1
|
Zhou Y, Lin Z, Xie S, Gao Y, Zhou H, Chen F, Fu Y, Yang C, Ke C. Interplay of chronic obstructive pulmonary disease and colorectal cancer development: unravelling the mediating role of fatty acids through a comprehensive multi-omics analysis. J Transl Med 2023; 21:587. [PMID: 37658368 PMCID: PMC10474711 DOI: 10.1186/s12967-023-04278-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/14/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) patients often exhibit gastrointestinal symptoms, A potential association between COPD and Colorectal Cancer (CRC) has been indicated, warranting further examination. METHODS In this study, we collected COPD and CRC data from the National Health and Nutrition Examination Survey, genome-wide association studies, and RNA sequence for a comprehensive analysis. We used weighted logistic regression to explore the association between COPD and CRC incidence risk. Mendelian randomization analysis was performed to assess the causal relationship between COPD and CRC, and cross-phenotype meta-analysis was conducted to pinpoint crucial loci. Multivariable mendelian randomization was used to uncover mediating factors connecting the two diseases. Our results were validated using both NHANES and GEO databases. RESULTS In our analysis of the NHANES dataset, we identified COPD as a significant contributing factor to CRC development. MR analysis revealed that COPD increased the risk of CRC onset and progression (OR: 1.16, 95% CI 1.01-1.36). Cross-phenotype meta-analysis identified four critical genes associated with both CRC and COPD. Multivariable Mendelian randomization suggested body fat percentage, omega-3, omega-6, and the omega-3 to omega-6 ratio as potential mediating factors for both diseases, a finding consistent with the NHANES dataset. Further, the interrelation between fatty acid-related modules in COPD and CRC was demonstrated via weighted gene co-expression network analysis and Kyoto Encyclopedia of Genes and Genomes enrichment results using RNA expression data. CONCLUSIONS This study provides novel insights into the interplay between COPD and CRC, highlighting the potential impact of COPD on the development of CRC. The identification of shared genes and mediating factors related to fatty acid metabolism deepens our understanding of the underlying mechanisms connecting these two diseases.
Collapse
Affiliation(s)
- Youtao Zhou
- The First Clinical Medical School, Guangzhou Medical University, Guangzhou, China
| | - Zikai Lin
- Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Shuojia Xie
- Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Yuan Gao
- The First Clinical Medical School, Guangzhou Medical University, Guangzhou, China
| | - Haobin Zhou
- The First Clinical Medical School, Guangzhou Medical University, Guangzhou, China
| | - Fengzhen Chen
- The First Clinical Medical School, Guangzhou Medical University, Guangzhou, China
| | - Yuewu Fu
- Department of General Surgery, School of Medicine, The First Affiliated Hospital, Ji'nan University, Guangzhou, China
| | - Cuiyan Yang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Chuanfeng Ke
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Zhao Y, Zhang Y, Khas E, Bai C, Cao Q, Ao C. Transcriptome analysis reveals candidate genes of the synthesis of branched-chain fatty acids related to mutton flavor in the lamb liver using Allium Mongolicum Regel extract. J Anim Sci 2022; 100:6659748. [PMID: 35946924 PMCID: PMC9467026 DOI: 10.1093/jas/skac256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/06/2022] [Indexed: 12/05/2022] Open
Abstract
The objective of this study was to identify candidate genes via which Allium mongolicum Regel ethanol extract (AME) affects the synthesis of branched-chain fatty acids (BCFAs) related to mutton flavor by transcriptome analysis in the lamb liver. Thirty male Small-tailed Han sheep (3 mo old; 33.6 ± 1.2 kg) were randomly divided into two groups and fed for 75 d with a basal diet containing no AME (CON, control group) or 2.8 g·lamb−1·d−1 AME (AME group). Twelve sheep, CON (n = 6) and AME (n = 6), were selected for slaughter at the end of the trial period, and liver samples were subsequently collected. There was no difference in 4-ethyloctanoic acid content among treatments. The 4-methyloctanoic acid and 4-methylnonanoic acid levels were significantly lower in the AME group than in the CON group (P < 0.05). Furthermore, 461 differentially expressed genes (DEGs) were identified between the CON and AME groups, of which 182 were upregulated and 279 were downregulated in the AME group. The DEGs were enriched in three pathways, namely, glutathione metabolism, ECM–receptor interaction, and steroid hormone biosynthesis, as determined by the Kyoto Encyclopedia of Genes and Genomes pathway analysis. Finally, CYP2B6, ACOT12, THEM4, ACSF2, LPIN1, and ADCY4 were identified as candidate genes that might be involved in regulating the BCFAs synthesis in the sheep liver.
Collapse
Affiliation(s)
- Yabo Zhao
- Key Laboratory of Animal Feed and Nutrition of Inner Mongolia Autonomous Region, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yanmei Zhang
- Key Laboratory of Animal Feed and Nutrition of Inner Mongolia Autonomous Region, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Erdene Khas
- Key Laboratory of Animal Feed and Nutrition of Inner Mongolia Autonomous Region, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Chen Bai
- Key Laboratory of Animal Feed and Nutrition of Inner Mongolia Autonomous Region, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Qina Cao
- Key Laboratory of Animal Feed and Nutrition of Inner Mongolia Autonomous Region, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Changjin Ao
- Key Laboratory of Animal Feed and Nutrition of Inner Mongolia Autonomous Region, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
3
|
Redox Regulation of Lipid Mobilization in Adipose Tissues. Antioxidants (Basel) 2021; 10:antiox10071090. [PMID: 34356323 PMCID: PMC8301038 DOI: 10.3390/antiox10071090] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
Lipid mobilization in adipose tissues, which includes lipogenesis and lipolysis, is a paramount process in regulating systemic energy metabolism. Reactive oxygen and nitrogen species (ROS and RNS) are byproducts of cellular metabolism that exert signaling functions in several cellular processes, including lipolysis and lipogenesis. During lipolysis, the adipose tissue generates ROS and RNS and thus requires a robust antioxidant response to maintain tight regulation of redox signaling. This review will discuss the production of ROS and RNS within the adipose tissue, their role in regulating lipolysis and lipogenesis, and the implications of antioxidants on lipid mobilization.
Collapse
|
4
|
Kempe-Teufel D, Machicao F, Machann J, Böhm A, Schick F, Fritsche A, Stefan N, Hrabě de Angelis M, Häring HU, Staiger H. A Polygenic Risk Score of Lipolysis-Increasing Alleles Determines Visceral Fat Mass and Proinsulin Conversion. J Clin Endocrinol Metab 2019; 104:1090-1098. [PMID: 30649496 DOI: 10.1210/jc.2018-02042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/07/2019] [Indexed: 01/12/2023]
Abstract
CONTEXT Primary dysregulation of adipose tissue lipolysis caused by genetic variation and independent of insulin resistance could explain unhealthy body fat distribution and its metabolic consequences. OBJECTIVE To analyze common single nucleotide polymorphisms (SNPs) in 48 lipolysis-, but not insulin-signaling-related genes, to form polygenic risk scores of lipolysis-associated SNPs, and to investigate their effects on body fat distribution, glycemia, insulin sensitivity, insulin secretion, and proinsulin conversion. STUDY DESIGN, PARTICIPANTS, AND METHODS SNP array, anthropometric, and metabolic data were available from up to 2789 participants without diabetes of the Tübingen Family study of type 2 diabetes characterized by oral glucose tolerance tests. In a subgroup (n = 942), magnetic resonance measurements of body fat stores were available. RESULTS We identified insulin-sensitivity-independent nominal associations (P < 0.05) of SNPs in 10 genes with plasma free fatty acids (FFAs), in 7 genes with plasma glycerol and in 6 genes with both, plasma FFAs and glycerol. A score formed of the latter SNPs (in ADCY4, CIDEA, GNAS, PDE8B, PRKAA1, PRKAG2) was associated with plasma FFA and glycerol measurements (1.4*10-9 ≤ P ≤ 1.2*10-5), visceral adipose tissue mass (P = 0.0326), and proinsulin conversion (P ≤ 0.0272). The more lipolysis-increasing alleles a subject had, the lower was the visceral fat mass and the lower the proinsulin conversion. CONCLUSIONS We found evidence for a genetic basis of adipose tissue lipolysis resulting from common SNPs in CIDEA, AMP-activated protein kinase subunits, and cAMP signaling components. A genetic score of lipolysis-increasing alleles determined lower visceral fat mass and lower proinsulin conversion.
Collapse
Affiliation(s)
- Daniela Kempe-Teufel
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
| | - Fausto Machicao
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Center Munich, Neuherberg, Germany
| | - Jürgen Machann
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- Department of Diagnostic and Interventional Radiology, Section on Experimental Radiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Anja Böhm
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
| | - Fritz Schick
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- Department of Diagnostic and Interventional Radiology, Section on Experimental Radiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
| | - Norbert Stefan
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
| | - Martin Hrabě de Angelis
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Center Munich, Neuherberg, Germany
- Chair of Experimental Genetics, Technical University Munich, Neuherberg, Germany
| | - Hans-Ulrich Häring
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
| | - Harald Staiger
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Dessauer CW, Watts VJ, Ostrom RS, Conti M, Dove S, Seifert R. International Union of Basic and Clinical Pharmacology. CI. Structures and Small Molecule Modulators of Mammalian Adenylyl Cyclases. Pharmacol Rev 2017; 69:93-139. [PMID: 28255005 PMCID: PMC5394921 DOI: 10.1124/pr.116.013078] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adenylyl cyclases (ACs) generate the second messenger cAMP from ATP. Mammalian cells express nine transmembrane AC (mAC) isoforms (AC1-9) and a soluble AC (sAC, also referred to as AC10). This review will largely focus on mACs. mACs are activated by the G-protein Gαs and regulated by multiple mechanisms. mACs are differentially expressed in tissues and regulate numerous and diverse cell functions. mACs localize in distinct membrane compartments and form signaling complexes. sAC is activated by bicarbonate with physiologic roles first described in testis. Crystal structures of the catalytic core of a hybrid mAC and sAC are available. These structures provide detailed insights into the catalytic mechanism and constitute the basis for the development of isoform-selective activators and inhibitors. Although potent competitive and noncompetitive mAC inhibitors are available, it is challenging to obtain compounds with high isoform selectivity due to the conservation of the catalytic core. Accordingly, caution must be exerted with the interpretation of intact-cell studies. The development of isoform-selective activators, the plant diterpene forskolin being the starting compound, has been equally challenging. There is no known endogenous ligand for the forskolin binding site. Recently, development of selective sAC inhibitors was reported. An emerging field is the association of AC gene polymorphisms with human diseases. For example, mutations in the AC5 gene (ADCY5) cause hyperkinetic extrapyramidal motor disorders. Overall, in contrast to the guanylyl cyclase field, our understanding of the (patho)physiology of AC isoforms and the development of clinically useful drugs targeting ACs is still in its infancy.
Collapse
Affiliation(s)
- Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Val J Watts
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Rennolds S Ostrom
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Marco Conti
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Stefan Dove
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Roland Seifert
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| |
Collapse
|
6
|
Kittikulsuth W, Stuart D, Kohan DE. Adenylyl cyclase 4 does not regulate collecting duct water and sodium handling. Physiol Rep 2014; 2:e00277. [PMID: 24760529 PMCID: PMC4002255 DOI: 10.1002/phy2.277] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Adenylyl cyclase (AC)‐stimulated cAMP is a key mediator of collecting duct (CD) Na and water transport. AC isoforms 3, 4, and 6 are expressed in the CD. Our group demonstrated that AC6, but not AC3, is involved in regulating CD Na and water transport. However, the role of AC4 in such regulation remains unknown. Therefore, we generated mice with loxP‐flanked critical exons in the Adcy4 gene and bred with mice expressing the aquaporin‐2/Cre recombinase transgene to yield CD principal cell‐specific knockout of AC4 (CD AC4 KO). Isolated inner medullary CD showed 100% genomic target gene recombination in CD AC4 KO mice, while microdissected cortical CD and renal papillary AC4 mRNA was significantly reduced in CD AC4 KO mice. CD AC4 KO had no effect on vasopressin (AVP)‐stimulated cAMP generation in the inner medulla. Water intake, urine volume, and urine osmolality were similar between CD AC4 KO and control mice during normal or restricted water intake. Sodium intake, urinary Na excretion, and blood pressure on a normal‐, high‐, or low‐Na diet were not affected by CD AC4 KO. Moreover, there were no differences in plasma AVP or plasma renin concentration between CD AC4 KO and control mice. In summary, these data suggest that CD AC4 does not play a role in the physiologic regulation of CD Na and water handling. Principal cells in the collecting duct express adenylyl cyclase 4 (AC4), however, the role of AC4 in the regulation of collecting duct function is unknown. We made mice with collecting duct principal cell‐specific deletion of AC4 and found that these mice have no alterations in arterial pressure or urinary sodium, potassium, or water excretion under varying physiological conditions.
Collapse
Affiliation(s)
- Wararat Kittikulsuth
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City Veterans Affairs Medical Center, Salt Lake City, Utah
| | | | | |
Collapse
|
7
|
Expression Profile in Omental and Subcutaneous Adipose Tissue from Lean and Obese Subjects. Repression of Lipolytic and Lipogenic Genes. Obes Surg 2010; 21:633-43. [DOI: 10.1007/s11695-010-0246-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Antunes TT, Gagnon A, Bell A, Sorisky A. Thyroid-stimulating hormone stimulates interleukin-6 release from 3T3-L1 adipocytes through a cAMP-protein kinase A pathway. ACTA ACUST UNITED AC 2007; 13:2066-71. [PMID: 16421339 DOI: 10.1038/oby.2005.256] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Thyroid-stimulating hormone (TSH) is a novel modulator of adipokine release from human and mouse adipocytes. The aim of our study was to identify the signal transduction pathways activated by TSH that stimulate interleukin (IL)-6 production. RESEARCH METHODS AND PROCEDURES Mouse 3T3-L1 preadipocyte and differentiated adipocyte cell cultures were studied. The effect of 0 to 1 microM TSH on IL-6 protein release into the medium over 0 to 24 hours was assessed. TSH signaling pathways responsible for regulating IL-6 were studied through the use of 1 muM forskolin, 100 microM 8-pCPT-2'-O-Me-cAMP, 10 microM H89, 50 microM PD98059, and 2 mug/mL actinomycin D. RESULTS TSH stimulated IL-6 release by 2.6-fold from 3T3-L1 adipocytes at concentrations as low as 0.01 microM but did not alter IL-6 production of corresponding preadipocytes. Forskolin (elevates intracellular cAMP) stimulated IL-6 release from 3T3-L1 adipocytes (n = 3, p < 0.005), and H89, an inhibitor of cAMP-dependent protein kinase A (PKA), reduced TSH-stimulated IL-6 release by 66% (n = 3, p < 0.01), indicating a requirement for cAMP-dependent PKA. Inhibition of the mitogen-activated protein kinase pathway with PD98059 did not affect TSH-stimulated IL-6 release. Activation of an alternate cAMP target, the exchange protein of cAMP, with 8-pCPT-2'-O-Me-cAMP, had no effect on IL-6 release. TSH raised the level of IL-6 mRNA, and blockade of transcription with actinomycin D abrogated IL-6 protein release by TSH (n = 3, p < 0.05). DISCUSSION TSH stimulates IL-6 release from differentiated 3T3-L1 adipocytes, but not preadipocytes, by signaling through cAMP-PKA to activate IL-6 gene transcription.
Collapse
Affiliation(s)
- Tayze T Antunes
- Department of Medicine, University of Ottawa, Ottawa Health Research Institute, Ontario, Canada
| | | | | | | |
Collapse
|
9
|
Abstract
The role of inducible nitric oxide synthase (iNOS) in the modulation of adipocyte lipolysis was investigated. Treatment of white and brown adipose cell lines and mouse adipose explants with a mixture of tumor necrosis factor-alpha, interferon-gamma, and lipopolysaccharide (LPS) doubled the lipolytic rate, and this was associated with marked induction of iNOS expression and nitric oxide (NO) production. iNOS inhibition by 1400W, aminoguanidine, or L-NIL pretreatment further increased the cytokine/LPS-mediated lipolysis by 30% (P < 0.05) in cultured adipocytes and in adipose explants. However, this potentiating effect of iNOS inhibition was abolished in adipose explants isolated from iNOS knockout mice. Pharmacological inhibitors of adenylyl cyclase or protein kinase A reduced cytokine/LPS-induced lipolysis and also blunted the potentiating effect of iNOS inhibition on the lipolytic rate. Furthermore, addition of the antioxidants l-cystine and l-glutathione to cytokine/LPS-stimulated adipocytes mimicked the lipolytic effect of iNOS inhibition. In conclusion, inhibition of iNOS activity in adipocytes potentiates cytokine/LPS-induced lipolysis. This effect was fully reversed by adenylyl cyclase and protein kinase A inhibitors but was mimicked by cellular antioxidants. These data suggest that iNOS-mediated NO production counteracts cytokine/LPS-mediated lipolysis in adipocytes and that this feedback mechanism involves an oxidative process upstream of cAMP production in the signaling pathway.
Collapse
Affiliation(s)
- Patrice Penfornis
- Department of Anatomy-Physiology, Lipid Research Unit, Laval University Hospital Center, Québec, G1V 4G2, Canada
| | | |
Collapse
|
10
|
Johnston CA, Beazely MA, Bilodeau ML, Andrisani O, Watts VJ. Differentiation-induced alterations in cyclic AMP signaling in the Cath.a differentiated (CAD) neuronal cell line. J Neurochem 2004; 88:1497-508. [PMID: 15009651 DOI: 10.1046/j.1471-4159.2004.02285.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Regulation of intracellular cyclic AMP is critical to the modulation of many cellular activities, including cellular differentiation. Moreover, morphological differentiation has been linked to subsequent alterations in the cAMP signaling pathway in various cellular models. The current study was designed to explore the mechanism for the previously reported enhancement of adenylate cyclase activity in Cath.a differentiated cells following differentiation. Differentiation of Cath.a differentiated cells stably expressing the D2L dopamine receptor markedly potentiated both forskolin- and A2-adenosine receptor-stimulated cAMP accumulation. This enhancement was accompanied by a twofold increase in adenylate cyclase 6 (AC6) expression and a dramatic loss in the expression of AC9. The ability of Ca2+ to inhibit drug-stimulated cAMP accumulation was enhanced following differentiation, as was D2L dopamine receptor-mediated inhibition of Galphas-stimulated cAMP accumulation. Differentiation altered basal and drug-stimulated phosphorylation of the cAMP-response element-binding protein, which was independent of changes in protein kinase A expression. The current data suggest that differentiation of the neuronal cell model, Cath.a differentiated cells induces significant alterations in the expression and function of both the proximal and distal portions of the cAMP signaling pathway and may impact cellular operations dependent upon this pathway.
Collapse
Affiliation(s)
- Christopher A Johnston
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
11
|
Bell A, Gagnon A, Dods P, Papineau D, Tiberi M, Sorisky A. TSH signaling and cell survival in 3T3-L1 preadipocytes. Am J Physiol Cell Physiol 2002; 283:C1056-64. [PMID: 12225969 DOI: 10.1152/ajpcell.00058.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thyroid-stimulating hormone (TSH) action in adipose tissue remains largely unknown. Our previous work indicates that human preadipocytes express functional TSH receptor (TSHR) protein, demonstrated by TSH activation of p70 S6 kinase (p70 S6K). We have now studied murine 3T3-L1 preadipocytes to further characterize TSH signaling and cellular action. Western blot analysis of 3T3-L1 preadipocyte lysate revealed the 100-kDa mature processed form of TSHR. TSH activated p70 S6K and protein kinase B (PKB/Akt), as measured by immunoblot analysis. Preincubation with wortmannin or LY-294002 completely blocked TSH activation of p70 S6K and PKB/Akt, implicating phosphoinositide 3-kinase (PI3K) in their regulation. TSH increased phosphotyrosine protein(s) in the 125-kDa region and augmented the associated PI3K activity fourfold. TSH had no effect on cAMP levels in 3T3-L1 preadipocytes, suggesting that adenylyl cyclase is not involved in TSH activation of the PI3K-PKB/Akt-p70 S6K pathway. 3T3-L1 preadipocyte cell death was reduced by 29-76% in serum-deprived (6 h) preadipocytes treated with 1-20 microM TSH. In the presence of 20 microM TSH, an 88% reduction in terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL)-positive cells was observed in serum-starved (3 h) 3T3-L1 preadipocytes as well as a 93% reduction in the level of cleaved activated caspase 3. In summary, TSH acts as a survival factor in 3T3-L1 preadipocytes. TSH does not stimulate cAMP accumulation in these cells but instead activates a PI3K-PKB/Akt-p70 S6K pathway.
Collapse
Affiliation(s)
- Andrea Bell
- Department of Biochemistry, Microbiology, and Immunology, Ottawa Health Research Institute, University of Ottawa, Ottawa, Ontario, K1Y 4E9, Canada
| | | | | | | | | | | |
Collapse
|
12
|
Gao H, Bodine PVN, Murrills R, Bex FJ, Bilezikian JP, Morris SA. PTH-dependent adenylyl cyclase activation in SaOS-2 cells: passage dependent effects on G protein interactions. J Cell Physiol 2002; 193:10-8. [PMID: 12209875 DOI: 10.1002/jcp.10141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Parathyroid hormone (PTH) sensitive adenylyl cyclase activity (ACA) in SaOS-2 cells varies as a function of cell passage. In early passage (EP) cells (< 6), ACA in response to PTH and forskolin (FOR) was relatively low and equivalent, whereas in late passage (LP) cells (> 22), PTH exceeded FOR dependent ACA. Potential biochemical mechanisms for this passage dependent change in ACA were considered. In EP, prolonged exposure to pertussis toxin (PT) markedly enhanced ACA activity in response to PTH, Isoproterenol and Gpp(NH)p, whereas ACA in response to FOR was decreased. In contrast, the identical treatment of LP with PT diminished all ACA in response to PTH, Gpp(NH)p, and FOR. The dose dependent effects of PT on subsequent [(32)P]ADP-ribosylation of its substrates, GTPase activity, as well as FOR-dependent ACA, were equivalent in EP and LP. The relative amounts of G(alpha)i and G(alpha)s proteins, as determined both by Western blot, PT and cholera toxin (CT) dependent [(32)P]ADP-ribosylation, were quantitatively similar in EP and LP. Western blot levels of G(alpha)s and G(alpha)i proteins were not influenced by prior exposure to PT. Both PT and CT dependent [(32)P]ADP-ribosylation were dose-dependently decreased following exposure to PT. However, the PT-dependent decline in CT-dependent [(32)P]ADP-ribosylation occurred with enhanced sensitivity in LP. The protein synthesis inhibitor cycloheximide partially reversed the PT associated decrease in FOR dependent ACA in EP. In contrast, cycloheximide completely reversed the PT associated decrease in FOR and as well as PTH dependent ACA in LP. G(alpha)s activity, revealed by cyc(-) reconstitution, was not altered either by cell passage or exposure to PT. The results suggest that the coupling between the components of the complex may be pivotally important in the differential responsiveness of early and late passage SaOS-2 cells to PTH.
Collapse
Affiliation(s)
- Hong Gao
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | | | | | | | | | | |
Collapse
|