity in the system. In agnathans and chondrichthyians, only one natriuretic peptide has been identified, while new data has revealed that multiple types of natriuretic peptides are present in bony fish. However, it seems in tetrapods that there has been a reduction in the number of natriuretic peptide genes, such that only three natriuretic peptides are present in mammals. The peptides act via a family of guanylyl cyclase receptors to generate the second messenger cGMP, which mediates a range of physiological effects at key targets such as the gills, kidney and the cardiovascular system. This review summarises the current knowledge of the natriuretic peptide system in non-mammalian vertebrates and discusses the physiological actions of the peptides.
Collapse
Affiliation(s)
- T Toop
- School of Biological and Chemical Sciences, Deakin University, 3217, Geelong, Victoria, Australia.
| | | |
Collapse
|