1
|
Minic S, Annighöfer B, Milcic M, Maignen F, Brûlet A, Combet S. The effects of biliverdin on pressure-induced unfolding of apomyoglobin: The specific role of Zn 2+ ions. Int J Biol Macromol 2023:125549. [PMID: 37356686 DOI: 10.1016/j.ijbiomac.2023.125549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/05/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Apomyoglobin (apoMb), a model protein in biochemistry, exhibits a strong propensity to bind various ligands, which makes it a good candidate as a carrier of bioactive hydrophobic drugs. The stability of its hydrophobic pocket determines its potential as a carrier of bioactive compounds. High pressure (HP) is a potent tool for studying protein stability, revealing the specific role of hydrophobic cavities in unfolding. We probed the effects of biliverdin (BV) binding and its complex with Zn2+ ions on the structure and HP stability of apoMb. CD spectroscopy and SAXS measurements revealed that BV and BV-Zn2+ complexes make the apoMb structure more compact with higher α-helical content. We performed in-situ HP measurements of apoMb intrinsic fluorescence to demonstrate the ability of BV to stabilise apoMb structure at HP conditions. Furthermore, the presence of Zn2+ within the apoMb-BV complex significantly enhances the BV stabilisation effect. In-situ visible absorption study of BV chromophore confirmed the ability of Zn2+ to increase the stability of apoMb-BV complex under HP: the onset of complex dissociation is shifted by ~100 MPa in the presence of Zn2+. By combining HP-fluorescence and HP-visible absorption spectroscopy, our strategy highlights the crucial role of tetrapyrrole-metal complexes in stabilising apoMb hydrophobic pocket.
Collapse
Affiliation(s)
- Simeon Minic
- Laboratoire Léon-Brillouin (LLB), UMR12 CEA CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette CEDEX, France; Center of Excellence for Molecular Food Sciences, Department of Biochemistry, University of Belgrade - Faculty of Chemistry, Belgrade, Serbia.
| | - Burkhard Annighöfer
- Laboratoire Léon-Brillouin (LLB), UMR12 CEA CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette CEDEX, France
| | - Milos Milcic
- Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - François Maignen
- Laboratoire Léon-Brillouin (LLB), UMR12 CEA CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette CEDEX, France
| | - Annie Brûlet
- Laboratoire Léon-Brillouin (LLB), UMR12 CEA CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette CEDEX, France
| | - Sophie Combet
- Laboratoire Léon-Brillouin (LLB), UMR12 CEA CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette CEDEX, France.
| |
Collapse
|
2
|
Biomolecules under Pressure: Phase Diagrams, Volume Changes, and High Pressure Spectroscopic Techniques. Int J Mol Sci 2022; 23:ijms23105761. [PMID: 35628571 PMCID: PMC9144967 DOI: 10.3390/ijms23105761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
Pressure is an equally important thermodynamical parameter as temperature. However, its importance is often overlooked in the biophysical and biochemical investigations of biomolecules and biological systems. This review focuses on the application of high pressure (>100 MPa = 1 kbar) in biology. Studies of high pressure can give insight into the volumetric aspects of various biological systems; this information cannot be obtained otherwise. High-pressure treatment is a potentially useful alternative method to heat-treatment in food science. Elevated pressure (up to 120 MPa) is present in the deep sea, which is a considerable part of the biosphere. From a basic scientific point of view, the application of the gamut of modern spectroscopic techniques provides information about the conformational changes of biomolecules, fluctuations, and flexibility. This paper reviews first the thermodynamic aspects of pressure science, the important parameters affecting the volume of a molecule. The technical aspects of high pressure production are briefly mentioned, and the most common high-pressure-compatible spectroscopic techniques are also discussed. The last part of this paper deals with the main biomolecules, lipids, proteins, and nucleic acids: how they are affected by pressure and what information can be gained about them using pressure. I I also briefly mention a few supramolecular structures such as viruses and bacteria. Finally, a subjective view of the most promising directions of high pressure bioscience is outlined.
Collapse
|
3
|
Bak KH, Bolumar T, Karlsson AH, Lindahl G, Orlien V. Effect of high pressure treatment on the color of fresh and processed meats: A review. Crit Rev Food Sci Nutr 2017; 59:228-252. [DOI: 10.1080/10408398.2017.1363712] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- K. H. Bak
- University of Copenhagen, Faculty of Science, Department of Food Science, Frederiksberg C, Denmark
| | - T. Bolumar
- CSIRO, Agriculture and Food, Meat Science Team, Coopers Plains, Queensland, Australia
| | - A. H. Karlsson
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Skara, Sweden
| | | | - V. Orlien
- University of Copenhagen, Faculty of Science, Department of Food Science, Frederiksberg C, Denmark
| |
Collapse
|
4
|
Abstract
Although each type of protein fold and in some cases individual proteins within a fold classification can have very different mechanisms of folding, the underlying biophysical and biochemical principles that operate to cause a linear polypeptide chain to fold into a globular structure must be the same. In an aqueous solution, the protein takes up the thermodynamically most stable structure, but the pathway along which the polypeptide proceeds in order to reach that structure is a function of the amino acid sequence, which must be the final determining factor, not only in shaping the final folded structure, but in dictating the folding pathway. A number of groups have focused on a single protein or group of proteins, to determine in detail the factors that influence the rate and mechanism of folding in a defined system, with the hope that hypothesis-driven experiments can elucidate the underlying principles governing the folding process. Our research group has focused on the folding of the globin family of proteins, and in particular on the monomeric protein apomyoglobin. Apomyoglobin (apoMb) folds relatively slowly (∼2 s) via an ensemble of obligatory intermediates that form rapidly after the initiation of folding. The folding pathway can be dissected using rapid-mixing techniques, which can probe processes in the millisecond time range. Stopped-flow measurements detected by circular dichroism (CD) or fluorescence spectroscopy give information on the rates of folding events. Quench-flow experiments utilize the differential rates of hydrogen-deuterium exchange of amide protons protected in parts of the structure that are folded early; protection of amides can be detected by mass spectrometry or proton nuclear magnetic resonance spectroscopy (NMR). In addition, apoMb forms an intermediate at equilibrium at pH ∼ 4, which is sufficiently stable for it to be structurally characterized by solution methods such as CD, fluorescence and NMR spectroscopies, and the conformational ensembles formed in the presence of denaturing agents and low pH can be characterized as models for the unfolded states of the protein. Newer NMR techniques such as measurement of residual dipolar couplings in the various partly folded states, and relaxation dispersion measurements to probe invisible states present at low concentrations, have contributed to providing a detailed picture of the apomyoglobin folding pathway. The research summarized in this Account was aimed at characterizing and comparing the equilibrium and kinetic intermediates both structurally and dynamically, as well as delineating the complete folding pathway at a residue-specific level, in order to answer the question: "What is it about the amino acid sequence that causes each molecule in the unfolded protein ensemble to start folding, and, once started, to proceed towards the formation of the correctly folded three-dimensional structure?"
Collapse
Affiliation(s)
- H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla California 92037, United States
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla California 92037, United States
| |
Collapse
|
5
|
Circular dichroism and site-directed spin labeling reveal structural and dynamical features of high-pressure states of myoglobin. Proc Natl Acad Sci U S A 2013; 110:E4714-22. [PMID: 24248390 DOI: 10.1073/pnas.1320124110] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Excited states of proteins may play important roles in function, yet are difficult to study spectroscopically because of their sparse population. High hydrostatic pressure increases the equilibrium population of excited states, enabling their characterization [Akasaka K (2003) Biochemistry 42:10875-85]. High-pressure site-directed spin-labeling EPR (SDSL-EPR) was developed recently to map the site-specific structure and dynamics of excited states populated by pressure. To monitor global secondary structure content by circular dichroism (CD) at high pressure, a modified optical cell using a custom MgF2 window with a reduced aperture is introduced. Here, a combination of SDSL-EPR and CD is used to map reversible structural transitions in holomyoglobin and apomyoglobin (apoMb) as a function of applied pressure up to 2 kbar. CD shows that the high-pressure excited state of apoMb at pH 6 has helical content identical to that of native apoMb, but reversible changes reflecting the appearance of a conformational ensemble are observed by SDSL-EPR, suggesting a helical topology that fluctuates slowly on the EPR time scale. Although the high-pressure state of apoMb at pH 6 has been referred to as a molten globule, the data presented here reveal significant differences from the well-characterized pH 4.1 molten globule of apoMb. Pressure-populated states of both holomyoglobin and apoMb at pH 4.1 have significantly less helical structure, and for the latter, that may correspond to a transient folding intermediate.
Collapse
|
6
|
Yang HJ, Hong J, Lee S, Shin S, Kim J, Kim J. Pressure-assisted tryptic digestion using a syringe. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:901-908. [PMID: 20196188 DOI: 10.1002/rcm.4467] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A simple and effective digestion method was developed using a syringe. A 3 mL syringe was used to apply a pressure of 6 atm to expedite tryptic digestion. Application of a pressure of 6 atm during digestion resulted in better digestion efficiency than digestion under atmospheric pressure. The protein peaks in the matrix-assisted laser desorption/ionization mass spectra of three model proteins (cytochrome c, horse heart myoglobin, and bovine serum albumin (BSA)) completely disappeared within 30 min at 37 degrees C under a pressure of 6 atm, with greater numbers of peptides observed in 30 min pressure-assisted digestion than in overnight atmospheric pressure digestion. This is mostly due to the miscleaved peptides. Similar sequence coverages were obtained for 30 min pressure-assisted digestion and overnight atmospheric pressure digestion of the three model proteins (92% vs. 88% for cytochrome c, 100% vs. 97% for horse heart myoglobin, and 53% vs. 53% for BSA).
Collapse
Affiliation(s)
- Hyo-Jik Yang
- Department of Chemistry, Chungnam National University, Daejeon, South Korea
| | | | | | | | | | | |
Collapse
|
7
|
Royer CA. Insights into the role of hydration in protein structure and stability obtained through hydrostatic pressure studies. Braz J Med Biol Res 2005; 38:1167-73. [PMID: 16082456 DOI: 10.1590/s0100-879x2005000800003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A thorough understanding of protein structure and stability requires that we elucidate the molecular basis for the effects of both temperature and pressure on protein conformational transitions. While temperature effects are relatively well understood and the change in heat capacity upon unfolding has been reasonably well parameterized, the state of understanding of pressure effects is much less advanced. Ultimately, a quantitative parameterization of the volume changes (at the basis of pressure effects) accompanying protein conformational transitions will be required. The present report introduces a qualitative hypothesis based on available model compound data for the molecular basis of volume change upon protein unfolding and its dependence on temperature.
Collapse
Affiliation(s)
- C A Royer
- Centre de Biochimie Structurale, Montpellier Cedex, France.
| |
Collapse
|
8
|
Bataille C, Baldacchino G, Cosson RP, Coppo M, Trehen C, Vigneron G, Renault JP, Pin S. Effect of pressure on pulse radiolysis reduction of proteins. Biochim Biophys Acta Gen Subj 2005; 1724:432-9. [PMID: 15953680 DOI: 10.1016/j.bbagen.2005.04.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 04/19/2005] [Accepted: 04/21/2005] [Indexed: 11/24/2022]
Abstract
Pulse radiolysis experiments were performed on proteins under pressure. Whereas many spectroscopic techniques have shown protein modifications at different pressure ranges, the present measurements performed using the water radiolysis allowed to generate radical species and to study the mechanisms implied in their reactions with proteins. This work gives the first results obtained on the effects of pressure on the rate constants of the proteins reduction by the hydrated electron at pressures up to 100 MPa. The reaction with the hydrated electron was investigated on two classes of protein: the horse myoglobin and the mussel metallothioneins. We have successively studied the influence of the pH value of metmyoglobin solutions (pH 6, 7 and 8) and the influence of the metals nature (Zn,Cu,Cd) bound to metallothioneins. For both protein, whatever the experimental conditions, the pressure does not influence the value of the reduction rate constant in the investigated range (0.1-100 MPa).
Collapse
Affiliation(s)
- Céline Bataille
- Laboratoire Claude Fréjacques (URA 331 CEA/CNRS), DSM/DRECAM/Service de Chimie Moléculaire, CEA Saclay, 91191-Gif sur Yvette cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Taulier N, Beletskaya IV, Chalikian TV. Compressibility changes accompanying conformational transitions of apomyoglobin. Biopolymers 2005; 79:218-29. [PMID: 16100718 DOI: 10.1002/bip.20350] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We used high-precision density and ultrasonic velocity measurements to characterize the native (N), molten globule (MG), and unfolded (U) conformations of apomyoglobin. The molten globule states that were studied in this work include the MG(pH4)(NaCl) state observed at pH 4 and 20 mM NaCl, the MG(pH4)(NaTCA) state observed at pH 4 and 20 mM sodium trichloracetate (NaTCA), the MG(pH2)(NaCl) state observed at pH 2 and 200 mM NaCl, and the MG(pH2)(NaTCA) state observed at pH 2 and 20 mM NaTCA. We used our densimetric and acoustic data to evaluate changes in adiabatic compressibility associated with the acid- or salt-induced N-to-MG, MG-to-U, MG-to-MG, and U-to-MG transitions of the protein. The N-to-MG(pH4)(NaCl) and N-to-MG(pH4)(NaTCA) transitions are accompanied by decreases in compressibility of -(3.0 +/- 0.6) x 10(-6) and -(2.0 +/- 0.6) x 10(-6) cm3 g(-1)bar(-1), respectively. The N-to-MG(pH2)(NaCl) and N-to-MG(pH2)(NaTCA) transitions are associated with compressibility changes of -(4.9 +/- 1.1) x 10(-6) and (0.7 +/- 0.9) x 10(-6) cm3 g(-1) bar(-1), respectively. We interpret these data in terms of the degree of unfolding of the various molten globule forms of apomyoglobin. In general, our compressibility data reveal significant disparities between the various equilibrium molten globule states of apomyoglobin while also quantitatively characterizing each of these states. Volumetric insights provided by our data facilitate gaining a better understanding of the folding pathways, intermediates, and kinetics of apomyoglobin folding.
Collapse
Affiliation(s)
- Nicolas Taulier
- Department of Pharmaceutical Sciences, Leslie Dan Facultyof Pharmacy, University of Toronto, 19 Russell Street, Toronto, Ontario M5S 2S2, Canada
| | | | | |
Collapse
|
10
|
Affiliation(s)
- H Jane Dyson
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
11
|
Bondos SE, Bicknell A. Detection and prevention of protein aggregation before, during, and after purification. Anal Biochem 2003; 316:223-31. [PMID: 12711344 DOI: 10.1016/s0003-2697(03)00059-9] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The use of proteins for in vitro studies or as therapeutic agents is frequently hampered by protein aggregation during expression, purification, storage, or transfer into requisite assay buffers. A large number of potential protein stabilizers are available, but determining which are appropriate can take days or weeks. We developed a solubility assay to determine the best cosolvent for a given protein that requires very little protein and only a few hours to complete. This technique separates native protein from soluble and insoluble aggregates by filtration and detects both forms of protein by SDS-PAGE or Western blotting. Multiple buffers can be simultaneously screened to determine conditions that enhance protein solubility. The behavior of a single protein in mixtures and crude lysates can be analyzed with this technique, allowing testing prior to and throughout protein purification. Aggregated proteins can also be assayed for conditions that will stabilize native protein, which can then be used to improve subsequent purifications. This solubility assay was tested using both prokaryotic and eukaryotic proteins that range in size from 17 to 150 kDa and include monomeric and multimeric proteins. From the results presented, this technique can be applied to a variety of proteins.
Collapse
Affiliation(s)
- Sarah E Bondos
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251-1892, USA.
| | | |
Collapse
|
12
|
Miksovská J, Larsen RW. Photothermal studies of pH induced unfolding of apomyoglobin. JOURNAL OF PROTEIN CHEMISTRY 2003; 22:387-394. [PMID: 13678303 DOI: 10.1023/a:1025398325578] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Conformational dynamic and enthalpy changes associated with pH induced unfolding of apomyoglobin were studied using photoacoustic calorimetry and photothermal beam deflection methods. The transition between the native state and the I intermediate was induced by a nanosecond pH jump from o-nitrobenzaldehyde photolysis. Deconvolution of photoacoustic waves indicates two kinetic processes. The fast phase (T < 50 ns) is characterized by a volume expansion of 8.8 ml mol(-1). This process is followed by a volume contraction of about -22 ml mol(-1) (tau approximately 500 ns). Photothermal beam deflection measurements do not reveal any volume changes on the time scale between approximately 100 micros and 5 ms. We associate the volume contraction with structural changes occurring during the transition between the native state and the I intermediate. The lack of any processes on the ms time scale may indicate the absence of structural events involving larger conformational changes of apomyoglobin after the pH jump.
Collapse
Affiliation(s)
- Jaroslava Miksovská
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, USA
| | | |
Collapse
|
13
|
Nishimura C, Dyson HJ, Wright PE. The apomyoglobin folding pathway revisited: structural heterogeneity in the kinetic burst phase intermediate. J Mol Biol 2002; 322:483-9. [PMID: 12225742 DOI: 10.1016/s0022-2836(02)00810-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Extensive analysis of accurate quench-flow hydrogen exchange results indicates that the burst phase kinetic intermediate in the folding of apomyoglobin (apoMb) from urea is structurally heterogeneous. The structural variability is associated with the partial folding of the E helix during the burst phase (<6.4ms) of the folding process. Analysis of the effects of exchange-out of amide proton labels during the labeling pulse ( approximately pH 10) of the quench-flow process indicates that three of the amide protons in the E helix are in fact largely protected in the burst phase of folding, while the remainder of the E helix has a substantial complement of amide protons that show biphasic kinetics, i.e. are protected partly during the burst phase and partly during the slow phase of folding. The locations of these amide protons can be used to map the sites of structural heterogeneity in the kinetic molten globule. These sites include, besides the E helix, the ends of the A and B helices and part of the C helix. Our results give significant support to the hypothesis that the kinetic molten globule intermediate of apoMb is native-like.
Collapse
Affiliation(s)
- Chiaki Nishimura
- Department of Molecular Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, 92037, La Jolla, CA, USA
| | | | | |
Collapse
|
14
|
Kitahara R, Yamada H, Akasaka K, Wright PE. High pressure NMR reveals that apomyoglobin is an equilibrium mixture from the native to the unfolded. J Mol Biol 2002; 320:311-9. [PMID: 12079388 DOI: 10.1016/s0022-2836(02)00449-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pressure-induced reversible conformational changes of sperm whale apomyoglobin have been studied between 30 bar and 3000 bar on individual residue basis by utilizing 1H/15N hetero nuclear single-quantum coherence two-dimensional NMR spectroscopy at pH 6.0 and 35 degrees C. Apomyoglobin showed a series of pressure-dependent NMR spectra as a function of pressure, assignable to the native (N), intermediates (I), molten globule (MG) and unfolded (U) conformers. At 30 bar, the native fold (N) shows disorder only in the F helix. Between 500 bar and 1200 bar, a series of locally disordered conformers I are produced, in which local disorder occurs in the C helix, the CD loop, the G helix and part of the H helix. At 2000 bar, most cross-peaks exhibit severe line-broadening, suggesting the formation of a molten globule, but at 3000 bar all the cross-peaks reappear, showing that the molten globule turns into a well-hydrated, mobile unfolded conformation U. Since all the spectral changes were reversible with pressure, apomyoglobin is considered to exist as an equilibrium mixture of the N, I, MG and U conformers at all pressures. MG is situated at 2.4+/-(0.1) kcal/mol above N at 1 bar and the unfolding transition from the combined N-I state to MG is accompanied by a loss of partial molar volume by 75+/-(3) ml/mol. On the basis of these observations, we postulate a theorem that the partial molar volume of a protein decreases in parallel with the loss of its conformational order.
Collapse
Affiliation(s)
- Ryo Kitahara
- Department of Molecular Science, Graduate School of Science and Technology, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | | | | | | |
Collapse
|
15
|
Meersman F, Smeller L, Heremans K. Comparative Fourier transform infrared spectroscopy study of cold-, pressure-, and heat-induced unfolding and aggregation of myoglobin. Biophys J 2002; 82:2635-44. [PMID: 11964250 PMCID: PMC1302052 DOI: 10.1016/s0006-3495(02)75605-1] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We studied the cold unfolding of myoglobin with Fourier transform infrared spectroscopy and compared it with pressure and heat unfolding. Because protein aggregation is a phenomenon with medical as well as biotechnological implications, we were interested in both the structural changes as well as the aggregation behavior of the respective unfolded states. The cold- and pressure-induced unfolding both yield a partially unfolded state characterized by a persistent amount of secondary structure, in which a stable core of G and H helices is preserved. In this respect the cold- and pressure-unfolded states show a resemblance with an early folding intermediate of myoglobin. In contrast, the heat unfolding results in the formation of the infrared bands typical of intermolecular antiparallel beta-sheet aggregation. This implies a transformation of alpha-helix into intermolecular beta-sheet. H/2H-exchange data suggest that the helices are first unfolded and then form intermolecular beta-sheets. The pressure and cold unfolded states do not give rise to the intermolecular aggregation bands that are typical for the infrared spectra of many heat-unfolded proteins. This suggests that the pathways of the cold and pressure unfolding are substantially different from that of the heat unfolding. After return to ambient conditions the cold- or pressure-treated proteins adopt a partially refolded conformation. This aggregates at a lower temperature (32 degrees C) than the native state (74 degrees C).
Collapse
Affiliation(s)
- Filip Meersman
- Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | | | | |
Collapse
|
16
|
Jonas J. High-resolution nuclear magnetic resonance studies of proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1595:145-59. [PMID: 11983393 DOI: 10.1016/s0167-4838(01)00341-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The combination of advanced high-resolution nuclear magnetic resonance (NMR) techniques with high-pressure capability represents a powerful experimental tool in studies of protein folding. This review is organized as follows: after a general introduction of high-pressure, high-resolution NMR spectroscopy of proteins, the experimental part deals with instrumentation. The main section of the review is devoted to NMR studies of reversible pressure unfolding of proteins with special emphasis on pressure-assisted cold denaturation and the detection of folding intermediates. Recent studies investigating local perturbations in proteins and the experiments following the effects of point mutations on pressure stability of proteins are also discussed. Ribonuclease A, lysozyme, ubiquitin, apomyoglobin, alpha-lactalbumin and troponin C were the model proteins investigated.
Collapse
Affiliation(s)
- Jiri Jonas
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana, Urbana, IL 61801, USA.
| |
Collapse
|
17
|
Royer CA. Revisiting volume changes in pressure-induced protein unfolding. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1595:201-9. [PMID: 11983396 DOI: 10.1016/s0167-4838(01)00344-2] [Citation(s) in RCA: 330] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It has long been known that the application of hydrostatic pressure generally leads to the unfolding of proteins. Despite a relatively large number of reports in the literature over the past few decades, there has been great confusion over the sign and magnitude as well as the fundamental factors contributing to volume effects in protein conformational transitions. It is the goal of this review to present and discuss the results obtained concerning the sign and magnitude of the volume changes accompanying the unfolding of proteins. The vast majority of cases point to a significant decrease in volume upon unfolding. Nonetheless, there is evidence that, due to differences in the thermal expansivity of the folded and unfolded states of proteins reported in a half dozen manuscripts, that the sign of the volume change may become positive at higher temperatures.
Collapse
Affiliation(s)
- Catherine A Royer
- Centre de Biochimie Structurale, INSERM U554, CNRS UMR 5048, Montpellier, France.
| |
Collapse
|
18
|
Silva JL, Oliveira AC, Gomes AMO, Lima LMTR, Mohana-Borges R, Pacheco ABF, Foguel D. Pressure induces folding intermediates that are crucial for protein-DNA recognition and virus assembly. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1595:250-65. [PMID: 11983400 DOI: 10.1016/s0167-4838(01)00348-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Protein-nucleic acid interactions are crucial for a variety of fundamental biological processes such as replication, transcription, restriction, translation and virus assembly. The molecular basis of protein-DNA and protein-RNA recognition is deeply related to the thermodynamics of the systems. We review here how protein-nucleic acid interactions can be approached in the same way as protein-protein interactions involved in protein folding and protein assembly, using hydrostatic pressure as the primary tool and employing several spectroscopic techniques, especially fluorescence, circular dichroism and high-resolution nuclear magnetic resonance. High pressure has the unique property of stabilizing partially folded states or molten-globule states of a protein. The competition between correct folding and misfolding, which in many proteins leads to formation of insoluble aggregates is an important problem in the biotechnology industry and in human diseases such as amyloidosis, Alzheimer's, prion and tumor diseases. The pressure studies reveal that a gradient of partially folded (molten globule) conformations is present between the unfolded and fully folded structure of several bacteria, plant and mammalian viruses. Using pressure, we have detected the presence of a ribonucleoprotein intermediate, where the coat protein is partially unfolded but bound to RNA. These intermediates are potential targets for antiviral compounds. Pressure studies on viruses have direct biotechnological applications. The ability of pressure to inactivate viruses has been evaluated with a view toward the applications of vaccine development and virus sterilization. Recent studies demonstrate that pressure causes virus inactivation while preserving the immunogenic properties. There is substantial evidence that a high-pressure cycle traps a virus in the 'fusion intermediate state', not infectious but highly immunogenic.
Collapse
Affiliation(s)
- Jerson L Silva
- Programa de Biologia Estrutural, Departamento de Bioquímica Médica - ICB, Centro Nacional de Ressonância Magnética Nuclear de Macromoléculas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | | | | | | | | | | |
Collapse
|
19
|
Yamamoto Y, Takemoto K, Matsuo H. 1H NMR study of the effect of heme insertion on the folding of apomyoglobin. J Mol Struct 2002. [DOI: 10.1016/s0022-2860(01)00715-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|