1
|
|
2
|
Ru(II)-diimine functionalized metalloproteins: From electron transfer studies to light-driven biocatalysis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:589-597. [PMID: 26392147 DOI: 10.1016/j.bbabio.2015.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 09/07/2015] [Indexed: 11/20/2022]
Abstract
The unique photochemical properties of Ru(II)-diimine complexes have helped initiate a series of seminal electron transfer studies in metalloenzymes. It has thus been possible to experimentally determine rate constants for long-range electron transfers. These studies have laid the foundation for the investigation of reactive intermediates in heme proteins and for the design of light-activated biocatalysts. Various metalloenzymes such as hydrogenase, carbon monoxide dehydrogenase, nitrogenase, laccase and cytochrome P450 BM3 have been functionalized with Ru(II)-diimine complexes. Upon visible light-excitation, these photosensitized metalloproteins are capable of sustaining photocatalytic activity to reduce small molecules such as protons, acetylene, hydrogen cyanide and carbon monoxide or activate molecular dioxygen to produce hydroxylated products. The Ru(II)-diimine photosensitizers are hence able to deliver multiple electrons to metalloenzymes buried active sites, circumventing the need for the natural redox partners. In this review, we will highlight the key achievements of the light-driven biocatalysts, which stem from the extensive electron transfer investigations. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.
Collapse
|
3
|
Adamson K, Dolan C, Moran N, Forster RJ, Keyes TE. RGD Labeled Ru(II) Polypyridyl Conjugates for Platelet Integrin αIIbβ3 Recognition and as Reporters of Integrin Conformation. Bioconjug Chem 2014; 25:928-44. [DOI: 10.1021/bc5000737] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kellie Adamson
- School
of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Ciaran Dolan
- School
of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Niamh Moran
- The
Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Robert J. Forster
- School
of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Tia E. Keyes
- School
of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
4
|
Patsenker LD, Tatarets AL, Povrozin YA, Terpetschnig EA. Long-wavelength fluorescence lifetime labels. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s12566-011-0025-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
5
|
Kim MS, Kim JH, Son BW, Kang JS. Dynamics of bacteriophage R17 probed with a long-lifetime Ru(II) metal-ligand complex. J Fluoresc 2010; 20:713-8. [PMID: 20195712 DOI: 10.1007/s10895-010-0612-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 02/07/2010] [Indexed: 10/19/2022]
Abstract
The metal-ligand complex, [Ru(2,2'-bipyridine)(2)(4,4'-dicarboxy-2,2'-bipyridine)](2+) (RuBDc), was used as a spectroscopic probe for studying macromolecular dynamics. RuBDc is a very photostable probe that possesses favorable photophysical properties including long lifetime, high quantum yield, large Stokes' shift, and highly polarized emission. To further show the usefulness of this luminophore for probing macromolecular dynamics, we examined the intensity and anisotropy decays of RuBDc when conjugated to R17 bacteriophage using frequency-domain fluorometry with a blue light-emitting diode (LED) as the modulated light source. The intensity decays were best fit by a sum of two exponentials, and we obtained a longer mean lifetime at 4 degrees C (<tau> = 491.8 ns) as compared to that at 25 degrees C (<tau> = 435.1 ns). The anisotropy decay data showed a single rotational correlation time, which is typical for a spherical molecule, and the results showed a longer rotational correlation time at 4 degrees C (2,574.9 ns) than at 25 degrees C (2,070.1 ns). The use of RuBDc enabled us to measure the rotational correlation time up to several microseconds. These results indicate that RuBDc has significant potential for studying hydrodynamics of biological macromolecules.
Collapse
Affiliation(s)
- Myung Sup Kim
- Department of Oral Biochemistry and Molecular Biology, School of Dentistry, Pusan National University, Yangsan 626-870, Korea
| | | | | | | |
Collapse
|
6
|
Heterogeneous transition metal-based fluorescence polarization (HTFP) assay for probing protein interactions. Biotechniques 2010; 47:837-44. [PMID: 19852767 DOI: 10.2144/000113223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Analyses of protein interactions are fundamental for the investigation of molecular mechanisms responsible for cellular processes and diseases, as well as for drug discovery in the pharmaceutical industry. The present study details the development of a fluorescence polarization assay using melanoma inhibitory activity (MIA) protein-binding compounds and studies of the binding properties of this protein. Since they are dependent on the the lifetime of the fluorescent label, currently available fluorescence polarization assays can only determine interactions with either high- or low-molecular weight interaction partners. Our new approach eliminates this limitation by immobilizing a known binding partner of MIA protein to a well plate and by labeling the target protein using luminescent transition metal labels such as Ru(bpy)3 for binding studies with both high- and low-molecular weight interaction partners. Due to the use of a functionalized surface, we termed our concept heterogeneous transition metal-based fluorescence polarization (HTFP) assay. The assay's independence from the molecular weight of potential binding partners should make the technique amenable to investigations on subjects as diverse as multimerization, interactions with pharmacophores, or binding affinity determination.
Collapse
|
7
|
Jiang C, Tong MY, Armstrong DW, Perera S, Bao Y, MacDonnell FM. Enantiomeric separation of chiral ruthenium(II) complexes using capillary electrophoresis. Chirality 2009; 21:208-17. [DOI: 10.1002/chir.20641] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
8
|
Shen SI, Kotamraj PR, Bhattacharya S, Li X, Jasti BR. Synthesis and characterization of RGD-fatty acid amphiphilic micelles as targeted delivery carriers for anticancer agents. J Drug Target 2008; 15:51-8. [PMID: 17365273 DOI: 10.1080/10611860601035212] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Novel amphiphilic conjugates consisting of an Arg-Gly-Asp (RGD) peptide binding motif and aliphatic fatty acids of varying chain length (C10-C18) were synthesized and evaluated for their ability to form micelles and bind specifically to alphaVbeta3 integrin over-expressing tumor cells. The aphilphiles were characterized by IR, proton NMR and mass spectrometry. The size and zeta potential of the resultant micelles were ranged from 178 to 450 nm and - 13.5 to 39.6 mV, respectively. The critical micellar concentration (CMC), drug loading efficiency and tumor cell binding of these amphiphiles were determined. The CMC values, determined by pyrene fluorescent probe method, ranged from 0.02 to 0.12 mM for C14-RGD, C16-RGD and C18-RGD. The C18-RGD micelles with lowest CMC were found to increase the solubility of taxol, a model anticancer drug, by 87%. C18-RGD amphiphiles also exhibited significantly higher (12.1 +/- 1.14%, P < 0.05) binding to alphaVbeta3 integrin over-expressing human breast cancer cells (HTB-129) when compared to normal human epidermal keratinocyte (NHEK) cells (6.68 +/- 0.34). The results from this study demonstrated the feasibility of designing RGD-fatty acid amphiphiles as micellar drug delivery carriers to target to cancer cells.
Collapse
Affiliation(s)
- Steve I Shen
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA 95211, USA
| | | | | | | | | |
Collapse
|
9
|
Niesner RA, Andresen V, Gunzer M. Intravital two-photon microscopy: focus on speed and time resolved imaging modalities. Immunol Rev 2008; 221:7-25. [PMID: 18275472 DOI: 10.1111/j.1600-065x.2008.00582.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Initially used mainly in the neurosciences, two-photon microscopy has become a powerful tool for the analysis of immunological processes. Here, we describe currently available two-photon microscopy techniques with a focus on novel approaches that allow very high image acquisition rates compared with state-of-the-art systems. This improvement is achieved through a parallelization of the excitation process: multiple beams scan the sample simultaneously, and the fluorescence is collected with sensitive charge-coupled device (CCD)-based line or field detectors. The new technique's performance is compared with conventional single beam laser-scanning systems that detect signals by means of photomultipliers. We also discuss the use of time- and polarization-resolved fluorescence detection, especially fluorescence lifetime imaging (FLIM), which goes beyond simple detection of cells and tissue structures and allows insight into cellular physiology. We focus on the analysis of endogenous fluorophores such as NAD(P)H as a way to analyze the redox status in cells with subcellular resolution. Here, high-speed imaging setups in combination with novel ways of data analysis allow the generation of FLIM data sets almost in real time. The implications of this technology for the analysis of immune reactions and other cellular processes are discussed.
Collapse
Affiliation(s)
- Raluca A Niesner
- Junior Research Group Immunodynamics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | |
Collapse
|
10
|
|
11
|
Piszczek G. Luminescent metal-ligand complexes as probes of macromolecular interactions and biopolymer dynamics. Arch Biochem Biophys 2006; 453:54-62. [PMID: 16603119 DOI: 10.1016/j.abb.2006.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Accepted: 03/05/2006] [Indexed: 11/26/2022]
Abstract
The knowledge of microsecond dynamics is important for an understanding of the mechanism and function of biological systems. Fluorescent techniques are well established in biophysical studies, but their applicability to probe microsecond timescale processes is limited. Luminescent metal-ligand complexes (MLCs) have created interest mainly due to their unique luminescent properties, such as the exceptionally long decay times and large fundamental anisotropy values, allowing examination of microsecond dynamics by fluorescence methods. MLC properties also greatly simplify instrumentation requirements and enable the use of light emitting diode excitation for time-resolved measurements. Recent literature illustrates how MLC labels take full advantage of well developed fluorescence techniques and how those methods can be extended to timescales not easily accessible with nanosecond probes. MLCs are now commercially available as reactive labels which give researchers access to methods that previously required more complex approaches. The present paper gives an overview of the applications of MLC probes to studies of molecular dynamics and interactions of proteins, membranes and nucleic acids.
Collapse
Affiliation(s)
- Grzegorz Piszczek
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Abstract
Novel approaches to sensor design, based on the use of an internal standard with appropriate spectral properties, provide new possibilities for designing simple devices for fluorescence sensing. Detection of combined emission from the reference and an analyte-sensitive fluorophore has been achieved in numerous measurements in cuvettes, tissues, and high-throughput formats. These methods have been used with a long-lifetime reference to measure pH, O2, pCO2, glucose, and calcium by means of modulation-sensing methods as well as by the use of oriented films as the reference for polarization sensing of glucose, pH, oxygen, and lactate. Polarization sensing has also been developed with visual detection to measure the concentration of rhodamine B and pH. Modulation and polarization sensing was found to be effective in highly scattering media such as Intralipid or tissue. The applicability of these technologies to transdermal diagnostics depends on the availability of red fluorophores that can be used in vivo. One dye that could possibly be used is indocyanine green (IcG), which absorbs and emits at wavelengths above 700 nm. Furthermore, IcG has already been approved for use in humans for monitoring burn severity and it has been detected through the skin. It appears likely that modern optics and electronic technology will allow the development of practical devices for biomedical use as shown in Scheme 1.
Collapse
Affiliation(s)
- Zygmunt Gryczynski
- Department of Biochemistry and Molecular Biology, Center for Fluorescence Spectroscopy, University of Maryland School of Medicine, Baltimore 21201, USA
| | | | | |
Collapse
|
13
|
Synthesis and rapid enantiomeric separation of the chiral mixed ligand [5-(4-hydroxybutyl)-5′-methyl-2,2′-bipyridine]-bis(1,10-phenanthroline)-ruthenium(II) complex by electrokinetic chromatography. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0957-4166(02)00753-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Kang JS, Piszczek G, Lakowicz JR. High-molecular-weight protein hydrodynamics studied with a long-lifetime metal-ligand complex. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1597:221-8. [PMID: 12044900 PMCID: PMC6800114 DOI: 10.1016/s0167-4838(02)00281-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
[Ru(2,2'-bipyridine)(2)(4,4'-dicarboxy-2,2'-bipyridine)](2+) (RuBDc) is a very photostable probe that possesses favorable photophysical properties including long lifetime, high quantum yield, large Stokes' shift, and highly polarized emission. In the present study, we demonstrated the usefulness of this probe for monitoring the rotational diffusion of high-molecular-weight (MW) proteins. Using frequency-domain fluorometry with a high-intensity, blue light-emitting diode (LED) as the modulated light source, we compared the intensity and anisotropy decays of RuBDc conjugated to immunoglobulin G (IgG) and immunoglobulin M (IgM), which show a six-fold difference in MW We obtained slightly longer lifetimes for IgM (=428 ns in buffer) than IgG (=422 ns in buffer) in the absence and presence of glycerol, suggesting somewhat more efficient shielding of RuBDc from water in IgM than in IgG. The anisotropy decay data showed longer rotational correlation times for IgM (1623 and 65.7 ns in buffer) as compared to IgG (264 and 42.5 ns in buffer). Importantly, the ratio of the long rotational correlation times of IgM to IgG in buffer was 6.2, which is very close to that of MW of IgM to IgG (6.0). The shorter correlation times are most likely to be associated with domain motions within the proteins. The anisotropy decays reflect both the molecular size and shape of the immunoglobulins, as well as the viscosity. These results show that RuBDc can have numerous applications in studies of high-MW protein hydrodynamics and in fluorescence polarization immunoassays (FPI) of high-MW analytes.
Collapse
Affiliation(s)
- Jung Sook Kang
- Department of Biochemistry and Molecular Biology, Center for Fluorescence Spectroscopy, University of Maryland at Baltimore, 725 West Lombard Street, Baltimore, MD 21201, USA
- Department of Oral Biochemistry and Molecular Biology, College of Dentistry, Pusan National University, Pusan 602-739, South Korea
| | - Grzegorz Piszczek
- Department of Biochemistry and Molecular Biology, Center for Fluorescence Spectroscopy, University of Maryland at Baltimore, 725 West Lombard Street, Baltimore, MD 21201, USA
- Institute of Experimental Physics, University of Gdańsk, ul. Wita Stwosza 57, 80-952 Gdańsk, Poland
| | - Joseph R. Lakowicz
- Department of Biochemistry and Molecular Biology, Center for Fluorescence Spectroscopy, University of Maryland at Baltimore, 725 West Lombard Street, Baltimore, MD 21201, USA
| |
Collapse
|
15
|
Murtaza Z, Tolosa L, Harms P, Lakowicz JR. On the Possibility of Glucose Sensing Using Boronic Acid and a Luminescent Ruthenium Metal-Ligand Complex. J Fluoresc 2002; 12:187-192. [PMID: 32377061 PMCID: PMC7202357 DOI: 10.1023/a:1016800515030] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We describe a new approach to optical sensing of glucose based on the competitive interactions between a ruthenium metal ligand complex, a boronic acid derivative and glucose. The metal-ligand complex [Ru(2,2'-bipyridme)2(5,6-dihydroxy-1,10-phenanthrolme)](PF6)2 at pH 8 forms a reversible complex with 2-toluylboronic acid or 2-methoxyphenyl boronic acid. Complexation is accompanied by a several-fold increase in the luminescent intensity of the ruthenium complex. Addition of glucose results in decreased luminescent intensity, which appears to be the result of decreased binding between the metal-ligand complex and the boronic acid. Ruthenium metal-ligand complexes are convenient for optical sensing because their long luminescent decay times allow lifetime-based sensing with simple instrumentation.
Collapse
Affiliation(s)
- Zakir Murtaza
- University of Maryland School of Medicine, Department of Biochemistry and Molecular Biology, Center for Fluorescence Spectroscopy, 725 West Lombard Street, Baltimore, Maryland 21201, USA
| | - Leah Tolosa
- University of Maryland School of Medicine, Department of Biochemistry and Molecular Biology, Center for Fluorescence Spectroscopy, 725 West Lombard Street, Baltimore, Maryland 21201, USA
| | - Peter Harms
- University of Maryland School of Medicine, Department of Biochemistry and Molecular Biology, Center for Fluorescence Spectroscopy, 725 West Lombard Street, Baltimore, Maryland 21201, USA
| | - Joseph R. Lakowicz
- University of Maryland School of Medicine, Department of Biochemistry and Molecular Biology, Center for Fluorescence Spectroscopy, 725 West Lombard Street, Baltimore, Maryland 21201, USA
| |
Collapse
|
16
|
Martin SE, Maggie Connatser R, Kane-Maguire NA, Wheeler JF. Capillary electrophoresis with laser-induced fluorescence detection for chiral analysis and DNA binding studies of ruthenium(II) Tris–diimine complexes. Anal Chim Acta 2001. [DOI: 10.1016/s0003-2670(01)01248-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Lakowicz JR, Gryczynski I, Piszczek G, Tolosa L, Nair R, Johnson ML, Nowaczyk K. Microsecond dynamics of biological macromolecules. Methods Enzymol 2001; 323:473-509. [PMID: 10944765 DOI: 10.1016/s0076-6879(00)23379-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- J R Lakowicz
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore 21201, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Owicki JC. Fluorescence polarization and anisotropy in high throughput screening: perspectives and primer. JOURNAL OF BIOMOLECULAR SCREENING 2000; 5:297-306. [PMID: 11080688 DOI: 10.1177/108705710000500501] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fluorescence polarization and anisotropy are two nearly equivalent techniques that have together, over the past 5 years, achieved wide use in high throughput screening in drug discovery. These are single-label methods that can be used to construct homogeneous assays that are fast, sensitive, and resistant to some significant interferences. Moreover, the assays are relatively inexpensive. This review surveys the peer-reviewed literature on the subject and explores some of the fundamental issues that bear on assay performance.
Collapse
|
19
|
Lakowicz JR, Gryczynski I, Gryczynski Z, Tolosa L, Randers-Eichhorn L, Rao G. Polarization-based sensing of glucose using an oriented reference film. JOURNAL OF BIOMEDICAL OPTICS 1999; 4:443-9. [PMID: 23014617 PMCID: PMC6938719 DOI: 10.1117/1.429955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We describe a new approach to glucose sensing using polarization measurements in the presence of a stretch-oriented reference film. The method relies on measurement of the polarized emission from the reference film and of a fluorophore which changes intensity in response to glucose. A glucose-sensitive fluorescent signal was provided by the glucose/galactose binding protein from E. coli. This protein was labeled with an environmentally sensitive fluorophore at a single genetically inserted cysteine residue, and displayed decreased fluorescence upon glucose binding. Using the protein and the reference film we observed glucose-sensitive polarization values for micromolar glucose concentrations. This method of polarization-based sensing is generic and can be used for any sensing fluorophore which displays a change in intensity. In principle, one can construct simple and economical devices for this type of glucose measurement. © 1999 Society of Photo-Optical Instrumentation Engineers.
Collapse
|
20
|
Abstract
We describe a new approach to fluorescence sensing which relies on visual determination the polarization. The sensing device consists of a fluorescent probe, which changes intensity in responses to the analyte, and an oriented fluorescent film, which is not affected by the analyte. An emission filter is selected to observe the emission from both the film and the sensing fluorophore. Changes in the probe intensity result in changes in the polarization of the combined emission from the sensor and reference. The degree of polarization can be detected visually using a dual polarizer with adjacent sections oriented orthogonally to each other. The emission passing through the dual polarizer is viewed with a second analyzing polarizer. This analyzer is rotated manually to yield equal intensities from both sides of the dual polarizer. This approach was used to measure the concentration of RhB in intralipid and to measure pH using 6-carboxyfluorescein. The analyzer angle is typically accurate to 1 degree, providing pH values accurate to +/- 0.1 pH unit at the midpoint of the titration curve. We also describe a method of visual polarization sensing that does not require an oriented film and that can use the same fluorophore for the sample and reference. These approaches to visual sensing are generic and can be applied to a wide variety of analytes for which fluorescent probes are available. Importantly, the devices are simple, with the only electronic component being the light source.
Collapse
Affiliation(s)
- I Gryczynski
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore 21201, USA
| | | | | |
Collapse
|
21
|
Lakowicz JR, Gryczynski I, Gryczynski Z, Dattelbaum JD. Anisotropy-based sensing with reference fluorophores. Anal Biochem 1999; 267:397-405. [PMID: 10036147 PMCID: PMC6816241 DOI: 10.1006/abio.1998.3029] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe a new approach to fluorescence sensing based on measurements of steady-state anisotropies in the presence of reference fluorophores with known anisotropies. The basic concept is that the anisotropy of a mixture reflects a weighted average of the anisotropies of the emitting species. By use of reference fluorophores the starting anisotropy can be near zero, or near 0.9 for oriented films which contain the reference fluorophore. Changing intensities of the analyte result in changes in anisotropy. A wide dynamic range of anisotropies is available because of the freedom to select high or low starting values. Anisotropy-based sensing was demonstrated for pH using 6-carboxyfluorescein and for protein affinity or immunoassay using an oriented film with high anisotropy and a protein labeled with a metal-ligand complex. The latter measurements were performed with a simple light-emitting diode excitation source without an excitation polarizer. The sensitive range of the assay can be adjusted by changing the intensity of the reference fluorophore. Anisotropy-based sensing can have numerous applications in clinical and analytical chemistry.
Collapse
Affiliation(s)
- J R Lakowicz
- University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, Maryland, 21201, USA
| | | | | | | |
Collapse
|