1
|
Zhuo N, Yun Y, Zhang C, Guo S, Yin J, Zhao T, Ge X, Gu M, Xie X, Nan F. Discovery of betulinic acid derivatives as gut-restricted TGR5 agonists: Balancing the potency and physicochemical properties. Bioorg Chem 2024; 144:107132. [PMID: 38241768 DOI: 10.1016/j.bioorg.2024.107132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
The pleiotropic effects of TGR5 make it an appealing target for intervention of metabolic and inflammatory disorders, but systemic activation of TGR5 faces challenges of on-target side effects, especially gallbladder filling. Gut-restricted agonists were proved to be sufficient to circumvent these side effects, but extremely low systemic exposure may not be effective in activating TGR5 since it is located on the basolateral membrane. Herein, to balance potency and physicochemical properties, a series of gut-restricted TGR5 agonists with diversified kinetophores had been designed and synthesized. Compound 22-Na exhibited significant antidiabetic effect, and showed favorable gallbladder safety after 7 days of oral administration in humanized TGR5H88Y mice, confirming that gut-restricted agonism of TGR5 is a viable strategy to alleviate systemic target-related effects.
Collapse
Affiliation(s)
- Ning Zhuo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ying Yun
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Chenlu Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shimeng Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianpeng Yin
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Tingting Zhao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Xiu Ge
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Min Gu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China.
| | - Fajun Nan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China.
| |
Collapse
|
2
|
Desai AJ, Dong M, Harikumar KG, Miller LJ. Impact of ursodeoxycholic acid on a CCK1R cholesterol-binding site may contribute to its positive effects in digestive function. Am J Physiol Gastrointest Liver Physiol 2015; 309:G377-86. [PMID: 26138469 PMCID: PMC4556949 DOI: 10.1152/ajpgi.00173.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/26/2015] [Indexed: 01/31/2023]
Abstract
Dysfunction of the type 1 cholecystokinin (CCK) receptor (CCK1R) as a result of increased gallbladder muscularis membrane cholesterol has been implicated in the pathogenesis of cholesterol gallstones. Administration of ursodeoxycholic acid, which is structurally related to cholesterol, has been shown to have beneficial effects on gallstone formation. Our aims were to explore the possible direct effects and mechanism of action of bile acids on CCK receptor function. We studied the effects of structurally related hydrophobic chenodeoxycholic acid and hydrophilic ursodeoxycholic acid in vitro on CCK receptor function in the setting of normal and elevated membrane cholesterol. We also examined their effects on a cholesterol-insensitive CCK1R mutant (Y140A) disrupting a key site of cholesterol action. The results show that, similar to the impact of cholesterol on CCK receptors, bile acid effects were limited to CCK1R, with no effects on CCK2R. Chenodeoxycholic acid had a negative impact on CCK1R function, while ursodeoxycholic acid had no effect on CCK1R function in normal membranes but was protective against the negative impact of elevated cholesterol on this receptor. The cholesterol-insensitive CCK1R mutant Y140A was resistant to effects of both bile acids. These data suggest that bile acids compete with the action of cholesterol on CCK1R, probably by interacting at the same site, although the conformational impact of each bile acid appears to be different, with ursodeoxycholic acid capable of correcting the abnormal conformation of CCK1R in a high-cholesterol environment. This mechanism may contribute to the beneficial effect of ursodeoxycholic acid in reducing cholesterol gallstone formation.
Collapse
Affiliation(s)
- Aditya J. Desai
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona
| | - Maoqing Dong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona
| | - Kaleeckal G. Harikumar
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona
| | - Laurence J. Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona
| |
Collapse
|
3
|
SUD DHRUV, JOSEPH IANMP, KIRSCHNER DENISE. PREDICTING EFFICACY OF PROTON PUMP INHIBITORS IN REGULATING GASTRIC ACID SECRETION. J BIOL SYST 2011. [DOI: 10.1142/s0218339004000999] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Developing drugs to treat gastric acid related illnesses such as ulcers and acid reflux disease is the leading focus of pharmaceutical companies. In fact, expenditure for treating these disorders is highest among all illnesses in the US. Over the last few decades, a class of drugs known as a proton pump inhibitors (PPIs) appeared on the market and are highly effective at abating gastric illnesses by raising stomach pH (reducing gastric acid levels). While much is known about the action of PPIs , there are still open questions regarding their efficacy, dosing and long-term effects. Here we extend a previous gastric acid secretion model developed by our group to incorporate a pharmacodynamic/pharmacokinetic model to study proton pump inhibitor (PPI) action. Model-relevant parameters for specific drugs such as omeprazole (OPZ) , lansoprazole (LPZ) and pantoprazole (PPZ) were used from published data, and we conducted simulations to study various aspects of PPI treatment. Clinical data suggests that duration of acid suppression is dependent on proton pump turnover rates and this is supported by our model. We found the order of efficacy of the different PPIs to be OPZ>PPZ>LPZ for clinically recommended dose values, and OPZ>PPZ=LPZ for equal doses. Our results indicate that a breakfast dose for once-daily dosing regimens and a breakfast-lunch dose for twice-daily dosing regimens is recommended. Simulation of other gastric disorders using our model provides atypical applications for the study of drug treatment on homeostatic systems and identification of potential side-effects.
Collapse
Affiliation(s)
- DHRUV SUD
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - IAN M. P. JOSEPH
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - DENISE KIRSCHNER
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Encapsulation of lipid by alginate beads reduces bio-accessibility: An in vivo 13C breath test and MRI study. Food Hydrocoll 2011. [DOI: 10.1016/j.foodhyd.2010.11.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
van Boxel OS, ter Linde JJM, Siersema PD, Smout AJPM. Role of chemical stimulation of the duodenum in dyspeptic symptom generation. Am J Gastroenterol 2010; 105:803-11; quiz 802, 812. [PMID: 20234343 DOI: 10.1038/ajg.2010.100] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The response to chemical stimuli such as acid, nutrients, and capsaicin at the level of the duodenum is increasingly recognized as important in the etiology of dyspeptic symptoms. Increased duodenal acid exposure has been reported for patients with dyspeptic symptoms. Duodenal hypersensitivity to acid and the enhancing effect of duodenal acid on gastroduodenal mechanosensitivity may also contribute to dyspeptic symptom generation. Serotonergic signaling pathways may be involved in acid-induced dyspeptic symptoms. As for nutrients, lipid has been unequivocally shown to have a function in the pathogenesis of dyspeptic symptoms. Cholecystokinin (CCK) is an important mediator of the effects of duodenal lipid on gastroduodenal sensorimotor activities. It is unclear whether CCK hypersecretion or hypersensitivity to CCK is responsible for symptoms in dyspeptic patients. The presence of capsaicin in the duodenum evokes symptoms and affects gastric sensorimotor function. In patients with dyspepsia, capsaicin-induced symptoms appeared to occur earlier and to be more severe, however the effects of duodenal infusion and putative consequent gastric sensorimotor abnormalities have not been examined. Capsaicin activates transient receptor potential ion channel of the vanilloid type I, which can also be activated and sensitized by acid. The interaction between the different chemical stimuli is complex and has not yet been studied in patients with dyspeptic symptoms. In conclusion, the mechanisms underlying an enhanced response to duodenal chemical stimulation in patients with dyspeptic symptoms are partially understood. At the level of the duodenum, abnormalities may exist in stimulus intensity, mucosal mRNA expression, biosynthesis, release, or inactivation of mucosal mediators, or receptor expression on afferent nerve endings. Elucidation of the abnormalities involved will provide a basis for rational treatment of dyspeptic symptoms.
Collapse
Affiliation(s)
- O S van Boxel
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
6
|
Nguyen NQ, Fraser RJ, Bryant LK, Chapman MJ, Wishart J, Holloway RH, Butler R, Horowitz M. The relationship between gastric emptying, plasma cholecystokinin, and peptide YY in critically ill patients. Crit Care 2007; 11:R132. [PMID: 18154642 PMCID: PMC2246231 DOI: 10.1186/cc6205] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 11/23/2007] [Accepted: 12/21/2007] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cholecystokinin (CCK) and peptide YY (PYY) are released in response to intestinal nutrients and play an important physiological role in regulation of gastric emptying (GE). Plasma CCK and PYY concentrations are elevated in critically ill patients, particularly in those with a history of feed intolerance. This study aimed to evaluate the relationship between CCK and PYY concentrations and GE in critical illness. METHODS GE of 100 mL of Ensure meal (106 kcal, 21% fat) was measured using a 13C-octanoate breath test in 39 mechanically ventilated, critically ill patients (24 males; 55.8 +/- 2.7 years old). Breath samples for 13CO2 levels were collected over the course of 4 hours, and the GE coefficient (GEC) (normal = 3.2 to 3.8) was calculated. Measurements of plasma CCK, PYY, and glucose concentrations were obtained immediately before and at 60 and 120 minutes after administration of Ensure. RESULTS GE was delayed in 64% (25/39) of the patients. Baseline plasma CCK (8.5 +/- 1.0 versus 6.1 +/- 0.4 pmol/L; P = 0.045) and PYY (22.8 +/- 2.2 versus 15.6 +/- 1.3 pmol/L; P = 0.03) concentrations were higher in patients with delayed GE and were inversely correlated with GEC (CCK: r = -0.33, P = 0.04, and PYY: r = -0.36, P = 0.02). After gastric Ensure, while both plasma CCK (P = 0.03) and PYY (P = 0.02) concentrations were higher in patients with delayed GE, there was a direct relationship between the rise in plasma CCK (r = 0.40, P = 0.01) and PYY (r = 0.42, P < 0.01) from baseline at 60 minutes after the meal and the GEC. CONCLUSION In critical illness, there is a complex interaction between plasma CCK, PYY, and GE. Whilst plasma CCK and PYY correlated moderately with impaired GE, the pathogenetic role of these gut hormones in delayed GE requires further evaluation with specific antagonists.
Collapse
Affiliation(s)
- Nam Q Nguyen
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia, 5000
- Discipline of Medicine, University of Adelaide, Royal Adelaide Hospital, Adelaide, South Australia, 5000
| | - Robert J Fraser
- Discipline of Medicine, University of Adelaide, Royal Adelaide Hospital, Adelaide, South Australia, 5000
- Investigation and Procedures Unit, Repatriation General Hospital, Daw Road, Adelaide, South Australia, 5000
| | - Laura K Bryant
- Investigation and Procedures Unit, Repatriation General Hospital, Daw Road, Adelaide, South Australia, 5000
| | - Marianne J Chapman
- Department of Anaesthesia and Intensive Care, Royal Adelaide Hospital, Adelaide, South Australia, 5000
| | - Judith Wishart
- Discipline of Medicine, University of Adelaide, Royal Adelaide Hospital, Adelaide, South Australia, 5000
| | - Richard H Holloway
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia, 5000
- Discipline of Medicine, University of Adelaide, Royal Adelaide Hospital, Adelaide, South Australia, 5000
| | - Ross Butler
- Centre for Paediatric and Adolescent Gastroenterology, Children, Youth and Women's Health Service, Adelaide, South Australia, 5000
| | - Michael Horowitz
- Discipline of Medicine, University of Adelaide, Royal Adelaide Hospital, Adelaide, South Australia, 5000
| |
Collapse
|
7
|
Abstract
Cholecystokinin (CCK) is a peptide hormone which is found both in the gastrointestinal tract throughout the human small intestine and nerves in the myenteric plexus of the enteric nervous system and in the central nervous system. This dual location constitutes the anatomical basis for this in functions as a hormone and a neurotransmitter implicated in the regulation of both systems. CCK regulates not only motor functions in the gastrointestinal tract like lower oesophageal sphincter relaxation, gastric secretion and emptying, gall bladder contractility and bile secretion into the duodenum, intestinal and colonic motility, but also sensory functions and plays a role in the regulation of food intake. These effects are mediated through selective receptors CCK1 and CCK2. Over the last few years, research has focused on understanding the role of CCK, its receptors with antagonists at the biological, pharmacological, clinical and therapeutic level. As far as the CCK1 antagonists is concerned, important inroads have been made in the potential role of these antagonists in the treatment of GERD, IBS and pancreatitis. They have also shown encouraging results in sphincter of Oddi dysfunction and some gastrointestinal cancers. This review focuses on the recent ad vances of the biological role of CCK and their CCK1 antagonists: their current basic and clinical status in gastroenterology, with particular emphasis on the potential therapeutic role of the CCK1 antagonists and future research directions.
Collapse
Affiliation(s)
- Shajan A S Peter
- Department of Gastroenterology, University Hospital, Basel, Switzerland
| | | | | |
Collapse
|
8
|
Joseph IM, Kirschner D. A model for the study of Helicobacter pylori interaction with human gastric acid secretion. J Theor Biol 2004; 228:55-80. [PMID: 15064083 DOI: 10.1016/j.jtbi.2003.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Revised: 12/05/2003] [Accepted: 12/08/2003] [Indexed: 12/21/2022]
Abstract
We present a comprehensive mathematical model describing Helicobacter pylori interaction with the human gastric acid secretion system. We use the model to explore host and bacterial conditions that allow persistent infection to develop and be maintained. Our results show that upon colonization, there is a transient period (day 1-20 post-infection) prior to the establishment of persistence. During this period, changes to host gastric physiology occur including elevations in positive effectors of acid secretion (such as gastrin and histamine). This is promoted by reduced somatostatin levels, an inhibitor of acid release. We suggest that these changes comprise compensatory mechanisms aimed at restoring acid to pre-infection levels. We also show that ammonia produced by bacteria sufficiently buffers acid promoting bacteria survival and growth.
Collapse
Affiliation(s)
- Ian M Joseph
- Department of Microbiology and Immunology, The University of Michigan Medical School, 6730 Medical Science Building II, Ann Arbor, MI 48109-0620, USA
| | | |
Collapse
|
9
|
Abstract
Cholecystokinin (CCK) is a regulatory peptide hormone, predominantly found in the gastrointestinal tract, and a neurotransmitter present throughout the nervous system. In the gastrointestinal system CCK regulates motility, pancreatic enzyme secretion, gastric emptying, and gastric acid secretion. In the nervous system CCK is involved in anxiogenesis, satiety, nociception, and memory and learning processes. Moreover, CCK interacts with other neurotransmitters in some areas of the CNS. The biological effects of CCK are mediated by two specific G protein coupled receptor subtypes, termed CCK(1) and CCK(2). Over the past fifteen years the search of CCK receptor ligands has evolved from the initial CCK structure derived peptides towards peptidomimetic or non-peptide agonists and antagonists with improved pharmacokinetic profile. This research has provided a broad assortment of potent and selective CCK(1) and CCK(2) antagonists of diverse chemical structure. These antagonists have been discovered through optimization programs of lead compounds which were designed based on the structures of the C-terminal tetrapeptide, CCK-4, or the non-peptide natural compound, asperlicin, or derived from random screening programs. This review covers the main pharmacological and therapeutic aspects of these CCK(1) and CCK(2) antagonist. CCK(1) antagonists might have therapeutic potential for the treatment of pancreatic disorders and as prokinetics for the treatment of gastroesophageal reflux disease, bowel disorders, and gastroparesis. On the other hand, CCK(2) antagonists might have application for the treatment of gastric acid secretion and anxiety disorders.
Collapse
Affiliation(s)
- Rosario Herranz
- Instituto de Química Medica (CSIC), Juan de la Cierva 3, E-28006 Madrid, Spain.
| |
Collapse
|
10
|
Joseph IMP, Zavros Y, Merchant JL, Kirschner D. A model for integrative study of human gastric acid secretion. J Appl Physiol (1985) 2003; 94:1602-18. [PMID: 12433865 DOI: 10.1152/japplphysiol.00281.2002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have developed a unique virtual human model of gastric acid secretion and its regulation in which food provides a driving force. Food stimulus triggers neural activity in central and enteric nervous systems and G cells to release gastrin, a critical stimulatory hormone. Gastrin stimulates enterochromaffin-like cells to release histamine, which, together with acetylcholine, stimulates acid secretion from parietal cells. Secretion of somatostatin from antral and corpus D cells comprises a negative-feedback loop. We demonstrate that although acid levels are most sensitive to food and nervous system inputs, somatostatin-associated interactions are also important in governing acidity. The importance of gastrin in acid secretion is greatest at the level of transport between the antral and corpus regions. Our model can be applied to study conditions that are not yet experimentally reproducible. For example, we are able to preferentially deplete antral or corpus somatostatin. Depletion of antral somatostatin exhibits a more significant elevation of acid release than depletion of corpus somatostatin. This increase in acid release is likely due to elevated gastrin levels. Prolonged hypergastrinemia has significant effects in the long term (5 days) by promoting enterochromaffin-like cell overgrowth. Our results may be useful in the design of therapeutic strategies for acid secretory dysfunctions such as hyper- and hypochlorhydria.
Collapse
Affiliation(s)
- Ian M P Joseph
- Departments of Microbiology, The University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
11
|
|
12
|
Jensen RT. Involvement of cholecystokinin/gastrin-related peptides and their receptors in clinical gastrointestinal disorders. PHARMACOLOGY & TOXICOLOGY 2002; 91:333-50. [PMID: 12688377 DOI: 10.1034/j.1600-0773.2002.910611.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this paper the possible roles of cholecystokinin (CCK), gastrin, or gastrin-related peptides and their receptors in human gastrointestinal diseases are reviewed. For CCK/CCK(A) receptors (CCK(A)-R), the evidence for their proposed involvement in diseases caused by impaired CCK release or CCK(A)-R mutations, pancreatic disorders (acute/chronic pancreatitis), gastrointestinal motility disorders (gallbladder disease, irritable bowel syndrome), pancreatic tumor growth and satiety disorders, is briefly reviewed. The evidence that has established the involvement of gastrin/CCK(B)-R in mediating the action of hypergastrinaemic disorders, mediating hypergastrinaemic effects on the gastric mucosa (ECL hyperplasia, carcinoids, parietal cell mass), and acid-peptic diseases, is reviewed. The evidence for their possible involvement in mediating growth of gastric and pancreatic tumours and possible involvement of gastrin-related peptides in colon cancers, is reviewed briefly.
Collapse
Affiliation(s)
- Robert T Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1804, USA.
| |
Collapse
|
13
|
Abstract
Present therapies for functional gastrointestinal disorders are symptomatic and mainly treat altered bowel habits. New therapies are focused on nerve-gut communication dysfunction: 5-HT3 antagonists and 5-HT4 agonists have demonstrated activity in clinical trials. Promising targets for upper gut dysmotility drugs are motilin and cholecystokinin A receptors. Tachykinins, calcitonin gene-related peptide or glutamate antagonists are the most relevant candidates for visceral pain.
Collapse
Affiliation(s)
- M Chovet
- Institut de Recherche Jouveinal/Parke-Davis, Fresnes, France.
| |
Collapse
|
14
|
Quigley EM. Gastroduodenal motility. Curr Opin Gastroenterol 1999; 15:481-91. [PMID: 17023994 DOI: 10.1097/00001574-199911000-00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Several major themes emerged over the past year in the area of gastroduodenal motility. Mostly, these themes represented extensions of research areas discussed in prior reviews in this series rather than the emergence of completely new concepts. Thus, for example, considerable emphasis has again been placed on regional gastric motor function in dyspepsia and on the role of fundic relaxation and accommodation, in particular. Not surprisingly, basic physiologic research has also shown a keen interest in the regulation of fundic relaxation. One new and exciting development is the recognition of the stomach's role in satiety. The spectrum of gastric motor dysfunction in diabetes mellitus continues to be explored, and the important role of hyperglycemia in regulating gastric function has been further emphasized. More data have been provided on noninvasive alternatives to gastric motor function testing, and several studies have looked at factors that may influence variability in these various tests. There have been few innovations over the past year in the therapeutic arena; rather, the indications and limitations of current therapies have been further developed.
Collapse
Affiliation(s)
- E M Quigley
- Department of Medicine, National University of Ireland, Cork, Ireland.
| |
Collapse
|