1
|
Dobritzsch D, Meijer J, Meinsma R, Maurer D, Monavari AA, Gummesson A, Reims A, Cayuela JA, Kuklina N, Benoist JF, Perrin L, Assmann B, Hoffmann GF, Bierau J, Kaindl AM, van Kuilenburg ABP. β-Ureidopropionase deficiency due to novel and rare UPB1 mutations affecting pre-mRNA splicing and protein structural integrity and catalytic activity. Mol Genet Metab 2022; 136:177-185. [PMID: 35151535 DOI: 10.1016/j.ymgme.2022.01.102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 01/04/2023]
Abstract
β-Ureidopropionase is the third enzyme of the pyrimidine degradation pathway and catalyses the conversion of N-carbamyl-β-alanine and N-carbamyl-β-aminoisobutyric acid to β-alanine and β-aminoisobutyric acid, ammonia and CO2. To date, only a limited number of genetically confirmed patients with a complete β-ureidopropionase deficiency have been reported. Here, we report on the clinical, biochemical and molecular findings of 10 newly identified β-ureidopropionase deficient individuals. Patients presented mainly with neurological abnormalities and markedly elevated levels of N-carbamyl-β-alanine and N-carbamyl-β-aminoisobutyric acid in urine. Analysis of UPB1, encoding β-ureidopropionase, showed 5 novel missense variants and two novel splice-site variants. Functional expression of the UPB1 variants in mammalian cells showed that recombinant ß-ureidopropionase carrying the p.Ala120Ser, p.Thr129Met, p.Ser300Leu and p.Asn345Ile variant yielded no or significantly decreased β-ureidopropionase activity. Analysis of the crystal structure of human ß-ureidopropionase indicated that the point mutations affect substrate binding or prevent the proper subunit association to larger oligomers and thus a fully functional β-ureidopropionase. A minigene approach showed that the intronic variants c.[364 + 6 T > G] and c.[916 + 1_916 + 2dup] led to skipping of exon 3 and 8, respectively, in the process of UPB1 pre-mRNA splicing. The c.[899C > T] (p.Ser300Leu) variant was identified in two unrelated Swedish β-ureidopropionase patients, indicating that β-ureidopropionase deficiency may be more common than anticipated.
Collapse
Affiliation(s)
- Doreen Dobritzsch
- Uppsala University, Department of Chemistry-BMC, Biomedical Center, Uppsala, Sweden
| | - Judith Meijer
- Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Cancer Center Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam, the Netherlands
| | - Rutger Meinsma
- Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Cancer Center Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam, the Netherlands
| | | | - Ardeshir A Monavari
- National Centre for Inherited Metabolic Disorders, Children's Health Ireland at Temple Street, Temple Street, Dublin, Ireland
| | - Anders Gummesson
- Sahlgrenska University Hospital, Department of Clinical Genetics and Genomics, Gothenburg, Sweden
| | - Annika Reims
- Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Jorge A Cayuela
- Sahlgrenska University Hospital, Department of Clinical Genetics and Genomics, Gothenburg, Sweden
| | - Natalia Kuklina
- Drammen Hospital, Pediatric Department/Habilitation Center, Vestre Viken HF, Drammen, Norway
| | - Jean-François Benoist
- Hôpital Universitaire Robert Debré, Service de Biochimie Hormonologie, Paris, France
| | - Laurence Perrin
- Hôpital Universitaire Robert Debré, Service de Biochimie Hormonologie, Paris, France
| | - Birgit Assmann
- University Children's Hospital, University of Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- University Children's Hospital, University of Heidelberg, Heidelberg, Germany
| | - Jörgen Bierau
- Maastricht University Medical Centre, Department of Clinical Genetics, Maastricht, the Netherlands; Department of Clinical Genetics, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Angela M Kaindl
- Charité - Universitätsmedizin Berlin, Department of Pediatric Neurology, Center for Chronically Sick Children, Institute for Cell and Neurobiology, Berlin, Germany
| | - André B P van Kuilenburg
- Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Gastroenterology Endocrinology Metabolism, Cancer Center Amsterdam, Laboratory Genetic Metabolic Diseases, Amsterdam, the Netherlands.
| |
Collapse
|
2
|
In Vitro Assessment of Fluoropyrimidine-Metabolizing Enzymes: Dihydropyrimidine Dehydrogenase, Dihydropyrimidinase, and β-Ureidopropionase. J Clin Med 2020; 9:jcm9082342. [PMID: 32707991 PMCID: PMC7464968 DOI: 10.3390/jcm9082342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 01/22/2023] Open
Abstract
Fluoropyrimidine drugs (FPs), including 5-fluorouracil, tegafur, capecitabine, and doxifluridine, are among the most widely used anticancer agents in the treatment of solid tumors. However, severe toxicity occurs in approximately 30% of patients following FP administration, emphasizing the importance of predicting the risk of acute toxicity before treatment. Three metabolic enzymes, dihydropyrimidine dehydrogenase (DPD), dihydropyrimidinase (DHP), and β-ureidopropionase (β-UP), degrade FPs; hence, deficiencies in these enzymes, arising from genetic polymorphisms, are involved in severe FP-related toxicity, although the effect of these polymorphisms on in vivo enzymatic activity has not been clarified. Furthermore, the clinical usefulness of current methods for predicting in vivo activity, such as pyrimidine concentrations in blood or urine, is unknown. In vitro tests have been established as advantageous for predicting the in vivo activity of enzyme variants. This is due to several studies that evaluated FP activities after enzyme metabolism using transient expression systems in Escherichia coli or mammalian cells; however, there are no comparative reports of these results. Thus, in this review, we summarized the results of in vitro analyses involving DPD, DHP, and β-UP in an attempt to encourage further comparative studies using these drug types and to aid in the elucidation of their underlying mechanisms.
Collapse
|
3
|
Yokoi K, Nakajima Y, Matsuoka H, Shinkai Y, Ishihara T, Maeda Y, Kato T, Katsuno H, Masumori K, Kawada K, Yoshikawa T, Ito T, Kurahashi H. Impact of DPYD, DPYS, and UPB1 gene variations on severe drug-related toxicity in patients with cancer. Cancer Sci 2020; 111:3359-3366. [PMID: 32619063 PMCID: PMC7469832 DOI: 10.1111/cas.14553] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 01/08/2023] Open
Abstract
Cancer treatment with a fluoropyrimidine (FP) is often accompanied by severe toxicity that may be dependent on the activity of catalytic enzymes encoded by the DPYD, DPYS, and UPB1 genes. Genotype-guided dose individualization of FP therapy has been proposed in western countries, but our knowledge of the relevant genetic variants in East Asian populations is presently limited. To investigate the association between these genetic variations and FP-related high toxicity in a Japanese population, we obtained blood samples from 301 patients who received this chemotherapy and sequenced the coding exons and flanking intron regions of their DPYD, DPYS, and UPB1 genes. In total, 24 single nucleotide variants (15 in DPYD, 7 in DPYS and 2 in UPB1) were identified including 3 novel variants in DPYD and 1 novel variant in DPYS. We did not find a significant association between FP-related high toxicity and each of these individual variants, although a certain trend toward significance was observed for p.Arg181Trp and p.Gln334Arg in DPYS (P = .0813 and .087). When we focused on 7 DPYD rare variants (p.Ser199Asn, p.IIe245Phe, p.Thr305Lys, p.Glu386Ter, p.Ser556Arg, p.Ala571Asp, p.Trp621Cys) which have an allele frequency of less than 0.01% in the Japanese population and are predicted to be loss-of-function mutations by in silico analysis, the group of patients who were heterozygous carriers of at least one these rare variants showed a strong association with FP-related high toxicity (P = .003). Although the availability of screening of these rare loss-of-function variants is still unknown, our data provide useful information that may help to alleviate FP-related toxicity in Japanese patients with cancer.
Collapse
Affiliation(s)
- Katsuyuki Yokoi
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan.,Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Yoko Nakajima
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hiroshi Matsuoka
- Department of Gastrointestinal Surgery, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yasuko Shinkai
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Takuma Ishihara
- Innovative and Clinical Research Promotion Center, Gifu University Hospital Gifu University, Gifu, Japan
| | - Yasuhiro Maeda
- Center for Joint Research Facilities Support, Fujita Health University, Toyoake, Japan
| | - Takema Kato
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Hidetoshi Katsuno
- Department of Gastrointestinal Surgery, Fujita Health University School of Medicine, Toyoake, Japan
| | - Koji Masumori
- Department of Gastrointestinal Surgery, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kenji Kawada
- Department of Medical Oncology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Tetsushi Yoshikawa
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan
| | - Tetsuya Ito
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hiroki Kurahashi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| |
Collapse
|
4
|
Fang Y, Cai C, Wang C, Sun B, Zhang X, Fan W, Hu W, Meng Y, Lin S, Zhang C, Zhang Y, Shu J. Clinical and genetic analysis of 7 Chinese patients with β-ureidopropionase deficiency. Medicine (Baltimore) 2019; 98:e14021. [PMID: 30608453 PMCID: PMC6344145 DOI: 10.1097/md.0000000000014021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
β-Ureidopropionase (βUP) deficiency is an autosomal recessive disease caused by abnormal changes in the pyrimidine-degradation pathway. This study aimed to investigate the mutation of β-ureidopropionase gene (UPB1) gene and clinical features of 7 Chinese patients with βUP deficiency.We reported 7 Chinese patients with βUP deficiency who were admitted at Tianjin Children's Hospital. Urine metabolomics was detected by gas chromatography-mass spectrometry (GC-MS). Then genetic testing of UPB1 was conducted by polymerase chain reaction (PCR) method.The patients presented with developmental delay, seizures, autism, abnormal magnetic resonance imaging, and significantly elevated levels of N-carbamyl-β-alanine and N-carbamyl-β-aminoisobutyric acid in urine. Subsequent analysis of UPB1 mutation revealed 2 novel missense mutations (c.851G>T and c.853G>A), 3 previously reported mutations including 2 missense mutations (c.977G>A and c.91G>A) and 1 splice site mutation (c.917-1 G>A).The results suggested that the UPB1 mutation may contribute to βUP deficiency. The c.977G>A is the most common mutation in Chinese population.
Collapse
Affiliation(s)
| | | | | | - Bei Sun
- Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University
| | | | - Wenxuan Fan
- Department of Neurology, Tianjin Children's Hospital, Tianjin
| | - Wenchao Hu
- Department of Endocrinology, Qilu Hospital of Shandong University, Qingdao, China
| | | | | | - Chunhua Zhang
- MILS International, Department of Research and Development, Kanazawa, Japan
| | - Yuqin Zhang
- Department of Neurology, Tianjin Children's Hospital, Tianjin
| | | |
Collapse
|
5
|
Kummer D, Froehlich TK, Joerger M, Aebi S, Sistonen J, Amstutz U, Largiadèr CR. Dihydropyrimidinase and β-ureidopropionase gene variation and severe fluoropyrimidine-related toxicity. Pharmacogenomics 2015; 16:1367-77. [DOI: 10.2217/pgs.15.81] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aims: To assess the association of DPYS and UPB1 genetic variation, encoding the catabolic enzymes downstream of dihydropyrimidine dehydrogenase, with early-onset toxicity from fluoropyrimidine-based chemotherapy. Patients & methods: The coding and exon-flanking regions of both genes were sequenced in a discovery subset (164 patients). Candidate variants were genotyped in the full cohort of 514 patients. Results & conclusions: Novel rare deleterious variants in DPYS (c.253C > T and c.1217G > A) were detected once each in toxicity cases and may explain the occurrence of severe toxicity in individual patients, and associations of common variants in DPYS (c.1–1T > C: padjusted = 0.003; OR = 2.53; 95% CI: 1.39–4.62, and c.265–58T > C: padjusted = 0.039; OR = 0.61; 95% CI: 0.38–0.97) with 5-fluorouracil toxicity were replicated.
Collapse
Affiliation(s)
- Dominic Kummer
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, & University of Bern, INO-F, CH-3010 Bern, Switzerland
- Graduate School for Cellular & Biomedical Sciences, University of Bern, Freiestrasse 1, CH-3012 Bern, Switzerland
| | - Tanja K Froehlich
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, & University of Bern, INO-F, CH-3010 Bern, Switzerland
| | - Markus Joerger
- Department of Medical Oncology & Hematology, Cantonal Hospital St. Gallen, Rorschacherstrasse 95, CH-9007 St. Gallen, Switzerland
| | - Stefan Aebi
- Division of Medical Oncology, Cantonal Hospital Lucerne, Spitalstrasse, CH-6000 Lucerne 16, Switzerland
| | - Johanna Sistonen
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, & University of Bern, INO-F, CH-3010 Bern, Switzerland
| | - Ursula Amstutz
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, & University of Bern, INO-F, CH-3010 Bern, Switzerland
| | - Carlo R Largiadèr
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, & University of Bern, INO-F, CH-3010 Bern, Switzerland
| |
Collapse
|
6
|
Shu J, Lv X, Jiang S, Zhang Y, Zhang C, Meng Y, Situ A, Xu H, Song L. Genetic analysis of the UPB1 gene in two new Chinese families with β-ureidopropionase deficiency and the carrier frequency of the mutation c.977G>A in Northern China. Childs Nerv Syst 2014; 30:2109-14. [PMID: 25236466 DOI: 10.1007/s00381-014-2541-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 08/26/2014] [Indexed: 12/27/2022]
Abstract
PURPOSE The purpose of the study was to investigate mutations of the UPB1 gene in two Chinese families with β-ureidopropionase deficiency and the heterozygous carrier frequency in Chinese. METHODS Genomic DNA was extracted from peripheral blood leukocytes from all available family members and 500 unrelated healthy controls. Then, all exons and flanking intron regions of the UPB1 gene were amplified by PCR and analyzed by direct sequencing in two patient-families. Finally, the carrier frequency of the c.977G>A (p.R326Q) mutation was identified by PCR restriction fragment length polymorphism in 500 healthy controls. RESULTS The two patients had the same homozygous missense mutation in exon 9 (c.977G>A; p.R326Q), and the carrier frequency of this mutation was 2.8 % in the Northern Chinese population, which suggests that about 1:5,102 Chinese are expected to suffer from UPB1 deficiency. CONCLUSIONS The c.977G>A (p.R326Q) is the most common mutation of the UPB1 gene in Chinese. The predicted incidence indicates that β-ureidopropionase deficiency is significantly underdiagnosed in the Chinese population. It should be necessary to add β-ureidopropionase deficiency to high-risk screening for the symptomatic patients group.
Collapse
Affiliation(s)
- Jianbo Shu
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital, Tianjin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Nakajima Y, Meijer J, Dobritzsch D, Ito T, Meinsma R, Abeling NGGM, Roelofsen J, Zoetekouw L, Watanabe Y, Tashiro K, Lee T, Takeshima Y, Mitsubuchi H, Yoneyama A, Ohta K, Eto K, Saito K, Kuhara T, van Kuilenburg ABP. Clinical, biochemical and molecular analysis of 13 Japanese patients with β-ureidopropionase deficiency demonstrates high prevalence of the c.977G > A (p.R326Q) mutation [corrected]. J Inherit Metab Dis 2014; 37:801-12. [PMID: 24526388 PMCID: PMC4158181 DOI: 10.1007/s10545-014-9682-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 01/18/2014] [Accepted: 01/21/2014] [Indexed: 11/13/2022]
Abstract
β-ureidopropionase (βUP) deficiency is an autosomal recessive disease characterized by N-carbamyl-β-amino aciduria. To date, only 16 genetically confirmed patients with βUP deficiency have been reported. Here, we report on the clinical, biochemical and molecular findings of 13 Japanese βUP deficient patients. In this group of patients, three novel missense mutations (p.G31S, p.E271K, and p.I286T) and a recently described mutation (p.R326Q) were identified. The p.R326Q mutation was detected in all 13 patients with eight patients being homozygous for this mutation. Screening for the p.R326Q mutation in 110 Japanese individuals showed an allele frequency of 0.9 %. Transient expression of mutant βUP enzymes in HEK293 cells showed that the p.E271K and p.R326Q mutations cause profound decreases in activity (≤ 1.3 %). Conversely, βUP enzymes containing the p.G31S and p.I286T mutations possess residual activities of 50 and 70 %, respectively, suggesting we cannot exclude the presence of additional mutations in the non-coding region of the UPB1 gene. Analysis of a human βUP homology model revealed that the effects of the mutations (p.G31S, p.E271K, and p.R326Q) on enzyme activity are most likely linked to improper oligomer assembly. Highly variable phenotypes ranging from neurological involvement (including convulsions and autism) to asymptomatic, were observed in diagnosed patients. High prevalence of p.R326Q in the normal Japanese population indicates that βUP deficiency is not as rare as generally considered and screening for βUP deficiency should be included in diagnosis of patients with unexplained neurological abnormalities.
Collapse
Affiliation(s)
- Yoko Nakajima
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Academic Medical Center, 1105 AZ, Amsterdam, Netherlands,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Meijer J, Nakajima Y, Zhang C, Meinsma R, Ito T, Van Kuilenburg ABP. Identification of a novel synonymous mutation in the human β -Ureidopropionase Gene UPB1 affecting pre-mRNA splicing. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2014; 32:639-45. [PMID: 24328561 DOI: 10.1080/15257770.2013.847189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
β-Ureidopropionase is the third enzyme of the pyrimidine degradation pathway and it catalyzes the conversion of N-carbamyl-β-alanine and N-carbamyl-β-aminoisobutyric acid to β-alanine and β-aminoisobutyric acid, respectively, and ammonia and CO2. To date, only 16 genetically confirmed patients with a complete ß-ureidopropionase deficiency have been reported. Here, we report the clinical, biochemical, and molecular analysis of a newly identified patient with β-ureidopropionase deficiency. Mutation analysis of the UPB1 gene showed that the patient was compound heterozygous for a novel synonymous mutation c.93C >T (p.Gly31Gly) in exon 1 and a previously described missense mutation c.977G >A (p.Arg326Gln) in exon 9. The in silico predicted effect of the synonymous mutation p.Gly31Gly on pre-mRNA splicing was investigated using a minigene approach. Wild-type and the mutated minigene constructs, containing the entire exon 1, intron 1, and exon 2 of UPB1, yielded different splicing products after expression in HEK293 cells. The c.93C >T (p.Gly31Gly) mutation resulted in altered pre-mRNA splicing of the UPB1 minigene construct and a deletion of the last 13 nucleotides of exon 1. This deletion (r.92_104delGCAAGGAACTCAG) results in a frame shift and the generation of a premature stop codon (p.Lys32SerfsX31). Using a minigene approach, we have thus identified the first synonymous mutation in the UPB1 gene, creating a cryptic splice-donor site affecting pre-mRNA splicing.
Collapse
Affiliation(s)
- J Meijer
- a Laboratory of Genetic Metabolic Diseases , Academic Medical Center , Amsterdam , The Netherlands
| | | | | | | | | | | |
Collapse
|
9
|
Contribution of the β-ureidopropionase (UPB1) gene alterations to the development of fluoropyrimidine-related toxicity. Pharmacol Rep 2012; 64:1234-42. [DOI: 10.1016/s1734-1140(12)70919-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 05/11/2012] [Indexed: 11/18/2022]
|
10
|
van Kuilenburg ABP, Dobritzsch D, Meijer J, Krumpel M, Selim LA, Rashed MS, Assmann B, Meinsma R, Lohkamp B, Ito T, Abeling NGGM, Saito K, Eto K, Smitka M, Engvall M, Zhang C, Xu W, Zoetekouw L, Hennekam RCM. ß-ureidopropionase deficiency: phenotype, genotype and protein structural consequences in 16 patients. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1096-108. [PMID: 22525402 DOI: 10.1016/j.bbadis.2012.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 03/29/2012] [Accepted: 04/09/2012] [Indexed: 12/26/2022]
Abstract
ß-ureidopropionase is the third enzyme of the pyrimidine degradation pathway and catalyzes the conversion of N-carbamyl-ß-alanine and N-carbamyl-ß-aminoisobutyric acid to ß-alanine and ß-aminoisobutyric acid, ammonia and CO(2). To date, only five genetically confirmed patients with a complete ß-ureidopropionase deficiency have been reported. Here, we report on the clinical, biochemical and molecular findings of 11 newly identified ß-ureidopropionase deficient patients as well as the analysis of the mutations in a three-dimensional framework. Patients presented mainly with neurological abnormalities (intellectual disabilities, seizures, abnormal tonus regulation, microcephaly, and malformations on neuro-imaging) and markedly elevated levels of N-carbamyl-ß-alanine and N-carbamyl-ß-aminoisobutyric acid in urine and plasma. Analysis of UPB1, encoding ß-ureidopropionase, showed 6 novel missense mutations and one novel splice-site mutation. Heterologous expression of the 6 mutant enzymes in Escherichia coli showed that all mutations yielded mutant ß-ureidopropionase proteins with significantly decreased activity. Analysis of a homology model of human ß-ureidopropionase generated using the crystal structure of the enzyme from Drosophila melanogaster indicated that the point mutations p.G235R, p.R236W and p.S264R lead to amino acid exchanges in the active site and therefore affect substrate binding and catalysis. The mutations L13S, R326Q and T359M resulted most likely in folding defects and oligomer assembly impairment. Two mutations were identified in several unrelated ß-ureidopropionase patients, indicating that ß-ureidopropionase deficiency may be more common than anticipated.
Collapse
Affiliation(s)
- André B P van Kuilenburg
- Academic Medical Center, Emma Children's Hospital, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Janowitz T, Ajonina I, Perbandt M, Woltersdorf C, Hertel P, Liebau E, Gigengack U. The 3-ureidopropionase of Caenorhabditis elegans, an enzyme involved in pyrimidine degradation. FEBS J 2010; 277:4100-9. [PMID: 20840592 DOI: 10.1111/j.1742-4658.2010.07805.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pyrimidines are important metabolites in all cells. Levels of cellular pyrimidines are controlled by multiple mechanisms, with one of these comprising the reductive degradation pathway. In the model invertebrate Caenorhabditis elegans, two of the three enzymes of reductive pyrimidine degradation have previously been characterized. The enzyme catalysing the final step of pyrimidine breakdown, 3-ureidopropionase (β-alanine synthase), had only been identified based on homology. We therefore cloned and functionally expressed the 3-ureidopropionase of C. elegans as hexahistidine fusion protein. The purified recombinant enzyme readily converted the two pyrimidine degradation products: 3-ureidopropionate and 2-methyl-3-ureidopropionate. The enzyme showed a broad pH optimum between pH 7.0 and 8.0. Activity was highest at approximately 40 °C, although the half-life of activity was only 65 s at that temperature. The enzyme showed clear Michaelis-Menten kinetics, with a K(m) of 147 ± 26 μM and a V(max) of 1.1 ± 0.1 U·mg protein(-1). The quaternary structure of the recombinant enzyme was shown to correspond to a dodecamer by 'blue native' gel electrophoresis and gel filtration. The organ specific and subcellular localization of the enzyme was determined using a translational fusion to green fluorescent protein and high expression was observed in striated muscle cells. With the characterization of the 3-ureidopropionase, the reductive pyrimidine degradation pathway in C. elegans has been functionally characterized.
Collapse
Affiliation(s)
- Tim Janowitz
- Institut für Zoophysiologie, Westfälische Wilhelms-Universität, Münster, Germany.
| | | | | | | | | | | | | |
Collapse
|
12
|
Potential application of N-carbamoyl-beta-alanine amidohydrolase from Agrobacterium tumefaciens C58 for beta-amino acid production. Appl Environ Microbiol 2008; 75:514-20. [PMID: 19011069 DOI: 10.1128/aem.01128-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An N-carbamoyl-beta-alanine amidohydrolase of industrial interest from Agrobacterium tumefaciens C58 (beta car(At)) has been characterized. Beta car(At) is most active at 30 degrees C and pH 8.0 with N-carbamoyl-beta-alanine as a substrate. The purified enzyme is completely inactivated by the metal-chelating agent 8-hydroxyquinoline-5-sulfonic acid (HQSA), and activity is restored by the addition of divalent metal ions, such as Mn(2+), Ni(2+), and Co(2+). The native enzyme is a homodimer with a molecular mass of 90 kDa from pH 5.5 to 9.0. The enzyme has a broad substrate spectrum and hydrolyzes nonsubstituted N-carbamoyl-alpha-, -beta-, -gamma-, and -delta-amino acids, with the greatest catalytic efficiency for N-carbamoyl-beta-alanine. Beta car(At) also recognizes substrate analogues substituted with sulfonic and phosphonic acid groups to produce the beta-amino acids taurine and ciliatine, respectively. Beta car(At) is able to produce monosubstituted beta(2)- and beta(3)-amino acids, showing better catalytic efficiency (k(cat)/K(m)) for the production of the former. For both types of monosubstituted substrates, the enzyme hydrolyzes N-carbamoyl-beta-amino acids with a short aliphatic side chain better than those with aromatic rings. These properties make beta car(At) an outstanding candidate for application in the biotechnology industry.
Collapse
|
13
|
Genetic regulation of beta-ureidopropionase and its possible implication in altered uracil catabolism. Pharmacogenet Genomics 2008; 18:25-35. [PMID: 18216719 DOI: 10.1097/fpc.0b013e3282f2f134] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Approximately 30-40% of grade III-IV toxicity to 5-FU has been associated with partial or profound deficiency in dihydropyrimidine dehydrogenase (DPD), the first of three enzymes in the catabolic pathway of fluoropyrimidines. There remains, however, a subset of patients presenting with 5-FU-associated toxicity despite normal DPD activity, suggesting possible deficiencies in enzymes downstream of DPD: dihydropyrimidinase (DHP), encoded by the DPYS gene, and/or beta-ureidopropionase (BUP-1), encoded by the UPB1 gene. Previously, we reported the identification of inactivating mutations in the DPYS gene that could potentially alter the uracil catabolic pathway in healthy individuals with normal DPD enzyme activity. This study investigates the possible role of UPB1 genetic variations in the regulation of the uracil catabolic pathway in individuals presenting with a deficient uracil breath test (13C-UraBT) despite normal DPD enzyme activity. METHODS This study included 219 healthy asymptomatic volunteers with known DPD enzyme activity and [2-(13)C]-uracil breath test (UraBT). All samples were genotyped for sequence variations in the UPB1 gene using denaturing high performance liquid chromatography (DHPLC) and Surveyor enzyme digestion with confirmation of detected sequence variants by direct sequencing. RESULTS Seven novel and six previously reported sequence variations were identified, including one nonconservative mutation, which demonstrated 97.3% reduction in BUP-1 activity when expressed in the RKO cell line. CONCLUSION Data presented in this study demonstrate that alterations of uracil catabolism are not limited to DPD and/or DHP deficiency and that inactivating mutations in the UPB1 gene might impair uracil catabolism.
Collapse
|
14
|
Lundgren S, Lohkamp B, Andersen B, Piskur J, Dobritzsch D. The crystal structure of beta-alanine synthase from Drosophila melanogaster reveals a homooctameric helical turn-like assembly. J Mol Biol 2008; 377:1544-59. [PMID: 18336837 DOI: 10.1016/j.jmb.2008.02.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Revised: 02/06/2008] [Accepted: 02/07/2008] [Indexed: 11/29/2022]
Abstract
Beta-alanine synthase (betaAS) is the third enzyme in the reductive pyrimidine catabolic pathway, which is responsible for the breakdown of the nucleotide bases uracil and thymine in higher organisms. It catalyzes the hydrolysis of N-carbamyl-beta-alanine and N-carbamyl-beta-aminoisobutyrate to the corresponding beta-amino acids. betaASs are grouped into two phylogenetically unrelated subfamilies, a general eukaryote one and a fungal one. To reveal the molecular architecture and understand the catalytic mechanism of the general eukaryote betaAS subfamily, we determined the crystal structure of Drosophila melanogaster betaAS to 2.8 A resolution. It shows a homooctameric assembly of the enzyme in the shape of a left-handed helical turn, in which tightly packed dimeric units are related by 2-fold symmetry. Such an assembly would allow formation of higher oligomers by attachment of additional dimers on both ends. The subunit has a nitrilase-like fold and consists of a central beta-sandwich with a layer of alpha-helices packed against both sides. However, the core fold of the nitrilase superfamily enzymes is extended in D. melanogaster betaAS by addition of several secondary structure elements at the N-terminus. The active site can be accessed from the solvent by a narrow channel and contains the triad of catalytic residues (Cys, Glu, and Lys) conserved in nitrilase-like enzymes.
Collapse
Affiliation(s)
- Stina Lundgren
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
15
|
Yaplito-Lee J, Pitt J, Meijer J, Zoetekouw L, Meinsma R, van Kuilenburg ABP. Beta-ureidopropionase deficiency presenting with congenital anomalies of the urogenital and colorectal systems. Mol Genet Metab 2008; 93:190-4. [PMID: 17964839 DOI: 10.1016/j.ymgme.2007.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 09/13/2007] [Accepted: 09/13/2007] [Indexed: 10/22/2022]
Abstract
Beta-ureidopropionase deficiency (McKusick 606673) is an autosomal recessive condition caused by mutations in the UPB1 gene. To date, five patients have been reported, including one putative case detected through newborn screening. Clinical presentation includes neurological and developmental problems. Here, we report another case of beta-ureidopropionase deficiency who presented with congenital anomalies of the urogenital and colorectal systems and with normal neurodevelopmental milestones. Analysis of a urine sample, because of the suspicion of renal stones on ultrasound, showed strongly elevated levels of the characteristic metabolites, N-carbamyl-beta-amino acids. Subsequent analysis of UPB1 identified a novel mutation 209 G>C (R70P) in exon 2 and a previously reported splice receptor mutation IVS1-2A>G. Expression studies of the R70P mutant enzyme showed that the mutant enzyme did not possess any residual activity. Long-term follow-up is required to determine the clinical significance of the beta-ureidopropionase deficiency in our patient.
Collapse
Affiliation(s)
- J Yaplito-Lee
- Metabolic Service, Genetic Health Services Victoria, Royal Children's Hospital, Melbourne, Vic. 3052, Australia.
| | | | | | | | | | | |
Collapse
|
16
|
Schnackerz KD, Dobritzsch D. Amidohydrolases of the reductive pyrimidine catabolic pathway purification, characterization, structure, reaction mechanisms and enzyme deficiency. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:431-44. [PMID: 18261476 DOI: 10.1016/j.bbapap.2008.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 01/07/2008] [Accepted: 01/09/2008] [Indexed: 12/26/2022]
Abstract
In the reductive pyrimidine catabolic pathway uracil and thymine are converted to beta-alanine and beta-aminoisobutyrate. The amidohydrolases of this pathway are responsible for both the ring opening of dihydrouracil and dihydrothymine (dihydropyrimidine amidohydrolase) and the hydrolysis of N-carbamyl-beta-alanine and N-carbamyl-beta-aminoisobutyrate (beta-alanine synthase). The review summarizes what is known about the properties, kinetic parameters, three-dimensional structures and reaction mechanisms of these proteins. The two amidohydrolases of the reductive pyrimidine catabolic pathway have unrelated folds, with dihydropyrimidine amidohydrolase belonging to the amidohydrolase superfamily while the beta-alanine synthase from higher eukaryotes belongs to the nitrilase superfamily. beta-Alanine synthase from Saccharomyces kluyveri is an exception to the rule and belongs to the Acyl/M20 family.
Collapse
|
17
|
van Kuilenburg ABP, van Lenthe H, van Gennip AH. Activity of pyrimidine degradation enzymes in normal tissues. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2007; 25:1211-4. [PMID: 17065093 DOI: 10.1080/15257770600894576] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In this study, we measured the activity of dihydropyrimidine dehydrogenase (DPD), dihydropyrimidinase (DHP) and beta-ureidopropionase (beta-UP), using radiolabeled substrates, in 16 different tissues obtained at autopsy from a single patient. The activity of DPD could be detected in all tissues examined, with the highest activity being present in spleen and liver. Surprisingly, the highest activity of DHP was present in kidney followed by that of liver. Furthermore, a low DHP activity could also be detected in 8 other tissues. The highest activity of beta-UP was detected in liver and kidney. However, low UP activities were also present in 8 other tissues. Our results demonstrated that the entire pyrimidine catabolic pathway was predominantly confined to the liver and kidney. However, significant residual activities of DPD, DHP and beta-UP were also present in a variety of other tissues, especially in bronchus.
Collapse
Affiliation(s)
- A B P van Kuilenburg
- Academic Medical Center, University of Amsterdam, Emma Children's Hospital and Departments of Clinical Chemistry, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
18
|
Martínez-Rodríguez S, Andújar-Sánchez M, Clemente Jiménez JM, Jara-Pérez V, Rodríguez-Vico F, Las Heras-Vázquez FJ. Thermodynamic and mutational studies of l-N-carbamoylase from Sinorhizobium meliloti CECT 4114 catalytic centre. Biochimie 2006; 88:837-47. [PMID: 16519985 DOI: 10.1016/j.biochi.2006.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Revised: 01/27/2006] [Accepted: 01/30/2006] [Indexed: 11/29/2022]
Abstract
Purified site-directed mutants of Sinorhizobium meliloti CECT 4114 l-N-carbamoylase (SmLcar) in which Glu132, His230, Asn279 and Arg292 were replaced have been studied by kinetic methods and isothermal titration calorimetry (ITC). The importance of His230, Asn279 and Arg292 residues in the recognition of N-carbamoyl-l-alpha-amino acids has been proved. The role of Glu132 has been confirmed in substrate hydrolysis. ITC has confirmed two Ni atoms per monomer of wild type enzyme, and two equal and independent substrate binding sites (one per monomer). Homology modelling of SmLcar supports the importance of His87, His194, His386, Glu133 and Asp98 in metal binding. A comprehensive reaction mechanism is proposed on the basis of binding experiments measured by ITC, kinetic assays, and homology of the active centre with beta-alanine synthase from Saccharomyces kluyveri and other enzymes.
Collapse
Affiliation(s)
- Sergio Martínez-Rodríguez
- Departamento de Química-Física, Bioquímica y Química Inorgánica, Edificio C.I.T.E. I, Universidad de Almería, La Cañada de San Urbano, Almería 04120, Spain
| | | | | | | | | | | |
Collapse
|
19
|
van Kuilenburg ABP, Meinsma R, Beke E, Assmann B, Ribes A, Lorente I, Busch R, Mayatepek E, Abeling NGGM, van Cruchten A, Stroomer AEM, van Lenthe H, Zoetekouw L, Kulik W, Hoffmann GF, Voit T, Wevers RA, Rutsch F, van Gennip AH. β-Ureidopropionase deficiency: an inborn error of pyrimidine degradation associated with neurological abnormalities. Hum Mol Genet 2004; 13:2793-801. [PMID: 15385443 DOI: 10.1093/hmg/ddh303] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
beta-Ureidopropionase deficiency is an inborn error of the pyrimidine degradation pathway, affecting the cleavage of N-carbamyl-beta-alanine and N-carbamyl-beta-aminoisobutyric acid. In this study, we report the elucidation of the genetic basis underlying a beta-ureidopropionase deficiency in four patients presenting with neurological abnormalities and strongly elevated levels of N-carbamyl-beta-alanine and N-carbamyl-beta-aminoisobutyric acid in plasma, cerebrospinal fluid and urine. No beta-ureidopropionase activity could be detected in a liver biopsy obtained from one of the patients, which reflected the complete absence of the beta-ureidopropionase protein. Analysis of the beta-ureidopropionase gene (UPB1) of these patients revealed the presence of two splice-site mutations (IVS1-2A>G and IVS8-1G>A) and one missense mutation (A85E). Heterologous expression of the mutant enzyme in Escherichia coli showed that the A85E mutation resulted in a mutant beta-ureidopropionase enzyme without residual activity. Our results demonstrate that the N-carbamyl-beta-amino aciduria in these patients is due to a deficiency of beta-ureidopropionase, which is caused by mutations in the UPB1 gene. Furthermore, an altered homeostasis of beta-aminoisobutyric acid and/or increased oxidative stress might contribute to some of the clinical abnormalities encountered in patients with a beta-ureidopropionase deficiency. An analysis of the presence of the two splice site mutations and the missense mutation in 95 controls identified one individual who proved to be heterozygous for the IVS8-1G>A mutation. Thus, a beta-ureidopropionase deficiency might not be as rare as is generally considered.
Collapse
|
20
|
Van Kuilenburg ABP, Stroomer AEM, Van Lenthe H, Abeling NGGM, Van Gennip AH. New insights in dihydropyrimidine dehydrogenase deficiency: a pivotal role for beta-aminoisobutyric acid? Biochem J 2004; 379:119-24. [PMID: 14705962 PMCID: PMC1224056 DOI: 10.1042/bj20031463] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Revised: 12/23/2003] [Accepted: 01/05/2004] [Indexed: 11/17/2022]
Abstract
DPD (dihydropyrimidine dehydrogenase) constitutes the first step of the pyrimidine degradation pathway, in which the pyrimidine bases uracil and thymine are catabolized to beta-alanine and the R-enantiomer of beta-AIB (beta-aminoisobutyric acid) respectively. The S-enantiomer of beta-AIB is predominantly derived from the catabolism of valine. It has been suggested that an altered homoeostasis of beta-alanine underlies some of the clinical abnormalities encountered in patients with a DPD deficiency. In the present study, we demonstrated that only a slightly decreased concentration of beta-alanine was present in the urine and plasma, whereas normal levels of beta-alanine were present in the cerebrospinal fluid of patients with a DPD deficiency. Therefore the metabolism of beta-alanine-containing peptides, such as carnosine, may be an important factor involved in the homoeostasis of beta-alanine in patients with DPD deficiency. The mean concentration of beta-AIB was approx. 2-3-fold lower in cerebrospinal fluid and urine of patients with a DPD deficiency, when compared with controls. In contrast, strongly decreased levels (10-fold) of beta-AIB were present in the plasma of DPD patients. Our results demonstrate that, under pathological conditions, the catabolism of valine can result in the production of significant amounts of beta-AIB. Furthermore, the observation that the R-enantiomer of beta-AIB is abundantly present in the urine of DPD patients suggests that significant cross-over exists between the thymine and valine catabolic pathways.
Collapse
MESH Headings
- Aminoisobutyric Acids/blood
- Aminoisobutyric Acids/cerebrospinal fluid
- Aminoisobutyric Acids/chemistry
- Aminoisobutyric Acids/metabolism
- Aminoisobutyric Acids/urine
- Brain Diseases, Metabolic, Inborn/enzymology
- Brain Diseases, Metabolic, Inborn/genetics
- Brain Diseases, Metabolic, Inborn/metabolism
- Dihydropyrimidine Dehydrogenase Deficiency
- Dihydrouracil Dehydrogenase (NADP)/genetics
- Fluorouracil/pharmacokinetics
- Homeostasis
- Humans
- Inactivation, Metabolic/genetics
- Neurotransmitter Agents/metabolism
- Purine-Pyrimidine Metabolism, Inborn Errors/enzymology
- Purine-Pyrimidine Metabolism, Inborn Errors/genetics
- Purine-Pyrimidine Metabolism, Inborn Errors/metabolism
- Stereoisomerism
- Thymine/metabolism
- Uracil/metabolism
- Valine/metabolism
- beta-Alanine/blood
- beta-Alanine/cerebrospinal fluid
- beta-Alanine/metabolism
- beta-Alanine/urine
Collapse
Affiliation(s)
- André B P Van Kuilenburg
- Emma Children's Hospital and Department of Clinical Chemistry, Academic Medical Center, University of Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
21
|
Salerno C, Crifò C. Diagnostic value of urinary orotic acid levels: applicable separation methods. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 781:57-71. [PMID: 12450653 DOI: 10.1016/s1570-0232(02)00533-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Urinary orotic acid determination is a useful tool for screening hereditary orotic aciduria and for differentiating the hyperammonemia disorders which cannot be readily diagnosed by amino acid chromatography, thus reducing the need for enzyme determination in tissue biopsies. This review provides an overview of metabolic aberrations that may be related to increased orotic acid levels in urine, and summarises published methods for separation, identification and quantitative determination of orotic acid in urine samples. Applications of high-performance liquid chromatography, gas chromatography, and capillary electrophoresis to the analysis of urinary specimens are described. The advantages and limitations of these separation and identification methodologies as well as other less frequently employed techniques are assessed and discussed.
Collapse
Affiliation(s)
- Costantino Salerno
- Department of Biochemical Sciences and Clinical Biochemistry Laboratory, University of Roma La Sapienza, via dei Sardi 58, 00185 Rome, Italy.
| | | |
Collapse
|
22
|
Moolenaar SH, Göhlich-Ratmann G, Engelke UF, Spraul M, Humpfer E, Dvortsak P, Voit T, Hoffmann GF, Bräutigam C, van Kuilenburg AB, van Gennip A, Vreken P, Wevers RA. beta-Ureidopropionase deficiency: a novel inborn error of metabolism discovered using NMR spectroscopy on urine. Magn Reson Med 2001; 46:1014-7. [PMID: 11675655 DOI: 10.1002/mrm.1289] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this work, NMR investigations that led to the discovery of a new inborn error of metabolism, beta-ureidopropionase (UP) deficiency, are reported. 1D (1)H-NMR experiments were performed using a patient's urine. 3-Ureidopropionic acid was observed in elevated concentrations in the urine spectrum. A 1D (1)H-(1)H total correlation spectroscopy (TOCSY) and two heteronuclear 2D NMR techniques (heteronuclear multiple bond correlation (HMBC) and heteronuclear single-quantum correlation (HSQC)) were used to identify the molecular structure of the compound that caused an unknown doublet resonance at 1.13 ppm. Combining the information from the various NMR spectra, this resonance could be assigned to 3-ureidoisobutyric acid. These observations suggested a deficiency of UP. With 1D (1)H-NMR spectroscopy, UP deficiency can be easily diagnosed. The (1)H-NMR spectrum can also be used to diagnose patients suffering from other inborn errors of metabolism in the pyrimidine degradation pathway.
Collapse
Affiliation(s)
- S H Moolenaar
- Institute of Neurology, University Hospital Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Gojković Z, Sandrini MP, Piskur J. Eukaryotic beta-alanine synthases are functionally related but have a high degree of structural diversity. Genetics 2001; 158:999-1011. [PMID: 11454750 PMCID: PMC1461717 DOI: 10.1093/genetics/158.3.999] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
beta-Alanine synthase (EC 3.5.1.6), which catalyzes the final step of pyrimidine catabolism, has only been characterized in mammals. A Saccharomyces kluyveri pyd3 mutant that is unable to grow on N-carbamyl-beta-alanine as the sole nitrogen source and exhibits diminished beta-alanine synthase activity was used to clone analogous genes from different eukaryotes. Putative PYD3 sequences from the yeast S. kluyveri, the slime mold Dictyostelium discoideum, and the fruit fly Drosophila melanogaster complemented the pyd3 defect. When the S. kluyveri PYD3 gene was expressed in S. cerevisiae, which has no pyrimidine catabolic pathway, it enabled growth on N-carbamyl-beta-alanine as the sole nitrogen source. The D. discoideum and D. melanogaster PYD3 gene products are similar to mammalian beta-alanine synthases. In contrast, the S. kluyveri protein is quite different from these and more similar to bacterial N-carbamyl amidohydrolases. All three beta-alanine synthases are to some degree related to various aspartate transcarbamylases, which catalyze the second step of the de novo pyrimidine biosynthetic pathway. PYD3 expression in yeast seems to be inducible by dihydrouracil and N-carbamyl-beta-alanine, but not by uracil. This work establishes S. kluyveri as a model organism for studying pyrimidine degradation and beta-alanine production in eukaryotes.
Collapse
Affiliation(s)
- Z Gojković
- Section of Molecular Microbiology, BioCentrum DTU, DK-2800 Lyngby, Denmark
| | | | | |
Collapse
|
24
|
Walsh TA, Green SB, Larrinua IM, Schmitzer PR. Characterization of plant beta-ureidopropionase and functional overexpression in Escherichia coli. PLANT PHYSIOLOGY 2001; 125:1001-11. [PMID: 11161056 PMCID: PMC64900 DOI: 10.1104/pp.125.2.1001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2000] [Revised: 10/16/2000] [Accepted: 11/06/2000] [Indexed: 05/21/2023]
Abstract
Pyrimidine bases are rapidly catabolized in growing plant tissues. The final enzyme of the catabolic pathway, beta-ureidopropionase (beta-UP; EC 3.5.1.6), was partially purified from the shoots of etiolated maize (Zea mays) seedlings. The enzyme had a K(m) for beta-ureidopropionate (the substrate derived from uracil) of 11 microM. Only one enantiomer of racemic beta-ureidoisobutyrate (derived from thymine) was processed with a K(m) of 6 microM. The enzyme was inactivated by dialysis against 1,10-phenanthroline and activity could be partially restored by addition of Zn(2+). Maize beta-UP was very sensitive to inactivation by iodoacetamide. This could be prevented by addition of substrate, indicating the presence of an active site Cys. The enzyme was strongly inhibited by short chain aliphatic acids and aryl propionates, the most potent inhibitor of which was 2-(2, 6-dinitrophenoxy)-propionate (I(50) = 0.5 microM). A gene for Arabidopsis beta-UP encodes a polypeptide of 405 amino acids and has about 55% homology with the enzymes from other eukaryotic organisms. Several highly conserved residues link the plant beta-UP with a larger class of prokaryotic and eukaryotic amidohydrolases. An Arabidopsis cDNA truncated at the N terminus by 14 residues was cloned and overexpressed in Escherichia coli. The recombinant enzyme (43.7 kD) was soluble, functional, and purified to homogeneity with yields of 15 to 20 mg per 30 g fresh weight of E. coli cells. The recombinant enzyme from Arabidopsis and the native enzyme from maize had molecular masses of approximately 440 kD, indicating the enzyme is a decamer at pH 7.
Collapse
Affiliation(s)
- T A Walsh
- Dow AgroSciences, Discovery Research, 9330 Zionsville Road, Indianapolis, Indiana 46268, USA.
| | | | | | | |
Collapse
|