1
|
DNMT1/PKR double knockdowned HepG2 (HepG2-DP) cells have high hepatic function and differentiation ability. Sci Rep 2022; 12:21173. [PMID: 36476676 PMCID: PMC9729623 DOI: 10.1038/s41598-022-25777-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
HepG2 cells are widely used as a human hepatocytes model, but their functions, including drug metabolism, are inferior to primary hepatocytes. We previously reported that the hepatic gene expressions in HepG2 cells were upregulated by treatment with zebularine, which is an inhibitor of DNA methylation, through the inhibition of both DNA methyltransferase 1 (DNMT1) and double-stranded RNA-dependent protein kinase (PKR). In this study, we established a new HepG2 cell subline, HepG2-DP cells, by stable double knockdown of DNMT1 and PKR and evaluated its function. Albumin production, expression of CYP1A2 genes, and accumulation of lipid droplets were increased in HepG2-DP cells compared with the original HepG2 cells. Comprehensive gene expression analysis of transcription factors revealed that the expression of important genes for hepatic function, such as HNF1β, HNF4α, ONECUT1, FOXA1, FOXA2, FOXA3, and various nuclear receptors, was upregulated in HepG2-DP cells. These results indicate that the newly established HepG2-DP cells are a highly functional hepatocyte cell line. In addition, we investigated whether HepG2-DP cells are able to mature by differentiation induction, since HepG2 cells are derived from hepatoblastoma. The gene expression of major CYPs and Phase II, III drug-metabolizing enzyme genes was significantly increased in HepG2-DP cells cultured in differentiation induction medium. These results suggest that HepG2-DP cells can be further matured by the induction of differentiation and could therefore be applied to studies of drug metabolism and pharmacokinetics.
Collapse
|
2
|
Glonnegger H, Schulze M, Kathemann S, Berg S, Füllgraf H, Tannapfel A, Gerner P, Grohmann J, Niemeyer C, Hettmer S. Case Report: Hepatic Adenoma in a Child With a Congenital Extrahepatic Portosystemic Shunt. Front Pediatr 2020; 8:501. [PMID: 32984213 PMCID: PMC7477041 DOI: 10.3389/fped.2020.00501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022] Open
Abstract
Congenital extrahepatic portosystemic shunts (CEPS), previously also described as Abernethy malformations, are rare malformations in which the extrahepatic portal system directly communicates with the vena cava inferior, thereby bypassing the liver. A hypoplastic portal vein (PV) exists in most cases. CEPS have been associated with the development of liver nodules, ranging from mostly focal nodular hyperplasia (FNH) to hepatic adenoma (HA) and even hepatocellular carcinoma (HCC). Tumor development in CEPS may be due to changes in perfusion pressures, oxygen supply or endocrine imbalances. It is important to rule out CEPS in children with liver tumors, because resection could impede future shunt occlusion procedures, and benign masses may regress after shunt occlusion. Here, we review the case of a 9-years-old male with CEPS and hepatic nuclear Factor 1-alpha (HNF-1-alpha) inactivated HA to raise awareness of this condition and review histopathological changes in the liver of CEPS.
Collapse
Affiliation(s)
- Hannah Glonnegger
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg im Breisgau, Germany
| | - Maren Schulze
- Department of Transplant and General Surgery, University Hospital Essen, Essen, Germany
| | - Simone Kathemann
- Department of Transplant and General Surgery, University Hospital Essen, Essen, Germany
| | - Sebastian Berg
- Division of Pediatric Radiology, Department of Radiology, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg im Breisgau, Germany
| | - Hannah Füllgraf
- Department of Pathology, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg im Breisgau, Germany
| | - Andrea Tannapfel
- Faculty of Medicine, Medical Center, Institute for Pathology, Ruhr-University Bochum, Bochum, Germany
| | - Patrick Gerner
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg im Breisgau, Germany
| | - Jochen Grohmann
- Department of Congenital Heart Defects and Pediatric Cardiology, Faculty of Medicine, University Heart Center Freiburg-Bad Krozingen, University of Freiburg, Freiburg im Breisgau, Germany
| | - Charlotte Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg im Breisgau, Germany
| | - Simone Hettmer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center-University of Freiburg, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
3
|
Lau C, Lytle C, Straus DS, DeFea KA. Apical and basolateral pools of proteinase-activated receptor-2 direct distinct signaling events in the intestinal epithelium. Am J Physiol Cell Physiol 2010; 300:C113-23. [PMID: 21068362 DOI: 10.1152/ajpcell.00162.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Studies suggest that there are two distinct pools of proteinase-activated receptor-2 (PAR₂) present in intestinal epithelial cells: an apical pool accessible from the lumen, and a basolateral pool accessible from the interstitial space and blood. Although introduction of PAR₂ agonists such as 2-furoyl-LIGRL-O-NH₂ (2fAP) to the intestinal lumen can activate PAR₂, the presence of accessible apical PAR₂ has not been definitively shown. Furthermore, some studies have suggested that basolateral PAR₂ responses in the intestinal epithelium are mediated indirectly by neuropeptides released from enteric nerve fibers, rather than by intestinal PAR₂ itself. Here we identified accessible pools of both apical and basolateral PAR₂ in cultured Caco2-BBe monolayers and in mouse ileum. Activation of basolateral PAR₂ transiently increased short-circuit current by activating electrogenic Cl⁻ secretion, promoted dephosphorylation of the actin filament-severing protein, cofilin, and activated the transcription factor, AP-1, whereas apical PAR₂ did not. In contrast, both pools of PAR₂ activated extracellular signal-regulated kinase 1/2 (ERK1/2) via temporally and mechanistically distinct pathways. Apical PAR₂ promoted a rapid, biphasic PLCβ/Ca²(+)/PKC-dependent ERK1/2 activation, resulting in nuclear localization, whereas basolateral PAR₂ promoted delayed ERK1/2 activation which was predominantly restricted to the cytosol, involving both PLCβ/Ca²(+) and β-arrestin-dependent pathways. These results suggest that the outcome of PAR₂ activation is dependent on the specific receptor pool that is activated, allowing for fine-tuning of the physiological responses to different agonists.
Collapse
Affiliation(s)
- Chang Lau
- University of California, Riverside, 92521, USA
| | | | | | | |
Collapse
|
4
|
Mogami H, Yura S, Itoh H, Kawamura M, Fujii T, Suzuki A, Aoe S, Ogawa Y, Sagawa N, Konishi I, Fujii S. Isocaloric high-protein diet as well as branched-chain amino acids supplemented diet partially alleviates adverse consequences of maternal undernutrition on fetal growth. Growth Horm IGF Res 2009; 19:478-485. [PMID: 19395294 DOI: 10.1016/j.ghir.2009.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 03/11/2009] [Accepted: 03/19/2009] [Indexed: 11/30/2022]
Abstract
Maternal undernutrition causes fetal growth restriction. Protein is a vital dietary nutrient for fetal growth, and branched-chain amino acids (BCAA) are noted to have anabolic actions. In this study, we investigated the effects of maternal high-protein diet or BCAA-supplemented diet upon fetal growth under the condition of maternal calorie restriction. Pregnant mice were calorie-restricted (undernutrition: UN), using either a standard diet (S-UN group), high-protein diet (HP-UN group), or BCAA-supplemented diet (BCAA-UN group) to 70% of the control; dams fed ad libitum with a standard diet (S-NN group) from 10.5days post coitum (dpc) to 18.5dpc. The fetal weights of UN groups were significantly decreased compared to that of S-NN. However, the fetal weights of HP-UN and BCAA-UN were significantly higher by 5% and 4%, respectively, than those of S-UN, concomitant with augmentation of the gene and protein expressions of IGF-I and IGF-II in fetal liver. A high-protein diet as well as BCAA-supplemented diet partially improved fetal growth restriction caused by maternal calorie-restriction, suggesting a pivotal role of them in the amelioration of fetal growth restriction.
Collapse
Affiliation(s)
- Haruta Mogami
- Department of Gynecology and Obstetrics, Kyoto University, Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Maternal diets deficient in folic acid and related methyl donors modify mechanisms associated with lipid metabolism in the fetal liver of the rat. Br J Nutr 2009; 102:1445-52. [PMID: 19566968 DOI: 10.1017/s0007114509990389] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Previously we have examined the effects of diets deficient in folic acid ( - F) or folate deficient with low methionine and choline ( - F LM LC) on the relative abundance of soluble proteins in the liver of the pregnant rat. In the present study we report the corresponding changes in the fetal liver at day 21 of gestation. The abundance of eighteen proteins increased when dams were fed the - F diet. When dams were fed the - F LM LC diet, thirty-three proteins increased and eight decreased. Many of the differentially abundant proteins in the fetal liver could be classified into the same functional groups as those previously identified in the maternal liver, namely protein synthesis, metabolism, lipid metabolism and proteins associated with the cytoskeleton and endoplasmic reticulum. The pattern was consistent with reduced cell proliferation in the - F LM LC group but not in the - F group. Metabolic enzymes associated with lipid metabolism changed in both the - F and - F LM LC groups. The mRNA for carnitine palmitoyl transferase were up-regulated and CD36 (fatty acid translocase) down-regulated in the - F group, suggesting increased mitochondrial oxidation of fatty acids as an indirect response to altered maternal lipid metabolism. In the - F LM LC group the mRNA for acetyl CoA carboxylase was down-regulated, suggesting reduced fatty acid synthesis. The mRNA for transcriptional regulators including PPARalpha and sterol response element-binding protein-1c were unchanged. These results suggest that an adequate supply of folic acid and the related methyl donors may benefit fetal development directly by improving lipid metabolism in fetal as well as maternal tissues.
Collapse
|
6
|
Brasse-Lagnel C, Lavoinne A, Husson A. Control of mammalian gene expression by amino acids, especially glutamine. FEBS J 2009; 276:1826-44. [PMID: 19250320 DOI: 10.1111/j.1742-4658.2009.06920.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecular data rapidly accumulating on the regulation of gene expression by amino acids in mammalian cells highlight the large variety of mechanisms that are involved. Transcription factors, such as the basic-leucine zipper factors, activating transcription factors and CCAAT/enhancer-binding protein, as well as specific regulatory sequences, such as amino acid response element and nutrient-sensing response element, have been shown to mediate the inhibitory effect of some amino acids. Moreover, amino acids exert a wide range of effects via the activation of different signalling pathways and various transcription factors, and a number of cis elements distinct from amino acid response element/nutrient-sensing response element sequences were shown to respond to changes in amino acid concentration. Particular attention has been paid to the effects of glutamine, the most abundant amino acid, which at appropriate concentrations enhances a great number of cell functions via the activation of various transcription factors. The glutamine-responsive genes and the transcription factors involved correspond tightly to the specific effects of the amino acid in the inflammatory response, cell proliferation, differentiation and survival, and metabolic functions. Indeed, in addition to the major role played by nuclear factor-kappaB in the anti-inflammatory action of glutamine, the stimulatory role of activating protein-1 and the inhibitory role of C/EBP homology binding protein in growth-promotion, and the role of c-myc in cell survival, many other transcription factors are also involved in the action of glutamine to regulate apoptosis and intermediary metabolism in different cell types and tissues. The signalling pathways leading to the activation of transcription factors suggest that several kinases are involved, particularly mitogen-activated protein kinases. In most cases, however, the precise pathways from the entrance of the amino acid into the cell to the activation of gene transcription remain elusive.
Collapse
Affiliation(s)
- Carole Brasse-Lagnel
- Appareil Digestif, Environnement et Nutrition, EA 4311, Université de Rouen, France
| | | | | |
Collapse
|
7
|
Singh LN, Wang LS, Hannenhalli S. TREMOR--a tool for retrieving transcriptional modules by incorporating motif covariance. Nucleic Acids Res 2007; 35:7360-71. [PMID: 17962303 PMCID: PMC2189735 DOI: 10.1093/nar/gkm885] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A transcriptional module (TM) is a collection of transcription factors (TF) that as a group, co-regulate multiple, functionally related genes. The task of identifying TMs poses an important biological challenge. Since TFs belong to evolutionarily and structurally related families, TF family members often bind to similar DNA motifs and can confound sequence-based approaches to TM identification. A previous approach to TM detection addresses this issue by pre-selecting a single representative from each TF family. One problem with this approach is that closely related transcription factors can still target sufficiently distinct genes in a biologically meaningful way, and thus, pre-selecting a single family representative may in principle miss certain TMs. Here we report a method—TREMOR (Transcriptional Regulatory Module Retriever). This method uses the Mahalanobis distance to assess the validity of a TM and automatically incorporates the inter-TF binding similarity without resorting to pre-selecting family representatives. The application of TREMOR on human muscle-specific, liver-specific and cell-cycle-related genes reveals TFs and TMs that were validated from literature and also reveals additional related genes.
Collapse
Affiliation(s)
- Larry N Singh
- Penn Center for Bioinformatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
8
|
Masaki T, Matsuura T, Ohkawa K, Miyamura T, Okazaki I, Watanabe T, Suzuki T. All-trans retinoic acid down-regulates human albumin gene expression through the induction of C/EBPbeta-LIP. Biochem J 2006; 397:345-53. [PMID: 16608438 PMCID: PMC1513275 DOI: 10.1042/bj20051863] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
ATRA (all-trans retinoic acid), which is a major bioactive metabolite of vitamin A and a potent regulator of development and differentiation, mediates down-regulation of the human albumin gene. However, the mechanism of ATRA-mediated down-regulation is not well understood. In the present study, deletion analysis and luciferase assays demonstrate that ATRA causes a marked decrease in the activity of the albumin promoter, the region between nt -367 and -167 from the transcription start site, where C/EBP (CCAAT/enhancer-binding protein)-binding sites are tightly packed, is indispensable for ATRA-mediated down-regulation. ChIP (chromatin immunoprecipitation) assays revealed that in vivo binding of C/EBPalpha to the region markedly decreases upon incubation with ATRA, whereas ATRA treatment marginally increases the recruitment of C/EBPbeta. We found that ATRA has the ability to differentially and directly induce expression of a truncated isoform of C/EBPbeta, which is an LIP (liver-enriched transcriptional inhibitory protein) that lacks a transactivation domain, and to increase the binding activity of C/EBPbeta-LIP to its response element. Overexpression of C/EBPbeta-LIP negatively regulates the endogenous expression of albumin, as well as the activity of the albumin promoter induced by C/EBP transactivators such as C/EBPalpha and full-length C/EBPbeta. In conclusion, we propose a novel model for down-regulation of the albumin gene, in which ATRA triggers an increase in the translation of C/EBPbeta-LIP that antagonizes C/EBP transactivators by interacting with their binding sites in the albumin promoter.
Collapse
Affiliation(s)
- Takahiro Masaki
- *Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
- †Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105-8461, Japan
- ‡Department of Community Health, Tokai University School of Medicine, Kanagawa 259-1193, Japan
| | - Tomokazu Matsuura
- §Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Kiyoshi Ohkawa
- †Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Tatsuo Miyamura
- *Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Isao Okazaki
- ‡Department of Community Health, Tokai University School of Medicine, Kanagawa 259-1193, Japan
| | - Tetsu Watanabe
- ‡Department of Community Health, Tokai University School of Medicine, Kanagawa 259-1193, Japan
| | - Tetsuro Suzuki
- *Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
- To whom correspondence should be addressed (email )
| |
Collapse
|
9
|
Brasse-Lagnel C, Fairand A, Lavoinne A, Husson A. Glutamine Stimulates Argininosuccinate Synthetase Gene Expression through Cytosolic O-Glycosylation of Sp1 in Caco-2 Cells. J Biol Chem 2003; 278:52504-10. [PMID: 14570901 DOI: 10.1074/jbc.m306752200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutamine stimulates the expression of the argininosuccinate synthetase (ASS) gene at both the level of enzyme activity and mRNA in Caco-2 cells. Searching to identify the pathway involved, we observed that (i) the stimulating effect of glutamine was totally mimicked by glucosamine addition, and (ii) its effect but not that of glucosamine was totally blocked by 6-diazo-5-oxo-l-norleucine (DON), an inhibitor of amidotransferases, suggesting that the metabolism of glutamine to glucosamine 6-phosphate was required. Moreover, run-on assays revealed that glucosamine was acting at a transcriptional level. Because three functional GC boxes were identified on the ASS gene promoter (Anderson, G. M., and Freytag, S. O. (1991) Mol. Cell Biol. 11, 1935-1943), the potential involvement of Sp1 family members was studied. Electrophoretic mobility shift assays using either the Sp1 consensus sequence or an appropriate fragment of the ASS promoter sequence as a probe demonstrated that both glutamine and glucosamine increased Sp1 DNA binding. Immunoprecipitation-Western blot experiments demonstrated that both compounds increased O-glycosylation of Sp1 leading to its translocation into nucleus. Again, the effect of glutamine on Sp1 was inhibited by the addition of DON but not of glucosamine. Taken together, the results clearly demonstrate that the metabolism of glutamine through the hexosamine pathway leads to the cytosolic O-glycosylation of Sp1, which, in turn, translocates into nucleus and stimulates the ASS gene transcription. Collectively, the results constitute the first demonstration of a functional relationship between a regulating signal (glutamine), a transcription factor (Sp1), and the transcription of the ASS gene.
Collapse
Affiliation(s)
- Carole Brasse-Lagnel
- Groupe Appareil Digestif, Environnement et Nutrition, Institut Fédératif de Recherches Multidisciplinaires sur les Peptides, Université de Rouen, 76183 Rouen cedex, France
| | | | | | | |
Collapse
|
10
|
Husson A, Brasse-Lagnel C, Fairand A, Renouf S, Lavoinne A. Argininosuccinate synthetase from the urea cycle to the citrulline-NO cycle. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:1887-99. [PMID: 12709047 DOI: 10.1046/j.1432-1033.2003.03559.x] [Citation(s) in RCA: 224] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Argininosuccinate synthetase (ASS, EC 6.3.4.5) catalyses the condensation of citrulline and aspartate to form argininosuccinate, the immediate precursor of arginine. First identified in the liver as the limiting enzyme of the urea cycle, ASS is now recognized as a ubiquitous enzyme in mammalian tissues. Indeed, discovery of the citrulline-NO cycle has increased interest in this enzyme that was found to represent a potential limiting step in NO synthesis. Depending on arginine utilization, location and regulation of ASS are quite different. In the liver, where arginine is hydrolyzed to form urea and ornithine, the ASS gene is highly expressed, and hormones and nutrients constitute the major regulating factors: (a) glucocorticoids, glucagon and insulin, particularly, control the expression of this gene both during development and adult life; (b) dietary protein intake stimulates ASS gene expression, with a particular efficiency of specific amino acids like glutamine. In contrast, in NO-producing cells, where arginine is the direct substrate in the NO synthesis, ASS gene is expressed at a low level and in this way, proinflammatory signals constitute the main factors of regulation of the gene expression. In most cases, regulation of ASS gene expression is exerted at a transcriptional level, but molecular mechanisms are still poorly understood.
Collapse
Affiliation(s)
- Annie Husson
- ADEN, Institut Fédératif de Recherches Multidisciplinaires sur les Peptides no. 23 (IFRMP 23), Rouen, France.
| | | | | | | | | |
Collapse
|
11
|
Chan C, Berthiaume F, Lee K, Yarmush ML. Metabolic flux analysis of hepatocyte function in hormone- and amino acid-supplemented plasma. Metab Eng 2003; 5:1-15. [PMID: 12749840 DOI: 10.1016/s1096-7176(02)00011-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the metabolic and regulatory pathways of hepatocytes is important for biotechnological applications involving liver cells. Previous attempts to culture hepatocytes in plasma yielded poor functional results. Recently we reported that hormone (insulin and hydrocortisone) and amino acid supplementation reduces intracellular lipid accumulation and restores liver-specific function in hepatocytes exposed to heparinized human plasma. In the current study, we performed metabolic flux analysis (MFA) using a simplified metabolic network model of cultured hepatocytes to quantitively estimate the changes in lipid metabolism and relevant intracellular pathways in response to hormone and amino acid supplementation. The model accounts for the majority of central carbon and nitrogen metabolism, and assumes pseudo-steady-state with no metabolic futile cycles. We found that beta-oxidation and tricarboxylic acid (TCA) cycle fluxes were upregulated by both hormone and amino acid supplementation, thus enhancing the rate of lipid oxidation. Concomitantly, hormone and amino acid supplementation increased gluconeogenic fluxes. This, together with an increased rate of glucose clearance, caused an increase in predicted glycogen synthesis. Urea synthesis was primarily derived from ammonia and aspartate generated through transamination reactions, while exogenous ammonia removal accounted for only 3-6% of the urea nitrogen. Amino acid supplementation increased the endogenous synthesis of oxaloacetate, and in turn that of aspartate, a necessary substrate for the urea cycle. These findings from MFA provide cues as to which genes/pathways relevant to fatty acid oxidation, urea production, and gluconeogenesis may be upregulated by plasma supplementation, and are consistent with current knowledge of hepatic amino acid metabolism, which provides further credence to this approach for evaluating the metabolic state of hepatocytes under various environmental conditions.
Collapse
Affiliation(s)
- Christina Chan
- Center For Engineering in Medicine/Surgical Services, Massachusetts General Hospital, Harvard Medical School, and The Shriners Hospitals for Children, 55 Fruit Street, Bigelow 1401, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|
12
|
Straus DS. Nutritional regulation of visceral markers in rat liver and cultured hepatoma cells. Clin Chem Lab Med 2002; 40:1274-80. [PMID: 12553431 DOI: 10.1515/cclm.2002.221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Protein malnutrition in humans and other animals is consistently associated with a decreased concentration of circulating serum albumin, transthyretin (TTR), and insulin-like growth factor-I (IGF-I). The molecular mechanisms for regulation of the three polypeptides by dietary protein remain to be completely elucidated. The abundance of albumin, TTR and IGF-I mRNA is decreased in liver of juvenile rats consuming insufficient amounts of protein. Moreover, protein restriction specifically decreases the abundance of albumin and TTR nuclear transcripts, indicating that the reduction in mRNA levels for these two genes is caused at least partly by a decrease in gene transcription. Expression of several other genes transcribed at a high level in the liver is also decreased under conditions of dietary protein restriction, suggesting that the level/functional activity of liver-enriched transcription factor(s) might be decreased under these conditions. Limitation of cultured hepatoma cells for a single amino acid also selectively decreases the mRNA levels of several genes with liver-enriched expression, including albumin and TTR. The decrease in albumin mRNA is caused partly by decreased albumin gene transcription and partly by destabilization of albumin mRNA.
Collapse
Affiliation(s)
- Daniel S Straus
- Biomedical Sciences Division and Biology Department, University of California, Riverside, CA 92521-0121, USA.
| |
Collapse
|
13
|
Chan C, Berthiaume F, Washizu J, Toner M, Yarmush ML. Metabolic pre-conditioning of cultured cells in physiological levels of insulin: generating resistance to the lipid-accumulating effects of plasma in hepatocytes. Biotechnol Bioeng 2002; 78:753-60. [PMID: 12001167 DOI: 10.1002/bit.10275] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Understanding the regulation of hepatocyte lipid metabolism is important for several biotechnological applications involving liver cells. During exposure of hepatocytes to plasma, as is the case in extracorporeal bioartificial liver assist devices, it has been reported that hepatic-specific functions, e.g., albumin and urea synthesis and diazepam removal, are dramatically compromised and hepatocytes progressively accumulate cytoplasmic lipid droplets. We hypothesized that the composition of hepatocyte culture medium significantly affects lipid metabolism during subsequent plasma exposure. Rat hepatocytes were cultured in medium containing either physiological (50 microU/mL) or supra-physiological (500 mU/mL) insulin levels for 1 week and then exposed to human plasma supplemented with or without amino acids. We found that insulin's anabolic effects, such as stimulation of triglyceride storage, were carried over from the pre-conditioning to the plasma exposure period. While hepatocytes cultured in high insulin medium accumulated large quantities of triglycerides during subsequent plasma exposure, culture in low insulin medium largely prevented lipid accumulation. Urea and albumin secretion, as well as the ammonia removal rate, were largely unaffected by insulin but increased with amino acid supplementation. Thus, hepatocyte metabolism during plasma exposure can be modulated by medium pre-conditioning and supplements added to plasma.
Collapse
Affiliation(s)
- Christina Chan
- Center for Engineering in Medicine/Surgical Services, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|
14
|
Hsiang CH, Straus DS. Cyclopentenone causes cell cycle arrest and represses cyclin D1 promoter activity in MCF-7 breast cancer cells. Oncogene 2002; 21:2212-26. [PMID: 11948404 DOI: 10.1038/sj.onc.1205293] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2001] [Revised: 01/03/2002] [Accepted: 01/08/2002] [Indexed: 11/09/2022]
Abstract
Evidence indicates that overexpression of cyclin D1 is an important event in malignant transformation of breast cancer cells. Therefore, cyclin D1 is a potential target for mechanistically-based chemoprevention/treatment of breast cancer. Treatment of serum-stimulated quiescent MCF-7 breast cancer cells with cyclopentenone (2-cyclopenten-1-one) blocked progression through G1 and into S phase. Growth arrest of the cyclopentenone-treated cells in G1 was associated with changes in the levels of several proteins that control the cell cycle, including a dramatic decrease in cyclin D1 protein expression. Cyclopentenone also decreased the abundance of cyclin D1 mRNA and nuclear transcripts, indicating that it regulated cyclin D1 expression at the transcriptional level. Cyclopentenone selectively inhibited the activity of the cyclin D1 and cyclin A promoters but not the activity of several other control promoters. Deletion analysis indicated that the cyclopentenone response element was located in the cyclin D1 core promoter. Additional functional studies showed that a sequence within the core promoter (CycY, located downstream from the initiator element) played an important role in activation of the cyclin D1 promoter in MCF-7 cells. Electrophoretic mobility shift assays demonstrated specific binding of the transcription factor BTEB to the CycY site. The cyclopentenone response element did not correspond to the CycY site but rather mapped to the initiator element itself. The overall results suggest that cyclopentenone interferes with the transcription initiation complex that assembles over the cyclin D1 initiator element, leading to selective inhibition of cyclin D1 gene transcription.
Collapse
Affiliation(s)
- Chin-Hui Hsiang
- Biomedical Sciences Division and Biology Department, University of California, Riverside, California, CA 92521-0121, USA
| | | |
Collapse
|