1
|
Liu P, Ma L, Duan W, Gao W, Fang Y, Guo L, Yuan C, Wu Z, Cui B. Maltogenic amylase: Its structure, molecular modification, and effects on starch and starch-based products. Carbohydr Polym 2023; 319:121183. [PMID: 37567718 DOI: 10.1016/j.carbpol.2023.121183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 08/13/2023]
Abstract
Maltogenic amylase (MAA) (EC3.2.1.133), a member of the glycoside hydrolase family 13 that mainly produces α-maltose, is widely used to extend the shelf life of bread as it softens bread, improves its elasticity, and preserves its flavor without affecting dough processing. Moreover, MAA is used as an improver in flour products. Despite its antiaging properties, the hydrolytic capacity and thermal stability of MAA can't meet the requirements of industrial application. However, genetic engineering techniques used for the molecular modification of MAA can alter its functional properties to meet application-specific requirements. This review briefly introduces the structure and functions of MAA, its application in starch modification, its effects on starch-based products, and its molecular modification to provide better insights for the application of genetically modified MAA in starch modification.
Collapse
Affiliation(s)
- Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| | - Li Ma
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Wenmin Duan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Wei Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Yishan Fang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Chao Yuan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| |
Collapse
|
2
|
Investigating the role of carbohydrate-binding module 34 in cyclomaltodextrinase from Geobacillus thermopakistaniensis: structural and functional analyses. 3 Biotech 2022; 12:25. [PMID: 35036273 PMCID: PMC8702598 DOI: 10.1007/s13205-021-03089-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/09/2021] [Indexed: 01/03/2023] Open
Abstract
Carbohydrate-binding modules (CBMs) are noncatalytic regions found in several enzymes of glycoside hydrolase family 13 and are proposed to orient substrates to the catalytic site. In this study, a substantial information on the conserved aromatic residues in CBM34 regions of characterized bacterial cyclolmaltodextrinases (CDases) has been presented. Molecular modeling of CDase from Geobacillus thermopakistaniensis (CDase Gt ) revealed a change in the active site geometry due to CBM34 truncation. The binding energies of full-length (CDase Gt ) and CBM34 truncated (CDase Gt -ΔN) models showed opposite trends. The least preferred substrate molecule by the full-length model was the most preferred by the CBM34 truncated one. These exciting in silico findings were experimentally verified by recombinant production and characterization of the full-length and the CBM34 truncated proteins. Both the enzymes showed similar optimum pH and temperature. However, substrate specificity was in the reverse order. These experimental verifications matched the homology modeling and docking predictions. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03089-9.
Collapse
|
3
|
Gupta N, Paul JS, Jadhav SK. In Silico Approaches to Reveal Structural Insights, Stability and Catalysis of Bacillus-Derived α-Amylases Prior to Advance Lab Experiments. JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2021. [DOI: 10.1142/s2737416521500538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
[Formula: see text]-amylase is the most widely used Glycoside Hydrolase (GH) in industries for decades. It randomly cleaves the [Formula: see text]-D-(1, 4) glucosidic bonds of [Formula: see text]-polysaccharides (starch and glycogen) to release glucose and short-chain oligosaccharides. Substantial advances have taken place in research related to [Formula: see text]-amylases. However, bioinformatics study needs a little more exploration before conducting wet-lab experiments. We aimed to perform a comparative structure-function relationship study of 10 different Bacillus-derived [Formula: see text]-amylases using several computational biology tools. After aligning all the [Formula: see text]-amylases, 3D structures were made using the SWISS-MODEL. The accuracy and stability of the predicted models were validated via different web servers like Verify-3D, ERRAT, RMSD and ProSA. MolProbity and PROCHECK were used for mapping the residues in the most favored region of the Ramachandran plot. The Ramachandran plot reveals that [Formula: see text] of the amino acid residues of the selected [Formula: see text]-amylase genes lie within the favored region. Our findings suggest that all the [Formula: see text]-amylases were stable as per the validation results we got. The study has revealed clear and concise structural related aspects. This paper will encourage the researchers to include and prioritize in silico work of [Formula: see text]-amylase genes to obtain more accurate outcomes. As the output obtained in this study via in silico tools reveals the structural peculiarity and more about the catalytic domain impression, it highly recommends incorporating such studies for better results. This approach will save efforts, costs and time for researchers.
Collapse
Affiliation(s)
- Nisha Gupta
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492010 (CG), India
| | - Jai Shankar Paul
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492010 (CG), India
| | - S. K. Jadhav
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492010 (CG), India
| |
Collapse
|
4
|
Salem K, Elgharbi F, Ben Hlima H, Perduca M, Sayari A, Hmida-Sayari A. Biochemical characterization and structural insights into the high substrate affinity of a dimeric and Ca 2+ independent Bacillus subtilis α-amylase. Biotechnol Prog 2020; 36:e2964. [PMID: 31951110 DOI: 10.1002/btpr.2964] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/17/2019] [Accepted: 01/06/2020] [Indexed: 11/10/2022]
Abstract
An extracellular amylase (AmyKS) produced by a newly isolated Bacillus subtilis strain US572 was purified and characterized. AmyKS showed maximal activity at pH 6 and 60°C with a half-life of 10 min at 70°C. It is a Ca2+ independent enzyme and able to hydrolyze soluble starch into oligosaccharides consisting mainly of maltose and maltotriose. When compared to the studied α-amylases, AmyKS presents a high affinity toward soluble starch with a Km value of 0.252 mg ml-1 . Coupled with the size-exclusion chromatography data, MALDI-TOF/MS analysis indicated that the purified amylase is a dimer with a molecular mass of 136,938.18 Da. It is an unusual feature of a non-maltogenic α-amylase. A 3D model and a dimeric model of AmyKS were generated showing the presence of an additional domain suspected to be involved in the dimerization process. This dimer arrangement could explain the high substrate affinity and catalytic efficiency of this enzyme.
Collapse
Affiliation(s)
- Karima Salem
- Laboratoire de Biotechnologie Microbienne et d'Ingénierie des Enzymes (LBMIE), Centre de Biotechnologie de Sfax (CBS), Université de Sfax, Sfax, Tunisie
| | - Fatma Elgharbi
- Laboratoire de Biotechnologie Microbienne et d'Ingénierie des Enzymes (LBMIE), Centre de Biotechnologie de Sfax (CBS), Université de Sfax, Sfax, Tunisie
| | - Hajer Ben Hlima
- Unité de Biotechnologie des Algues, ENIS, Université de Sfax, Sfax, Tunisie
| | - Massimiliano Perduca
- Biocrystallography and Nanostructure Laboratory, Department of Biotechnology, University of Verona, Verona, Italy
| | - Adel Sayari
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, ENIS, Université de Sfax, Sfax, Tunisie
| | - Aïda Hmida-Sayari
- Laboratoire de Biotechnologie Microbienne et d'Ingénierie des Enzymes (LBMIE), Centre de Biotechnologie de Sfax (CBS), Université de Sfax, Sfax, Tunisie
| |
Collapse
|
5
|
Aroob I, Ahmad N, Aslam M, Shaeer A, Rashid N. A highly active α-cyclodextrin preferring cyclomaltodextrinase from Geobacillus thermopakistaniensis. Carbohydr Res 2019; 481:1-8. [PMID: 31212108 DOI: 10.1016/j.carres.2019.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/30/2019] [Accepted: 06/06/2019] [Indexed: 10/26/2022]
Abstract
Cyclomaltodextrinases show diverse hydrolyzing and/or transglycosylation activities against cyclodextrins, starch and pullulan. A gene annotated as cyclomaltodextrinase from Geobacillus thermopakistaniensis was cloned and overexpressed in Escherichia coli. The gene product, CDaseGt, was purified and biochemically characterized. The recombinant enzyme exhibited highest activity with α-cyclodextrin at 55 °C and pH 6.0. Specific hydrolytic activities towards α-, β- and γ-cyclodextrin were 1200, 735 and 360 μmol min-1 mg-1, respectively. To the best of our knowledge, the activity against α-cyclodextrin is the highest among the reported enzymes. Next to cyclodextrins, pullulan was the most preferred substrate with a specific activity of 105 μmol min-1 mg-1. CDaseGt was capable of hydrolysis of maltotriose and acarbose as well as transglycosylation of their hydrolytic products. At 65 °C, there was no significant loss in enzyme activity even after overnight incubation. Activity of CDaseGt was not metal ions dependent, however, the presence of Mn2+ significantly enhanced the α-CDase activity. EDTA had no significant effect on the CDaseGt activity, however, it enhanced the thermostability of the enzyme. CDaseGt existed in monomeric as well as dimeric form in solution. Dimeric form is more active compared to the monomeric one. Equilibrium between the two forms seems to be concentration dependent.
Collapse
Affiliation(s)
- Iqra Aroob
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Nasir Ahmad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Mehwish Aslam
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Abeera Shaeer
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan.
| |
Collapse
|
6
|
Miao M, Jiang B, Jin Z, BeMiller JN. Microbial Starch-Converting Enzymes: Recent Insights and Perspectives. Compr Rev Food Sci Food Saf 2018; 17:1238-1260. [PMID: 33350152 DOI: 10.1111/1541-4337.12381] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Ming Miao
- State Key Laboratory of Food Science & Technology; Jiangnan Univ.; 1800 Lihu Ave. Wuxi Jiangsu 214122 P. R. China
| | - Bo Jiang
- State Key Laboratory of Food Science & Technology; Jiangnan Univ.; 1800 Lihu Ave. Wuxi Jiangsu 214122 P. R. China
| | - Zhengyu Jin
- State Key Laboratory of Food Science & Technology; Jiangnan Univ.; 1800 Lihu Ave. Wuxi Jiangsu 214122 P. R. China
| | - James N. BeMiller
- State Key Laboratory of Food Science & Technology; Jiangnan Univ.; 1800 Lihu Ave. Wuxi Jiangsu 214122 P. R. China
- Dept. of Food Science; Whistler Center for Carbohydrate Research, Purdue Univ.; 745 Agriculture Mall Drive West Lafayette IN 47907-2009 U.S.A
| |
Collapse
|
7
|
Unban K, Kanpiengjai A, Lumyong S, Nguyen TH, Haltrich D, Khanongnuch C. Molecular structure of cyclomaltodextrinase derived from amylolytic lactic acid bacterium Enterococcus faecium K-1 and properties of recombinant enzymes expressed in Escherichia coli and Lactobacillus plantarum. Int J Biol Macromol 2018; 107:898-905. [DOI: 10.1016/j.ijbiomac.2017.09.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/14/2017] [Accepted: 09/17/2017] [Indexed: 10/18/2022]
|
8
|
Møller MS, Henriksen A, Svensson B. Structure and function of α-glucan debranching enzymes. Cell Mol Life Sci 2016; 73:2619-41. [PMID: 27137180 PMCID: PMC11108273 DOI: 10.1007/s00018-016-2241-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 10/21/2022]
Abstract
α-Glucan debranching enzymes hydrolyse α-1,6-linkages in starch/glycogen, thereby, playing a central role in energy metabolism in all living organisms. They belong to glycoside hydrolase families GH13 and GH57 and several of these enzymes are industrially important. Nine GH13 subfamilies include α-glucan debranching enzymes; isoamylase and glycogen debranching enzymes (GH13_11); pullulanase type I/limit dextrinase (GH13_12-14); pullulan hydrolase (GH13_20); bifunctional glycogen debranching enzyme (GH13_25); oligo-1 and glucan-1,6-α-glucosidases (GH13_31); pullulanase type II (GH13_39); and α-amylase domains (GH13_41) in two-domain amylase-pullulanases. GH57 harbours type II pullulanases. Specificity differences, domain organisation, carbohydrate binding modules, sequence motifs, three-dimensional structures and specificity determinants are discussed. The phylogenetic analysis indicated that GH13_39 enzymes could represent a "missing link" between the strictly α-1,6-specific debranching enzymes and the enzymes with dual specificity and α-1,4-linkage preference.
Collapse
Affiliation(s)
- Marie Sofie Møller
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
- Center for Molecular Protein Science, Department of Chemistry, Lund University, 221 00, Lund, Sweden.
| | - Anette Henriksen
- Global Research Unit, Department of Large Protein Biophysics and Formulation, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
9
|
Sawhney N, Crooks C, Chow V, Preston JF, St John FJ. Genomic and transcriptomic analysis of carbohydrate utilization by Paenibacillus sp. JDR-2: systems for bioprocessing plant polysaccharides. BMC Genomics 2016; 17:131. [PMID: 26912334 PMCID: PMC4765114 DOI: 10.1186/s12864-016-2436-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/05/2016] [Indexed: 11/12/2022] Open
Abstract
Background Polysaccharides comprising plant biomass are potential resources for conversion to fuels and chemicals. These polysaccharides include xylans derived from the hemicellulose of hardwoods and grasses, soluble β-glucans from cereals and starch as the primary form of energy storage in plants. Paenibacillus sp. JDR-2 (Pjdr2) has evolved a system for bioprocessing xylans. The central component of this xylan utilization system is a multimodular glycoside hydrolase family 10 (GH10) endoxylanase with carbohydrate binding modules (CBM) for binding xylans and surface layer homology (SLH) domains for cell surface anchoring. These attributes allow efficient utilization of xylans by generating oligosaccharides proximal to the cell surface for rapid assimilation. Coordinate expression of genes in response to growth on xylans has identified regulons contributing to depolymerization, importation of oligosaccharides and intracellular processing to generate xylose as well as arabinose and methylglucuronate. The genome of Pjdr2 encodes several other putative surface anchored multimodular enzymes including those for utilization of β-1,3/1,4 mixed linkage soluble glucan and starch. Results To further define polysaccharide utilization systems in Pjdr2, its transcriptome has been determined by RNA sequencing following growth on barley-derived soluble β-glucan, starch, cellobiose, maltose, glucose, xylose and arabinose. The putative function of genes encoding transcriptional regulators, ABC transporters, and glycoside hydrolases belonging to the corresponding substrate responsive regulon were deduced by their coordinate expression and locations in the genome. These results are compared to observations from the previously defined xylan utilization systems in Pjdr2. The findings from this study show that Pjdr2 efficiently utilizes these glucans in a manner similar to xylans. From transcriptomic and genomic analyses we infer a common strategy evolved by Pjdr2 for efficient bioprocessing of polysaccharides. Conclusions The barley β-glucan and starch utilization systems in Pjdr2 include extracellular glycoside hydrolases bearing CBM and SLH domains for depolymerization of these polysaccharides. Overlapping regulation observed during growth on these polysaccharides suggests they are preferentially utilized in the order of starch before xylan before barley β-glucan. These systems defined in Pjdr2 may serve as a paradigm for developing biocatalysts for efficient bioprocessing of plant biomass to targeted biofuels and chemicals. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2436-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Neha Sawhney
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611, USA.
| | - Casey Crooks
- Institute for Microbial and Biochemical Technology, Forest Products Laboratory, USDA Forest Service, Madison, WI, 53726, USA.
| | - Virginia Chow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611, USA.
| | - James F Preston
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611, USA.
| | - Franz J St John
- Institute for Microbial and Biochemical Technology, Forest Products Laboratory, USDA Forest Service, Madison, WI, 53726, USA.
| |
Collapse
|
10
|
Xian L, Wang F, Luo X, Feng YL, Feng JX. Purification and characterization of a highly efficient calcium-independent α-amylase from Talaromyces pinophilus 1-95. PLoS One 2015; 10:e0121531. [PMID: 25811759 PMCID: PMC4374950 DOI: 10.1371/journal.pone.0121531] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 02/02/2015] [Indexed: 12/03/2022] Open
Abstract
Alpha-amylase is a very important enzyme in the starch conversion process. Most of the α-amylases are calcium-dependent and exhibit poor performance in the simultaneous saccharification and fermentation process of industrial bioethanol production that uses starch as feedstock. In this study, an extracellular amylolytic enzyme was purified from the culture broth of newly isolated Talaromyces pinophilus strain 1-95. The purified amylolytic enzyme, with an apparent molecular weight of 58 kDa on SDS-PAGE, hydrolyzed maltopentaose, maltohexaose, and maltoheptaose into mainly maltose and maltotriose and minor amount of glucose, confirming the endo-acting mode of the enzyme, and hence, was named Talaromyces pinophilus α-amylase (TpAA). TpAA was most active at pH 4.0-5.0 (with the temperature held at 37°C) and 55°C (at pH 5.0), and stable within the pH range of 5.0-9.5 (at 4°C) and below 45°C (at pH 5.0). Interestingly, the Ca2+ did not improve its enzymatic activity, optimal temperature, or thermostability of the enzyme, indicating that the TpAA was Ca2+-independent. TpAA displayed higher enzyme activity toward malto-oligosaccharides and dextrin than other previously reported α-amylases. This highly active Ca2+-independent α-amylase may have potential applications in starch-to-ethanol conversion process.
Collapse
Affiliation(s)
- Liang Xian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Fei Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Xiang Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Yu-Liang Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
11
|
Takenaka S, Miyatake A, Tanaka K, Kuntiya A, Techapun C, Leksawasdi N, Seesuriyachan P, Chaiyaso T, Watanabe M, Yoshida KI. Characterization of the native form and the carboxy-terminally truncated halotolerant form of α-amylases fromBacillus subtilisstrain FP-133. J Basic Microbiol 2015; 55:780-9. [DOI: 10.1002/jobm.201400813] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/12/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Shinji Takenaka
- Department of Agrobioscience; Graduate School of Agricultural Science; Kobe University; Kobe Japan
| | - Ayaka Miyatake
- Department of Agrobioscience; Graduate School of Agricultural Science; Kobe University; Kobe Japan
| | - Kosei Tanaka
- Department of Agrobioscience; Graduate School of Agricultural Science; Kobe University; Kobe Japan
| | - Ampin Kuntiya
- Bioprocess Research Cluster; The School of Agro-Industry; Faculty of Agro-Industry; Chiang Mai University; Thailand
| | - Charin Techapun
- Bioprocess Research Cluster; The School of Agro-Industry; Faculty of Agro-Industry; Chiang Mai University; Thailand
| | - Noppol Leksawasdi
- Bioprocess Research Cluster; The School of Agro-Industry; Faculty of Agro-Industry; Chiang Mai University; Thailand
| | - Phisit Seesuriyachan
- Bioprocess Research Cluster; The School of Agro-Industry; Faculty of Agro-Industry; Chiang Mai University; Thailand
| | - Thanongsak Chaiyaso
- Bioprocess Research Cluster; The School of Agro-Industry; Faculty of Agro-Industry; Chiang Mai University; Thailand
| | - Masanori Watanabe
- Department of Food, Life, and Environmental Science; Faculty of Agriculture; Yamagata University; Yamagata Japan
| | - Ken-ichi Yoshida
- Department of Agrobioscience; Graduate School of Agricultural Science; Kobe University; Kobe Japan
| |
Collapse
|
12
|
Abdul Manas NH, Pachelles S, Mahadi NM, Illias RM. The characterisation of an alkali-stable maltogenic amylase from Bacillus lehensis G1 and improved malto-oligosaccharide production by hydrolysis suppression. PLoS One 2014; 9:e106481. [PMID: 25221964 PMCID: PMC4164441 DOI: 10.1371/journal.pone.0106481] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 08/06/2014] [Indexed: 01/31/2023] Open
Abstract
A maltogenic amylase (MAG1) from alkaliphilic Bacillus lehensis G1 was cloned, expressed in Escherichia coli, purified and characterised for its hydrolysis and transglycosylation properties. The enzyme exhibited high stability at pH values from 7.0 to 10.0. The hydrolysis of β-cyclodextrin (β-CD) produced malto-oligosaccharides of various lengths. In addition to hydrolysis, MAG1 also demonstrated transglycosylation activity for the synthesis of longer malto-oligosaccharides. The thermodynamic equilibrium of the multiple reactions was shifted towards synthesis when the reaction conditions were optimised and the water activity was suppressed, which resulted in a yield of 38% transglycosylation products consisting of malto-oligosaccharides of various lengths. Thin layer chromatography and high-performance liquid chromatography analyses revealed the presence of malto-oligosaccharides with a higher degree of polymerisation than maltoheptaose, which has never been reported for other maltogenic amylases. The addition of organic solvents into the reaction further suppressed the water activity. The increase in the transglycosylation-to-hydrolysis ratio from 1.29 to 2.15 and the increased specificity toward maltopentaose production demonstrated the enhanced synthetic property of the enzyme. The high transglycosylation activity of maltogenic amylase offers a great advantage for synthesising malto-oligosaccharides and rare carbohydrates.
Collapse
Affiliation(s)
- Nor Hasmaliana Abdul Manas
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Samson Pachelles
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Nor Muhammad Mahadi
- Comparative Genomics and Genetics Research Centre, Malaysia Genome Institute, Kajang, Selangor, Malaysia
| | - Rosli Md. Illias
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| |
Collapse
|
13
|
Park SH, Kang HK, Shim JH, Woo EJ, Hong JS, Kim JW, Oh BH, Lee BH, Cha H, Park KH. Modulation of Substrate Preference ofThermusMaltogenic Amylase by Mutation of the Residues at the Interface of a Dimer. Biosci Biotechnol Biochem 2014; 71:1564-7. [PMID: 17587692 DOI: 10.1271/bbb.70017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To elucidate the relationship between the substrate size and geometric shape of the catalytic site of Thermus maltogenic amylase, Gly50, Asp109, and Val431, located at the interface of the dimer, were replaced with bulky amino acids. The k(cat)/K(m) value of the mutant for amylose increased significantly, whereas that for amylopectin decreased as compared to that of the wild-type enzyme. Thus, the substituted bulky amino acid residues modified the shape of the catalytic site, such that the ability of the enzyme to distinguish between small and large molecules like amylose and amylopectin was enhanced.
Collapse
Affiliation(s)
- Sung-Hoon Park
- Department of Food Science and Agricultural Chemistry, McGill University, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ben Mabrouk S, Ayadi-Zouari D, Ben Hlima H, Bejar S. Changes in the catalytic properties and substrate specificity of Bacillus sp. US149 maltogenic amylase by mutagenesis of residue 46. ACTA ACUST UNITED AC 2013; 40:947-53. [DOI: 10.1007/s10295-013-1300-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/29/2013] [Indexed: 11/30/2022]
Abstract
Abstract
Maltogenic amylase from Bacillus sp. US149 (MAUS149) is a cyclodextrin (CD)-degrading enzyme with a high preference for CDs over maltooligosaccharides. In this study, we investigated the roles of residue Asp46 in the specificity and catalytic properties of MAUS149 by using site-directed mutagenesis. Three mutated enzymes (D46V, D46G and D46N) were constructed and studied. The three mutants were found to be similar to the wild-type MAUS149 regarding thermoactivity, thermostability and pH profile. Nevertheless, the kinetic parameters for all the substrates of the mutant enzymes D46V and D46G were altered enormously as compared with those of the wild type. Indeed, the K m values of MAUS149/D46G for all substrates were strongly increased. Nevertheless, the affinity and catalytic efficiency of MAUS149/D46V toward β-CD were increased fivefold as compared with those of MAUS149. Molecular modelling suggests that residue D46 forms a salt bridge with residue K282. This bond would maintain the arrangement of side chains of residues Y45 and W47 in a particular orientation that promotes access to the catalytic site and maintains the substrate therein. Hence, any replacement with uncharged amino acids influenced the flexibility of the gate wall at the substrate binding cleft resulting in changes in substrate selectivity.
Collapse
Affiliation(s)
- Sameh Ben Mabrouk
- grid.412124.0 0000000123235644 Laboratoire de Métabolites Et de Biomolécules, Centre de Biotechnologie de Sfax Université de Sfax BP 1177 3018 Sfax Tunisia
| | - Dorra Ayadi-Zouari
- grid.412124.0 0000000123235644 Laboratoire de Métabolites Et de Biomolécules, Centre de Biotechnologie de Sfax Université de Sfax BP 1177 3018 Sfax Tunisia
| | - Hajer Ben Hlima
- grid.412124.0 0000000123235644 Laboratoire de Métabolites Et de Biomolécules, Centre de Biotechnologie de Sfax Université de Sfax BP 1177 3018 Sfax Tunisia
| | - Samir Bejar
- grid.412124.0 0000000123235644 Laboratoire de Métabolites Et de Biomolécules, Centre de Biotechnologie de Sfax Université de Sfax BP 1177 3018 Sfax Tunisia
| |
Collapse
|
15
|
Nasrollahi S, Golalizadeh L, Sajedi RH, Taghdir M, Asghari SM, Rassa M. Substrate preference of a Geobacillus maltogenic amylase: A kinetic and thermodynamic analysis. Int J Biol Macromol 2013; 60:1-9. [DOI: 10.1016/j.ijbiomac.2013.04.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/18/2013] [Accepted: 04/19/2013] [Indexed: 11/29/2022]
|
16
|
Li F, Zhu X, Li Y, Cao H, Zhang Y. Functional characterization of a special thermophilic multifunctional amylase OPMA-N and its N-terminal domain. Acta Biochim Biophys Sin (Shanghai) 2011; 43:324-34. [PMID: 21355000 DOI: 10.1093/abbs/gmr013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A gene encoding a special thermophilic multifunctional amylase OPMA-N was cloned from Bacillus sp. ZW2531-1. OPMA-N has an additional 124-residue N-terminal domain compared with typical amylases and forms a relatively independent domain with a β-pleated sheet and random coil structure. Here we reported an unusual substrate and product specificities of OPMA-N and the impact of the additional N-terminal domain (1-124 aa) on the function and properties of OPMA-N. Both OPMA-N (12.82 U/mg) and its N-terminal domain-truncated ΔOPMA-N (12.55 U/mg) only degraded starch to produce oligosaccharides including maltose, maltotriose, isomaltotriose, and isomaltotetraose, but not to produce glucose. Therefore, the N-terminal domain did not determine its substrate and product specificities that were probably regulated by its C-terminal β-pleated sheet structure. However, the N-terminal domain of OPMA-N seemed to modulate its catalytic feature, leading to the production of more isomaltotriose and less maltose, and it seemed to contribute to OPMA-N's thermostability since OPMA-N showed higher activity than ΔOPMA-N in a temperature range from 40 to 80°C and the half-life (t(1/2)) was 5 h for OPMA-N and 2 h for ΔOPMA-N at 60°C. Both OPMA-N and ΔOPMA-N were Ca(2+)-independent, but their activities could be influenced by Cu(2+), Ni(2+), Zn(2+), EDTA, SDS (1 mM), or Triton-X100 (1%). Kinetic analysis and starch-adsorption assay indicated that the N-terminal domain of OPMA-N could increase the OPMA-N-starch binding and subsequently increase the catalytic efficiency of OPMA-N for starch. In particular, the N-terminal domain of OPMA-N did not determine its oligomerization, because both OPMA-N and ΔOPMA-N could exist in the forms of monomer, homodimer, and homooligomer at the same time.
Collapse
Affiliation(s)
- Fan Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University, Changchun, China
| | | | | | | | | |
Collapse
|
17
|
Puspasari F, Nurachman Z, Noer AS, Radjasa OK, van der Maarel MJEC, Natalia D. Characteristics of raw starch degrading α-amylase from Bacillus aquimaris MKSC 6.2 associated with soft coral Sinularia sp. STARCH-STARKE 2011. [DOI: 10.1002/star.201000127] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Li D, Park JT, Li X, Kim S, Lee S, Shim JH, Park SH, Cha J, Lee BH, Kim JW, Park KH. Overexpression and characterization of an extremely thermostable maltogenic amylase, with an optimal temperature of 100 °C, from the hyperthermophilic archaeon Staphylothermus marinus. N Biotechnol 2010; 27:300-7. [DOI: 10.1016/j.nbt.2010.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Revised: 02/03/2010] [Accepted: 04/01/2010] [Indexed: 10/19/2022]
|
19
|
Veith B, Zverlov V, Lunina N, Berezina O, Raasch C, Velikodvorskaya G, Liebl W. Comparative Analysis of the Recombinant α-Glucosidases from theThermotoga neapolitanaandThermotoga maritimaMaltodextrin Utilization Gene Clusters. BIOCATAL BIOTRANSFOR 2010. [DOI: 10.1080/10242420310001614324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Kolcuoğlu Y, Colak A, Faiz O, Belduz AO. Cloning, expression and characterization of highly thermo- and pH-stable maltogenic amylase from a thermophilic bacterium Geobacillus caldoxylosilyticus TK4. Process Biochem 2010. [DOI: 10.1016/j.procbio.2010.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Dumbrepatil AB, Choi JH, Park JT, Kim MJ, Kim TJ, Woo EJ, Park KH. Structural features of theNostoc punctiformedebranching enzyme reveal the basis of its mechanism and substrate specificity. Proteins 2010; 78:348-56. [DOI: 10.1002/prot.22548] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Biochemical characterization of a raw starch degrading α-amylase from the Indonesian marine bacterium Bacillus sp. ALSHL3. Biologia (Bratisl) 2009. [DOI: 10.2478/s11756-009-0190-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Wang Y, Li F, Zhang Y. Preliminary investigation on the action modes of an oligosaccharide-producing multifunctional amylase. Appl Biochem Biotechnol 2009; 160:1955-66. [PMID: 19662349 DOI: 10.1007/s12010-009-8704-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2009] [Accepted: 06/28/2009] [Indexed: 11/27/2022]
Abstract
The action modes of an oligosaccharide-producing multifunctional amylase (OPMA) were investigated using glucose and some oligosaccharides as its substrates. OPMA did not cause the hydrolysis of maltose or isomaltose, but it catalyzed the alpha-1,6-transglycosylation of maltose to produce isomaltose or did the self-condensation of isomaltose to form isomaltotetraose and 4-O-alpha-isomaltosyl isomaltose. OPMA exhibited strong alpha-1,6-transglycosylation activity in addition to its alpha-1,4-hydrolytic activity on higher oligosaccharides substrates rather than bisaccharides. OPMA displayed high acceptor specificity in its transglycosylation or condensation reaction. OPMA seemed to only take glucose or isomaltose as the acceptor molecule in its transglycosylation or condensation reaction, which made glucose or isomaltose form higher products, and as a result, glucose or isomaltose were absent in the final products. In view of the simultaneously formation of several transglycosylation or condensation products, it was predicted that there might be separate donor and acceptor sites in OPMA's active center and the fact that the catalytically active form of this enzyme included its homodimer or homotrimer supported this prediction. Accordingly, a special pathway, isomaltose pathway, for OPMA catalysis was proposed to emphasize the central or important signification of isomaltose in OPMA catalysis.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Jilin University, Changchun 130021, People's Republic of China
| | | | | |
Collapse
|
24
|
Cheong KA, Cheong KA, Tang SY, Cheong TK, Cha H, Kim JW, Park KH. Thermostable and alkalophilic maltogenic amylase ofBacillus thermoalkalophilusET2 in monomer-dimer equilibrium. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420500090094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Role of maltogenic amylase and pullulanase in maltodextrin and glycogen metabolism of Bacillus subtilis 168. J Bacteriol 2009; 191:4835-44. [PMID: 19465663 DOI: 10.1128/jb.00176-09] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The physiological functions of two amylolytic enzymes, a maltogenic amylase (MAase) encoded by yvdF and a debranching enzyme (pullulanase) encoded by amyX, in the carbohydrate metabolism of Bacillus subtilis 168 were investigated using yvdF, amyX, and yvdF amyX mutant strains. An immunolocalization study revealed that YvdF was distributed on both sides of the cytoplasmic membrane and in the periplasm during vegetative growth but in the cytoplasm of prespores. Small carbohydrates such as maltoheptaose and beta-cyclodextrin (beta-CD) taken up by wild-type B. subtilis cells via two distinct transporters, the Mdx and Cyc ABC transporters, respectively, were hydrolyzed immediately to form smaller or linear maltodextrins. On the other hand, the yvdF mutant exhibited limited degradation of the substrates, indicating that, in the wild type, maltodextrins and beta-CD were hydrolyzed by MAase while being taken up by the bacterium. With glycogen and branched beta-CDs as substrates, pullulanase showed high-level specificity for the hydrolysis of the outer side chains of glycogen with three to five glucosyl residues. To investigate the roles of MAase and pullulanase in glycogen utilization, the following glycogen-overproducing strains were constructed: a glg mutant with a wild-type background, yvdF glg and amyX glg mutants, and a glg mutant with a double mutant (DM) background. The amyX glg and glg DM strains accumulated significantly larger amounts of glycogen than the glg mutant, while the yvdF glg strain accumulated an intermediate amount. Glycogen samples from the amyX glg and glg DM strains exhibited average molecular masses two and three times larger, respectively, than that of glycogen from the glg mutant. The results suggested that glycogen breakdown may be a sequential process that involves pullulanase and MAase, whereby pullulanase hydrolyzes the alpha-1,6-glycosidic linkage at the branch point to release a linear maltooligosaccharide that is then hydrolyzed into maltose and maltotriose by MAase.
Collapse
|
26
|
Seibold GM, Wurst M, Eikmanns BJ. Roles of maltodextrin and glycogen phosphorylases in maltose utilization and glycogen metabolism in Corynebacterium glutamicum. MICROBIOLOGY-SGM 2009; 155:347-358. [PMID: 19202084 DOI: 10.1099/mic.0.023614-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Corynebacterium glutamicum transiently accumulates large amounts of glycogen, when cultivated on glucose and other sugars as a source of carbon and energy. Apart from the debranching enzyme GlgX, which is required for the formation of maltodextrins from glycogen, alpha-glucan phosphorylases were assumed to be involved in glycogen degradation, forming alpha-glucose 1-phosphate from glycogen and from maltodextrins. We show here that C. glutamicum in fact possesses two alpha-glucan phosphorylases, which act as a glycogen phosphorylase (GlgP) and as a maltodextrin phosphorylase (MalP). By chromosomal inactivation and subsequent analysis of the mutant, cg1479 was identified as the malP gene. The deletion mutant C. glutamicum DeltamalP completely lacked MalP activity and showed reduced intracellular glycogen degradation, confirming the proposed pathway for glycogen degradation in C. glutamicum via GlgP, GlgX and MalP. Surprisingly, the DeltamalP mutant showed impaired growth, reduced viability and altered cell morphology on maltose and accumulated much higher concentrations of glycogen and maltodextrins than the wild-type during growth on this substrate, suggesting an additional role of MalP in maltose metabolism of C. glutamicum. Further assessment of enzyme activities revealed the presence of 4-alpha-glucanotransferase (MalQ), glucokinase (Glk) and alpha-phosphoglucomutase (alpha-Pgm), and the absence of maltose hydrolase, maltose phosphorylase and beta-Pgm, all three known to be involved in maltose utilization by Gram-positive bacteria. Based on these findings, we conclude that C. glutamicum metabolizes maltose via a pathway involving maltodextrin and glucose formation by MalQ, glucose phosphorylation by Glk and maltodextrin degradation via the reactions of MalP and alpha-Pgm, a pathway hitherto known to be present in Gram-negative rather than in Gram-positive bacteria.
Collapse
Affiliation(s)
- Gerd M Seibold
- Institute of Biochemistry, University of Cologne, D-50674 Cologne, Germany.,Institute of Microbiology and Biotechnology, University of Ulm, D-89069 Ulm, Germany
| | - Martin Wurst
- Institute of Microbiology and Biotechnology, University of Ulm, D-89069 Ulm, Germany
| | - Bernhard J Eikmanns
- Institute of Microbiology and Biotechnology, University of Ulm, D-89069 Ulm, Germany
| |
Collapse
|
27
|
Kim EJ, Ryu SI, Bae HA, Huong NT, Lee SB. Biochemical characterisation of a glycogen branching enzyme from Streptococcus mutans: Enzymatic modification of starch. Food Chem 2008; 110:979-84. [DOI: 10.1016/j.foodchem.2008.03.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 01/25/2008] [Accepted: 03/04/2008] [Indexed: 11/26/2022]
|
28
|
Cloning and Sequencing of an Original Gene Encoding a Maltogenic Amylase from Bacillus sp. US149 Strain and Characterization of the Recombinant Activity. Mol Biotechnol 2007; 38:211-9. [DOI: 10.1007/s12033-007-9017-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Accepted: 11/02/2007] [Indexed: 11/26/2022]
|
29
|
Lunina NA, Agafonova EV, Chekanovskaya LA, Dvortsov IA, Berezina OV, Shedova EN, Kostrov SV, Velikodvorskaya GA. Co-expression of the Thermotoga neapolitana aglB gene with an upstream 3'-coding fragment of the malG gene improves enzymatic characteristics of recombinant AglB cyclomaltodextrinase. Protein Expr Purif 2007; 54:18-23. [PMID: 17399996 DOI: 10.1016/j.pep.2007.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 02/14/2007] [Accepted: 02/20/2007] [Indexed: 11/23/2022]
Abstract
A cluster of Thermotoga neapolitana genes participating in starch degradation includes the malG gene of sugar transport protein and the aglB gene of cyclomaltodextrinase. The start and stop codons of these genes share a common overlapping sequence, aTGAtg. Here, we compared properties of expression products of three different constructs with aglB from T. neapolitana. The first expression vector contained the aglB gene linked to an upstream 90-bp 3'-terminal region of the malG gene with the stop codon overlapping with the start codon of aglB. The second construct included the isolated coding sequence of aglB with two tandem potential start codons. The expression product of this construct in Escherichia coli had two tandem Met residues at its N terminus and was characterized by low thermostability and high tendency to aggregate. In contrast, co-expression of aglB and the 3'-terminal region of malG (the first construct) resulted in AglB with only one N-terminal Met residue and a much higher specific activity of cyclomaltodextrinase. Moreover, the enzyme expressed by such a construct was more thermostable and less prone to aggregation. The third construct was the same as the second one except that it contained only one ATG start codon. The product of its expression had kinetic and other properties similar to those of the enzyme with only one N-terminal Met residue.
Collapse
Affiliation(s)
- Natalia A Lunina
- Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., Moscow 123182, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Ramsay AG, Scott KP, Martin JC, Rincon MT, Flint HJ. Cell-associated alpha-amylases of butyrate-producing Firmicute bacteria from the human colon. MICROBIOLOGY-SGM 2007; 152:3281-3290. [PMID: 17074899 DOI: 10.1099/mic.0.29233-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Selected butyrate-producing bacteria from the human colon that are related to Roseburia spp. and Butyrivibrio fibrisolvens showed a good ability to utilize a variety of starches for growth when compared with the Gram-negative amylolytic anaerobe Bacteroides thetaiotaomicron. A major cell-associated amylase of high molecular mass (140-210 kDa) was detected in each strain by SDS-PAGE zymogram analysis, and genes corresponding to these enzymes were analysed for two representative strains. Amy13B from But. fibrisolvens 16/4 is a multi-domain enzyme of 144.6 kDa that includes a family 13 glycoside hydrolase domain, and duplicated family 26 carbohydrate-binding modules. Amy13A (182.4 kDa), from Roseburia inulinivorans A2-194, also includes a family 13 domain, which is preceded by two repeat units of approximately 116 aa rich in aromatic residues, an isoamylase N-terminal domain, a pullulanase-associated domain, and an additional unidentified domain. Both Amy13A and Amy13B have N-terminal signal peptides and C-terminal cell-wall sorting signals, including a modified LPXTG motif similar to that involved in interactions with the cell surface in other Gram-positive bacteria, a hydrophobic transmembrane segment, and a basic C terminus. The overexpressed family 13 domains showed an absolute requirement for Mg2+ or Ca2+ for activity, and functioned as 1,4-alpha-glucanohydrolases (alpha-amylases; EC 3.2.1.1). These major starch-degrading enzymes thus appear to be anchored to the cell wall in this important group of human gut bacteria.
Collapse
Affiliation(s)
- Alan G Ramsay
- Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| | - Karen P Scott
- Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| | - Jenny C Martin
- Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| | - Marco T Rincon
- Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| | - Harry J Flint
- Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK
| |
Collapse
|
31
|
Characterization of a recombinant maltogenic amylase from deep sea thermophilic Bacillus sp. WPD616. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2006.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Schönert S, Seitz S, Krafft H, Feuerbaum EA, Andernach I, Witz G, Dahl MK. Maltose and maltodextrin utilization by Bacillus subtilis. J Bacteriol 2006; 188:3911-22. [PMID: 16707683 PMCID: PMC1482931 DOI: 10.1128/jb.00213-06] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis can utilize maltose and maltodextrins that are derived from polysaccharides, like starch or glycogen. In this work, we show that maltose is taken up by a member of the phosphoenolpyruvate-dependent phosphotransferase system and maltodextrins are taken up by a maltodextrin-specific ABC transporter. Uptake of maltose by the phosphoenolpyruvate-dependent phosphotransferase system is mediated by maltose-specific enzyme IICB (MalP; synonym, GlvC), with an apparent K(m) of 5 microM and a V(max) of 91 nmol . min(-1) . (10(10) CFU)(-1). The maltodextrin-specific ABC transporter is composed of the maltodextrin binding protein MdxE (formerly YvdG), with affinities in the low micromolar range for maltodextrins, and the membrane-spanning components MdxF and MdxG (formerly YvdH and YvdI, respectively), as well as the energizing ATPase MsmX. Maltotriose transport occurs with an apparent K(m) of 1.4 microM and a V(max) of 4.7 nmol . min(-1) . (10(10) CFU)(-1).
Collapse
Affiliation(s)
- Stefan Schönert
- Lehrstuhl für Mikrobiologie, Fachbereich Biologie der Universität Konstanz, Universitätsstrasse 10, M605, D-78457 Konstanz, Germany.
| | | | | | | | | | | | | |
Collapse
|
33
|
Oh KW, Kim MJ, Kim HY, Kim BY, Baik MY, Auh JH, Park CS. Enzymatic characterization of a maltogenic amylase from Lactobacillus gasseri ATCC 33323 expressed in Escherichia coli. FEMS Microbiol Lett 2005; 252:175-81. [PMID: 16198511 DOI: 10.1016/j.femsle.2005.08.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 08/28/2005] [Accepted: 08/30/2005] [Indexed: 11/25/2022] Open
Abstract
A gene corresponding to a maltogenic amylase (MAase) in Lactobacillus gasseri ATCC 33323 (lgma) was cloned and expressed in Escherichia coli. The recombinant LGMA was efficiently purified 24.3-fold by one-step Ni-NTA affinity chromatography. The final yield and specific activity of the purified recombinant LGMA were 68% and 58.7 U/mg, respectively. The purified enzyme exhibited optimal activity for beta-CD hydrolysis at 55 degrees C and pH 5. The relative hydrolytic activities of LGMA to beta-CD, soluble starch or pullulan was 8:1:1.9. The activity of LGMA was strongly inhibited by most metal ions, especially Zn(2+), Fe(2+), Co(2+) and by EDTA. LGMA possessed some unusual properties distinguishable from typical MAases, such as being in a tetrameric form, having hydrolyzing activity towards the alpha-(1,6)-glycosidic linkage and being inhibited by acarbose.
Collapse
Affiliation(s)
- Ko-Woon Oh
- Department of Food Science and Biotechnology, Institute of Life Sciences and Resources, KyungHee University, Yongin 449-701, South Korea
| | | | | | | | | | | | | |
Collapse
|
34
|
Park SH, Cha H, Kang HK, Shim JH, Woo EJ, Kim JW, Park KH. Mutagenesis of Ala290, which modulates substrate subsite affinity at the catalytic interface of dimeric ThMA. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1751:170-7. [PMID: 15975859 DOI: 10.1016/j.bbapap.2005.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 05/02/2005] [Accepted: 05/02/2005] [Indexed: 11/24/2022]
Abstract
The goal of this study was to develop a maltose-producing enzyme using protein engineering and to clarify the relation between the substrate specificity and the structure of the substrate-binding site of dimeric maltogenic amylase isolated from Thermus (ThMA). Ala290 at the interface of ThMA dimer in the vicinity of the substrate-binding site was substituted with isoleucine, which may cause a structural change due to its bulky side chain. TLC analysis of the action pattern of the mutant ThMA-A290I, using maltooligosaccharides as substrates, revealed that ThMA-A290I used maltotetraose to produce mostly maltose, while wild-type ThMA produced glucose as well as maltose. The wild-type enzyme eventually hydrolyzed the maltose produced from maltotetraose into glucose, but the mutant enzyme did not. For both enzymes, the cleavage frequency of the glycosidic bond of maltooligosaccharides was the highest at the second bond from the reducing end. The mutant ThMA had a much higher Km value for maltose than the wild-type ThMA. The kinetic parameter, kcat/Km) of ThMA-A290I for maltose was 48 times less than that of wild-type ThMA, suggesting that the subsite affinity and hydrolysis mode of ThMA were modulated by the residue located at the interface of ThMA dimer near the active site. The conformational rearrangement in the catalytic interface probably led to the change in the substrate binding affinity of the mutant ThMA. Our results provide basic information for the enzymatic preparation of high-maltose syrup.
Collapse
Affiliation(s)
- Sung-Hoon Park
- Center for Agricultural Biomaterials and Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | | | | | | | | | | | | |
Collapse
|
35
|
Yun J, Kang S, Park S, Yoon H, Kim MJ, Heu S, Ryu S. Characterization of a novel amylolytic enzyme encoded by a gene from a soil-derived metagenomic library. Appl Environ Microbiol 2005; 70:7229-35. [PMID: 15574921 PMCID: PMC535135 DOI: 10.1128/aem.70.12.7229-7235.2004] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been estimated that less than 1% of the microorganisms in nature can be cultivated by conventional techniques. Thus, the classical approach of isolating enzymes from pure cultures allows the analysis of only a subset of the total naturally occurring microbiota in environmental samples enriched in microorganisms. To isolate useful microbial enzymes from uncultured soil microorganisms, a metagenome was isolated from soil samples, and a metagenomic library was constructed by using the pUC19 vector. The library was screened for amylase activity, and one clone from among approximately 30,000 recombinant Escherichia coli clones showed amylase activity. Sequencing of the clone revealed a novel amylolytic enzyme expressed from a novel gene. The putative amylase gene (amyM) was overexpressed and purified for characterization. Optimal conditions for the enzyme activity of the AmyM protein were 42 degrees C and pH 9.0; Ca2+ stabilized the activity. The amylase hydrolyzed soluble starch and cyclodextrins to produce high levels of maltose and hydrolyzed pullulan to panose. The enzyme showed a high transglycosylation activity, making alpha-(1, 4) linkages exclusively. The hydrolysis and transglycosylation properties of AmyM suggest that it has novel characteristics and can be regarded as an intermediate type of maltogenic amylase, alpha-amylase, and 4-alpha-glucanotransferase.
Collapse
Affiliation(s)
- Jiae Yun
- Department of Food Science and Technology, School of Agricultural Biotechnology, Center for Agricultural Biomaterials, Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
36
|
Hamon MA, Stanley NR, Britton RA, Grossman AD, Lazazzera BA. Identification of AbrB-regulated genes involved in biofilm formation by Bacillus subtilis. Mol Microbiol 2004; 52:847-60. [PMID: 15101989 PMCID: PMC1409746 DOI: 10.1111/j.1365-2958.2004.04023.x] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacillus subtilis is a ubiquitous soil bacterium that forms biofilms in a process that is negatively controlled by the transcription factor AbrB. To identify the AbrB-regulated genes required for biofilm formation by B. subtilis, genome-wide expression profiling studies of biofilms formed by spo0A abrB and sigH abrB mutant strains were performed. These data, in concert with previously published DNA microarray analysis of spo0A and sigH mutant strains, led to the identification of 39 operons that appear to be repressed by AbrB. Eight of these operons had previously been shown to be repressed by AbrB, and we confirmed AbrB repression for a further six operons by reverse transcription-PCR. The AbrB-repressed genes identified in this study are involved in processes known to be regulated by AbrB, such as extracellular degradative enzyme production and amino acid metabolism, and processes not previously known to be regulated by AbrB, such as membrane bioenergetics and cell wall functions. To determine whether any of these AbrB-regulated genes had a role in biofilm formation, we tested 23 mutants, each with a disruption in a different AbrB-regulated operon, for the ability to form biofilms. Two mutants had a greater than twofold defect in biofilm formation. A yoaW mutant exhibited a biofilm structure with reduced depth, and a sipW mutant exhibited only surface-attached cells and did not form a mature biofilm. YoaW is a putative secreted protein, and SipW is a signal peptidase. This is the first evidence that secreted proteins have a role in biofilm formation by Bacillus subtilis.
Collapse
Affiliation(s)
- Mélanie A. Hamon
- Department of Microbiology, Immunology and Molecular Genetics University of California Los Angeles 1602 Molecular Sciences Building 405 Hilgard Avenue Los Angeles, CA 90095, USA
| | - Nicola R. Stanley
- Department of Microbiology, Immunology and Molecular Genetics University of California Los Angeles 1602 Molecular Sciences Building 405 Hilgard Avenue Los Angeles, CA 90095, USA
| | - Robert A. Britton
- Department of Biology Massachusetts Institute of Technology Cambridge, MA 02139, USA
| | - Alan. D. Grossman
- Department of Biology Massachusetts Institute of Technology Cambridge, MA 02139, USA
| | - Beth A. Lazazzera
- Department of Microbiology, Immunology and Molecular Genetics University of California Los Angeles 1602 Molecular Sciences Building 405 Hilgard Avenue Los Angeles, CA 90095, USA
- *For correspondence. E-mail; Tel (+1) 310 794 4804; Fax (+1) 310 206 5231
| |
Collapse
|
37
|
Lim WJ, Park SR, An CL, Lee JY, Hong SY, Shin EC, Kim EJ, Kim JO, Kim H, Yun HD. Cloning and characterization of a thermostable intracellular α-amylase gene from the hyperthermophilic bacterium Thermotoga maritima MSB8. Res Microbiol 2003; 154:681-7. [PMID: 14643406 DOI: 10.1016/j.resmic.2003.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The gene encoding an intracellular alpha-amylase, AmyB (TM1650), from Thermotoga maritima MSB8, a hyperthermophilic bacterium, was cloned and expressed in Escherichia coli. The AmyB enzyme hydrolyzed alpha-1,4 starch linkage. The amyB gene is 1269 bp in length, encoding a protein of 422 amino acids (calculated molecular mass of 50187 Da). The molecular weight of the enzyme was estimated to be 50000 Da by SDS-PAGE after starch-nondenaturing-PAGE. The amino acid sequence of AmyB showed less than 12% identity to other amylases, but contained four regions that are highly conserved among alpha-amylases. The AmyB alpha-amylase exhibited maximal enzymatic activity at pH 7.0 and its optimum temperature for activity was 70 degrees C. Like the alpha-amylases of many other organisms, the thermostability of T. maritima MSB8 alpha-amylase, AmyB expressed in E. coli was enhanced in the presence of Ca(2+) (10 mM).
Collapse
Affiliation(s)
- Woo Jin Lim
- Division of Applied Life Science, Gyeongsang National University, 660-701, Chinju, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cao M, Salzberg L, Tsai CS, Mascher T, Bonilla C, Wang T, Ye RW, Márquez-Magaña L, Helmann JD. Regulation of the Bacillus subtilis extracytoplasmic function protein sigma(Y) and its target promoters. J Bacteriol 2003; 185:4883-90. [PMID: 12897008 PMCID: PMC166484 DOI: 10.1128/jb.185.16.4883-4890.2003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus subtilis extracytoplasmic function sigma factor sigma(Y) is of unknown function. We demonstrate that the sigY operon is expressed from an autoregulatory promoter site, P(Y). We selected for transposon-induced mutations that upregulate P(Y) transcription in an attempt to identify genes involved in sigma(Y) regulation. The resulting insertions disrupted yxlC, the gene immediately downstream of sigY. However, the phenotype of the yxlC::Tn10 insertion was due to polarity on the downstream genes of the sigY operon; a nonpolar insertion in yxlC did not lead to derepression of P(Y). Further analyses revealed that both yxlD and yxlE encoded proteins important for the negative regulation of sigma(Y) activity. A comparison of the transcriptomes of wild-type and yxlC::Tn10 mutant strains revealed elevated expression of several operons. However, only one additional gene, ybgB, was unambiguously identified as a direct target for sigma(Y). This was supported by analysis of direct targets for sigma(Y) transcription with whole-genome runoff transcription followed by macroarray analysis.
Collapse
Affiliation(s)
- Min Cao
- Department of Microbiology, Cornell University, Ithaca, New York 14853-8101, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kim YW, Choi JH, Kim JW, Park C, Kim JW, Cha H, Lee SB, Oh BH, Moon TW, Park KH. Directed evolution of Thermus maltogenic amylase toward enhanced thermal resistance. Appl Environ Microbiol 2003; 69:4866-74. [PMID: 12902281 PMCID: PMC169122 DOI: 10.1128/aem.69.8.4866-4874.2003] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The thermostability of maltogenic amylase from Thermus sp. strain IM6501 (ThMA) was improved greatly by random mutagenesis using DNA shuffling. Four rounds of DNA shuffling and subsequent recombination of the mutations produced the highly thermostable mutant enzyme ThMA-DM, which had a total of seven individual mutations. The seven amino acid substitutions in ThMA-DM were identified as R26Q, S169N, I333V, M375T, A398V, Q411L, and P453L. The optimal reaction temperature of the recombinant enzyme was 75 degrees C, which was 15 degrees C higher than that of wild-type ThMA, and the melting temperature, as determined by differential scanning calorimetry, was increased by 10.9 degrees C. The half-life of ThMA-DM was 172 min at 80 degrees C, a temperature at which wild-type ThMA was completely inactivated in less than 1 min. Six mutations that were generated during the evolutionary process did not significantly affect the specific activity of the enzyme, while the M375T mutation decreased activity to 23% of the wild-type level. The molecular interactions of the seven mutant residues that contributed to the increased thermostability of the mutant enzyme with other adjacent residues were examined by comparing the modeled tertiary structure of ThMA-DM with those of wild-type ThMA and related enzymes. The A398V and Q411L substitutions appeared to stabilize the enzyme by enhancing the interdomain hydrophobic interactions. The R26Q and P453L substitutions led potentially to the formation of genuine hydrogen bonds. M375T, which was located near the active site of ThMA, probably caused a conformational or dynamic change that enhanced thermostability but reduced the specific activity of the enzyme.
Collapse
Affiliation(s)
- Young-Wan Kim
- National Laboratory for Functional Food Carbohydrates, Center for Agricultural Biomaterials, and Department of Food Science and Technology, Seoul National University, Suwon 441-744, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Transglycosylation reaction and raw starch hydrolysis by novel carbohydrolase fromLipomyces starkeyi. BIOTECHNOL BIOPROC E 2003. [DOI: 10.1007/bf02940265] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
MacGregor EA, Janecek S, Svensson B. Relationship of sequence and structure to specificity in the alpha-amylase family of enzymes. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1546:1-20. [PMID: 11257505 DOI: 10.1016/s0167-4838(00)00302-2] [Citation(s) in RCA: 454] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The hydrolases and transferases that constitute the alpha-amylase family are multidomain proteins, but each has a catalytic domain in the form of a (beta/alpha)(8)-barrel, with the active site being at the C-terminal end of the barrel beta-strands. Although the enzymes are believed to share the same catalytic acids and a common mechanism of action, they have been assigned to three separate families - 13, 70 and 77 - in the classification scheme for glycoside hydrolases and transferases that is based on amino acid sequence similarities. Each enzyme has one glutamic acid and two aspartic acid residues necessary for activity, while most enzymes of the family also contain two histidine residues critical for transition state stabilisation. These five residues occur in four short sequences conserved throughout the family, and within such sequences some key amino acid residues are related to enzyme specificity. A table is given showing motifs distinctive for each specificity as extracted from 316 sequences, which should aid in identifying the enzyme from primary structure information. Where appropriate, existing problems with identification of some enzymes of the family are pointed out. For enzymes of known three-dimensional structure, action is discussed in terms of molecular architecture. The sequence-specificity and structure-specificity relationships described may provide useful pointers for rational protein engineering.
Collapse
Affiliation(s)
- E A MacGregor
- Department of Chemistry, University of Manitoba, Winnepeg, Manitoba R3T 2N2, Canada
| | | | | |
Collapse
|