1
|
Tang MJ, Ye YT, Li ZZ, Li MZ, Chen PP, Zuo QL, Li M, Chen ZX. Metformin-Induced Invertase Unfolding: Enzyme Kinetics and Activity Regulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17977-17988. [PMID: 39085762 DOI: 10.1021/acs.jafc.4c03099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The effects of metformin on invertase activity and its inhibition on sucrose digestion were studied. The rapid unfolding kinetics of invertases, followed a two-state model with an inactive intermediate formation. The dynamic interaction between metformin and invertase caused the secondary structure of the enzyme to become less β-sheet, more α-helix, and random coiling oriented, which weakened the binding force between enzyme and its substrate. Metformin acted as a chaotrope and disrupted the hydrogen bonds of water, which facilitated the unfolding of invertase. However, some sugar alcohols, which promoted the H-bond formation of water, could repair the secondary structure of metformin-denatured invertase and therefore regulate the enzyme activity. This research enriches our understanding of the mechanism of enzyme unfolding induced by guanidine compounds. Moreover, because metformin and sugar substitutes are of concern to diabetes, this research also provides useful information for understanding the activity of the digestive enzyme that coexists with metformin and sugar alcohols.
Collapse
Affiliation(s)
- Meng-Jie Tang
- Molecular Food Science Laboratory, College of Food & Biology Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yu-Tong Ye
- Molecular Food Science Laboratory, College of Food & Biology Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zhen-Zhen Li
- Molecular Food Science Laboratory, College of Food & Biology Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Mi-Zhuan Li
- Molecular Food Science Laboratory, College of Food & Biology Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
- School of Public Health, Zunyi Medical University, Zunyi 563006, China
| | - Pan-Pan Chen
- Molecular Food Science Laboratory, College of Food & Biology Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Qi-Le Zuo
- Molecular Food Science Laboratory, College of Food & Biology Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
- Hangzhou R&D Center, Zhejiang Huakang Pharmaceutical Co., Ltd. Hangzhou 310051, China
| | - Mian Li
- Hangzhou R&D Center, Zhejiang Huakang Pharmaceutical Co., Ltd. Hangzhou 310051, China
| | - Zhong-Xiu Chen
- Molecular Food Science Laboratory, College of Food & Biology Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
2
|
Thapliyal C, Jain N, Chaudhuri (Chattopadhyay) P. Investigation of folding unfolding process of a new variant of dihydrofolate reductase protein from Zebrafish. Int J Biol Macromol 2016; 91:736-43. [DOI: 10.1016/j.ijbiomac.2016.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/03/2016] [Accepted: 06/06/2016] [Indexed: 10/21/2022]
|
3
|
Chilaka FC, Nwamba CO. Kinetic analysis of urea-inactivation of beta-galactosidase in the presence of galactose. J Enzyme Inhib Med Chem 2008; 23:7-15. [PMID: 18341246 DOI: 10.1080/14756360701450244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The effect of galactose on the inactivation of purified beta-galactosidase from the black bean, Kestingiella geocarpa, in 5 M urea at 50 degrees C and at pH 4.5, was determined. Lineweaver-Burk plots of initial velocity data in the presence and absence of urea and galactose were used to determine the relevant K(m) and V(max) values, with p-nitrophenyl beta-D-galactopyranoside (PNPG) as substrate, S. The inactivation data were analysed using the Tsou equation and plots. Plots of ln([P](infinity) - [P](t) ) against time in the presence of urea yielded the inactivation rate constant, A. Plots of A vs [S] at different galactose concentrations were zero order showing that A was independent of [S]. Plots of [P](infinity) vs [S] were used to determine the mode of inhibition of the enzyme by galactose, and slopes and intercepts of the 1/[P](infinity) vs. 1/[S] yielded k(+0) and k '(+0), the microscopic rate constants for the free enzyme and the enzyme-substrate complex, respectively. Plots of k(+0) and k '(+0) vs. galactose concentrations showed that galactose protected the free enzyme and not the enzyme-substrate complex against urea inactivation via a noncompetitive mechanism at low galactose concentrations and a competitive pattern of inhibition at high galactose concentrations. The implication of the different modes of inhibition in protecting the free enzyme was discussed.
Collapse
|
4
|
Wu Y, Wang ZX. Comparison of conformational changes and inactivation of soybean lipoxygenase-1 during urea denaturation. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1388:325-36. [PMID: 9858760 DOI: 10.1016/s0167-4838(98)00182-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The unfolding and inactivation of soybean lipoxygenase-1 during urea denaturation has been compared. Equilibrium study indicates that inactivation of the enzyme occurs at low urea concentrations before significant conformational change of the molecule as a whole. In the presence of 6.0 M urea, the unfolding of soybean lipoxygenase-1, as monitored by fluorescence intensity, is a triphasic process, while the inactivation of the enzyme shows single-phase kinetics. The rate constant of inactivation is consistent with that of the fast conformational change of the enzyme. The results suggest that active sites of lipoxygenase-1 containing iron cofactor are situated in a limited region of the enzyme molecule that is more fragile to denaturants than the protein as a whole. The kinetic theory of substrate reactions catalyzed by unstable enzymes (Duggleby (1986) J. Theor. Biol. 123, 67-80) has been applied to study the effect of substrate on enzyme inactivation. On the basis of the kinetic equation of substrate reaction in the presence of urea, inactivation rate constants for the free enzyme and enzyme-substrate complex have been determined. The substrate, linoleic acid, has no effect on inactivation of the ferric form of lipoxygenase-1.
Collapse
Affiliation(s)
- Y Wu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Academia Sinica, Beijing 100101, People's Republic of China
| | | |
Collapse
|