1
|
Okada R, Shibata K, Shibuya R, Torisu T, Uchiyama S. Hierarchical clustering of therapeutic proteins based on agitation-induced aggregation propensity and its relation to physicochemical parameters. Eur J Pharm Sci 2025; 208:107060. [PMID: 40086315 DOI: 10.1016/j.ejps.2025.107060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/05/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Physical stresses such as agitation induce protein aggregation, which causes adverse effects on the immune system of patients, leading to challenges in drug development. Aggregation induced by physical stresses can be minimized by formulation optimization. In this study, 120 combinations of 10 therapeutic proteins and 12 different formulations (4 pH conditions and 3 salt concentrations) were prepared. Subsequently, the agitation-induced aggregation propensity of each protein was investigated by evaluating its monomer recovery (%) using size exclusion chromatography. Hierarchical clustering was applied to categorize each protein according to its aggregation propensity, resulting in two groups of proteins: group A and B. The aggregation propensity of proteins in group A was insensitive to changes in formulation conditions because conformational, colloidal, and interfacial stabilities were minimally affected by changes in the pH and salt concentration and a compensation mechanism existed between conformational and colloidal stabilities. Thus, proteins in group A can be formulated with a relatively high degree of freedom. In contrast, the aggregation propensity of proteins in group B was sensitive to changes in formulation conditions. Multiple regression analysis of the physicochemical parameters and monomer recovery of proteins in group B clarified that changes in conformational stability in response to changes in formulations primarily contributed to the sensitivity of the monomer recovery to changes in formulation conditions. For all antibodies, there was a positive correlation between the monomer recovery after agitation and that after quiescent storage at 40 °C for 1 month, suggesting that a stable formulation can be obtained without the quiescent testing. Therefore, a proposed formulation optimization strategy based on the agitation-induced monomer recovery can improve the efficiency of formulating selected therapeutic proteins. This strategic approach is expected to accelerate the development of therapeutic proteins while reflecting the importance of aggregation factors and quiescent stability in the optimization of therapeutic protein formulations.
Collapse
Affiliation(s)
- Rio Okada
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Kosei Shibata
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan; U-Medico Inc., 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Risa Shibuya
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Tetsuo Torisu
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | - Susumu Uchiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan; U-Medico Inc., 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Watanabe H, Hayashida N, Sato M, Honda S. Biosensing-based quality control monitoring of the higher-order structures of therapeutic antibody domains. Anal Chim Acta 2024; 1303:342439. [PMID: 38609254 DOI: 10.1016/j.aca.2024.342439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/18/2024] [Accepted: 02/28/2024] [Indexed: 04/14/2024]
Abstract
Advanced biopharmaceutical manufacturing requires novel process analytical technologies for the rapid and sensitive assessment of the higher-order structures of therapeutic proteins. However, conventional physicochemical analyses of denatured proteins have limitations in terms of sensitivity, throughput, analytical resolution, and real-time monitoring capacity. Although probe-based sensing can overcome these limitations, typical non-specific probes lack analytical resolution and provide little to no information regarding which parts of the protein structure have been collapsed. To meet these analytical demands, we generated biosensing probes derived from artificial proteins that could specifically recognize the higher-order structural changes in antibodies at the protein domain level. Biopanning of phage-displayed protein libraries generated artificial proteins that bound to a denatured antibody domain, but not its natively folded structure, with nanomolar affinity. The protein probes not only recognized the higher-order structural changes in intact IgGs but also distinguished between the denatured antibody domains. These domain-specific probes were used to generate response contour plots to visualize the antibody denaturation caused by various process parameters, such as pH, temperature, and holding time for acid elution and virus inactivation. These protein probes can be combined with established analytical techniques, such as surface plasmon resonance for real-time monitoring or plate-based assays for high-throughput analysis, to aid in the development of new analytical technologies for the process optimization and monitoring of antibody manufacturing.
Collapse
Affiliation(s)
- Hideki Watanabe
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Naoko Hayashida
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Megumi Sato
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Shinya Honda
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan.
| |
Collapse
|
3
|
Arakawa T, Akuta T. Mechanistic Insight into Poly-Reactivity of Immune Antibodies upon Acid Denaturation or Arginine Mutation in Antigen-Binding Regions. Antibodies (Basel) 2023; 12:64. [PMID: 37873861 PMCID: PMC10594486 DOI: 10.3390/antib12040064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023] Open
Abstract
The poly-reactivity of antibodies is defined as their binding to specific antigens as well as to related proteins and also to unrelated targets. Poly-reactivity can occur in individual molecules of natural serum antibodies, likely due to their conformation flexibility, and, for therapeutic antibodies, it plays a critical role in their clinical development. On the one hand, it can enhance their binding to target antigens and cognate receptors, but, on the other hand, it may lead to a loss of antibody function by binding to off-target proteins. Notably, poly-reactivity has been observed in antibodies subjected to treatments with dissociating, destabilizing or denaturing agents, in particular acidic pH, a common step in the therapeutic antibody production process involving the elution of Protein-A bound antibodies and viral clearance using low pH buffers. Additionally, poly-reactivity can emerge during the affinity maturation in the immune system, such as the germinal center. This review delves into the underlying potential causes of poly-reactivity, highlighting the importance of conformational flexibility, which can be further augmented by the acid denaturation of antibodies and the introduction of arginine mutations into the complementary regions of antibody-variable domains. The focus is placed on a particular antibody's acid conformation, meticulously characterized through circular dichroism, differential scanning calorimetry, and sedimentation velocity analyses. By gaining a deeper understanding of these mechanisms, we aim to shed light on the complexities of antibody poly-reactivity and its implications for therapeutic applications.
Collapse
Affiliation(s)
- Tsutomu Arakawa
- Alliance Protein Laboratories, 13380 Pantera Road, San Diego, CA 92130, USA
| | - Teruo Akuta
- Research and Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26 Aza-Asayama, Kamitezuna, Takahagi-shi 318-0004, Ibaraki, Japan;
| |
Collapse
|
4
|
Imamura H, Ooishi A, Honda S. Getting Smaller by Denaturation: Acid-Induced Compaction of Antibodies. J Phys Chem Lett 2023; 14:3898-3906. [PMID: 37093025 PMCID: PMC10150727 DOI: 10.1021/acs.jpclett.3c00258] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
Protein denaturation is a ubiquitous process that occurs both in vitro and in vivo. While our molecular understanding of the denatured structures of proteins is limited, it is commonly accepted that the loss of unique intramolecular contacts makes proteins larger. Herein, we report compaction of the immunoglobulin G1 (IgG1) protein upon acid denaturation. Small-angle X-ray scattering coupled with size exclusion chromatography revealed that IgG1 radii of gyration at pH 2 were ∼75% of those at a neutral pH. Scattering profiles showed a compact globular shape, supported by analytical ultracentrifugation. The acid denaturation of proteins with a decrease in size is energetically costly, and acid-induced compaction requires an attractive force for domain reorientation. Such intramolecular aggregation may be widespread in immunoglobulin proteins as noncanonical structures. Herein, we discuss the potential biological significance of these noncanonical structures of antibodies.
Collapse
Affiliation(s)
- Hiroshi Imamura
- Biomedical
Research Institute, National Institute of
Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
- Department
of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan
- Department
of Bio-Science, Nagahama Institute of Bio-Science
and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan
| | - Ayako Ooishi
- Biomedical
Research Institute, National Institute of
Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Shinya Honda
- Biomedical
Research Institute, National Institute of
Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
5
|
Drees A, Trinh TL, Fischer M. The Influence of Protein Charge and Molecular Weight on the Affinity of Aptamers. Pharmaceuticals (Basel) 2023; 16:ph16030457. [PMID: 36986556 PMCID: PMC10054347 DOI: 10.3390/ph16030457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Aptamers offer several advantages over antibodies. However, to ensure high affinity and specificity, a better understanding of the interactions between the nucleic-acid-based aptamers and their targets is mandatory. Therefore, we investigated the influence of two physical properties of proteins-molecular mass and charge-on the affinity of nucleic-acid-based aptamers. For this purpose, first, the affinity of two random oligonucleotides towards twelve proteins was determined. No binding was observed for proteins with a negative net charge towards the two oligonucleotides, while up to nanomolar affinity was determined for positively charged proteins with a high pI value. Second, a literature analysis comprising 369 aptamer-peptide/protein pairs was performed. The dataset included 296 different target peptides and proteins and is thus currently one of the largest databases for aptamers for proteins and peptides. The targets considered covered isoelectric points of 4.1-11.8 and a molecular weight range of 0.7-330 kDa, while the dissociation constants ranged from 50 fM to 29.5 µM. This also revealed a significant inverse correlation between the protein's isoelectric point and the affinity of aptamers. In contrast, no trend was observed between the affinity and the molecular weight of the target protein with either approach.
Collapse
Affiliation(s)
- Alissa Drees
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Tung Lam Trinh
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Markus Fischer
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- Center for Hybrid Nanostructures (CHyN), Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
6
|
Beck A, Nowak C, Meshulam D, Reynolds K, Chen D, Pacardo DB, Nicholls SB, Carven GJ, Gu Z, Fang J, Wang D, Katiyar A, Xiang T, Liu H. Risk-Based Control Strategies of Recombinant Monoclonal Antibody Charge Variants. Antibodies (Basel) 2022; 11:73. [PMID: 36412839 PMCID: PMC9703962 DOI: 10.3390/antib11040073] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/27/2022] [Accepted: 11/11/2022] [Indexed: 09/28/2023] Open
Abstract
Since the first approval of the anti-CD3 recombinant monoclonal antibody (mAb), muromonab-CD3, a mouse antibody for the prevention of transplant rejection, by the US Food and Drug Administration (FDA) in 1986, mAb therapeutics have become increasingly important to medical care. A wealth of information about mAbs regarding their structure, stability, post-translation modifications, and the relationship between modification and function has been reported. Yet, substantial resources are still required throughout development and commercialization to have appropriate control strategies to maintain consistent product quality, safety, and efficacy. A typical feature of mAbs is charge heterogeneity, which stems from a variety of modifications, including modifications that are common to many mAbs or unique to a specific molecule or process. Charge heterogeneity is highly sensitive to process changes and thus a good indicator of a robust process. It is a high-risk quality attribute that could potentially fail the specification and comparability required for batch disposition. Failure to meet product specifications or comparability can substantially affect clinical development timelines. To mitigate these risks, the general rule is to maintain a comparable charge profile when process changes are inevitably introduced during development and even after commercialization. Otherwise, new peaks or varied levels of acidic and basic species must be justified based on scientific knowledge and clinical experience for a specific molecule. Here, we summarize the current understanding of mAb charge variants and outline risk-based control strategies to support process development and ultimately commercialization.
Collapse
Affiliation(s)
- Alain Beck
- Centre d’Immunologie Pierre-Fabre (CIPF), 5 Avenue Napoléon III, 74160 Saint-Julien-en-Genevois, France
| | - Christine Nowak
- Protein Characterization, Alexion AstraZeneca Rare Disease, 100 College St., New Haven, CT 06510, USA
| | - Deborah Meshulam
- Technical Operations/CMC, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| | - Kristina Reynolds
- Technical Operations/CMC, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| | - David Chen
- Technical Operations/CMC, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| | - Dennis B. Pacardo
- Technical Operations/CMC, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| | - Samantha B. Nicholls
- Protein Sciences, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| | - Gregory J. Carven
- Research, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| | - Zhenyu Gu
- Jasper Therapeutics, Inc., 2200 Bridge Pkwy Suite 102, Redwood City, CA 94065, USA
| | - Jing Fang
- Biological Drug Discovery, Biogen, 225 Binney St., Cambridge, MA 02142, USA
| | - Dongdong Wang
- Global Biologics, Takeda Pharmaceuticals, 300 Shire Way, Lexington, MA 02421, USA
| | - Amit Katiyar
- CMC Technical Operations, Magenta Therapeutics, 100 Technology Square, Cambridge, MA 02139, USA
| | - Tao Xiang
- Downstream Process and Analytical Development, Boston Institute of Biotechnology, 225 Turnpike Rd., Southborough, MA 01772, USA
| | - Hongcheng Liu
- Technical Operations/CMC, Scholar Rock, 301 Binney Street, 3rd Floor, Cambridge, MA 02142, USA
| |
Collapse
|
7
|
Jha RK, Yankey A, Shabazz K, Naranjo L, Shin SM, Velappan N, Bradbury ARM, Strauss CEM. Engineered pH-Sensitive Protein G/IgG Interaction. ACS Chem Biol 2021; 16:1142-1146. [PMID: 34152722 DOI: 10.1021/acschembio.0c00943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While natural protein-protein interactions have evolved to be induced by complex stimuli, rational design of interactions that can be switched-on-demand still remain challenging in the protein design world. Here, we demonstrate that a computationally redesigned natural interface for improved binding affinity could further be mutated to adopt a pH switchable interaction. The redesigned interface of Protein G/human IgG Fc domain (referred to as PrG/hIgG), when incorporated with histidine and glutamic acid on PrG (PrG-EHHE), showed a switch in binding affinity by 50-fold when the pH was altered from mild acidic to mild basic. The wild-type (WT) interface showed a negligible switch. The overall binding affinity under mild acidic pH for PrG-EHHE outperformed the wild-type PrG (PrG-WT) interaction. The new reagent PrG-EHHE can be revolutionary in IgG purification, since the standard method of using an extreme acidic pH for elution can be circumvented.
Collapse
Affiliation(s)
- Ramesh K. Jha
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Allison Yankey
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Kalifa Shabazz
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Leslie Naranjo
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sang-Min Shin
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Nileena Velappan
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Andrew R. M. Bradbury
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Charlie E. M. Strauss
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
8
|
Schön A, Freire E. Reversibility and irreversibility in the temperature denaturation of monoclonal antibodies. Anal Biochem 2021; 626:114240. [PMID: 33964250 DOI: 10.1016/j.ab.2021.114240] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 01/05/2023]
Abstract
There have been numerous studies of the temperature denaturation of monoclonal antibodies (mAbs) using differential scanning calorimetry (DSC). In general, mAbs are characterized by complex temperature denaturation transitions in which the various domains (CH2, CH3, Fab) give rise to different peaks in the heat capacity function. The complexity and overall irreversibility of the temperature denaturation transition is well known and has limited the number of publications with an in-depth analysis of the data. Here we report that the temperature denaturation of the CH2 domain is reversible and only becomes irreversible after denaturation of the Fab domain, which is intrinsically irreversible. For these studies we have used the HIV neutralizing monoclonal antibody 17b. To account for the experimental heat capacity function, a mixed denaturation model that combines multiple reversible and irreversible transitions has been developed. This model accounts well for the DSC data and for the pH dependence of the heat capacity function of 17b and other monoclonal antibodies for which data is available in the literature. It is expected that a more detailed analysis of the stability of monoclonal antibodies will contribute to the development of better approaches to understand and optimize the structural viability of these therapeutic macromolecules.
Collapse
Affiliation(s)
- Arne Schön
- Department of Biology, Johns Hopkins University, 3400 North Charles, Baltimore, MD, 21218, USA
| | - Ernesto Freire
- Department of Biology, Johns Hopkins University, 3400 North Charles, Baltimore, MD, 21218, USA.
| |
Collapse
|
9
|
Hebditch M, Kean R, Warwicker J. Modelling of pH-dependence to develop a strategy for stabilising mAbs at acidic steps in production. Comput Struct Biotechnol J 2020; 18:897-905. [PMID: 32322371 PMCID: PMC7171260 DOI: 10.1016/j.csbj.2020.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 01/02/2023] Open
Abstract
Engineered proteins are increasingly being required to function or pass through environmental stresses for which the underlying protein has not evolved. A major example in health are antibody therapeutics, where a low pH step is used for purification and viral inactivation. In order to develop a computational model for analysis of pH-stability, predictions are compared with experimental data for the relative pH-sensitivities of antibody domains. The model is then applied to proteases that have evolved to be functional in an acid environment, showing a clear signature for low pH-dependence of stability in the neutral to acidic pH region, largely through reduction of salt-bridges. Interestingly, an extensively acidic protein surface can maintain contribution to structural stabilisation at acidic pH through replacement of basic sidechains with polar, hydrogen-bonding groups. These observations form a design principle for engineering acid-stable proteins.
Collapse
Affiliation(s)
- Max Hebditch
- School of Chemistry, Faculty of Science and Engineering, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK
| | - Ryan Kean
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK
| | - Jim Warwicker
- School of Chemistry, Faculty of Science and Engineering, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK
| |
Collapse
|
10
|
Watanabe H, Yoshida C, Ooishi A, Nakai Y, Ueda M, Isobe Y, Honda S. Histidine-Mediated Intramolecular Electrostatic Repulsion for Controlling pH-Dependent Protein-Protein Interaction. ACS Chem Biol 2019; 14:2729-2736. [PMID: 31596562 DOI: 10.1021/acschembio.9b00652] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein-protein interactions that can be controlled by environmental triggers have immense potential in various biological and industrial applications. In the current study, we aimed to engineer a pH-dependent protein-protein interaction that employs intramolecular electrostatic repulsion through a structure-guided histidine substitution approach. We implemented this strategy on Streptococcal protein G, an affinity ligand for immunoglobulin G, and showed that even a single point mutation effectively improved the pH sensitivity of the binding interactions without adversely affecting its structural stability or its innate binding function. Depending on the pH of the environment, the protein-protein interaction was disrupted by the electrostatic repulsion between the substituted histidine and its neighboring positively charged residues. Structurally, the substituted histidine residue was located adjacent to a lysine residue that could form hydrogen bonds with immunoglobulin G. Thermodynamically, the introduced electrostatic repulsion was reflected in the significant loss of the exothermic heat of the binding under acidic conditions, whereas accompanying enthalpy-entropy compensation partly suppressed the improvement of the pH sensitivity. Thus, the engineered pH-sensitive protein G could enable antibody purification under mildly acidic conditions. This intramolecular design can be combined with conventional protein-protein interface design. Moreover, the method proposed here provides us with additional design criteria for optimization of pH-dependent molecular interactions.
Collapse
Affiliation(s)
- Hideki Watanabe
- The National Institute of Advanced Industrial Science and Technology, 1-1-1, Higashi, Tsukuba 305-8566, Japan
| | - Chuya Yoshida
- The National Institute of Advanced Industrial Science and Technology, 1-1-1, Higashi, Tsukuba 305-8566, Japan
| | - Ayako Ooishi
- The National Institute of Advanced Industrial Science and Technology, 1-1-1, Higashi, Tsukuba 305-8566, Japan
| | - Yasuto Nakai
- Daicel Corporation, Innovation Park, 1239, Shinzaike, Aboshi, Himeji, Hyogo 671-1283, Japan
| | - Momoko Ueda
- Daicel Corporation, Innovation Park, 1239, Shinzaike, Aboshi, Himeji, Hyogo 671-1283, Japan
| | - Yutaka Isobe
- Daicel Corporation, Innovation Park, 1239, Shinzaike, Aboshi, Himeji, Hyogo 671-1283, Japan
| | - Shinya Honda
- The National Institute of Advanced Industrial Science and Technology, 1-1-1, Higashi, Tsukuba 305-8566, Japan
| |
Collapse
|
11
|
Lopez E, Scott NE, Wines BD, Hogarth PM, Wheatley AK, Kent SJ, Chung AW. Low pH Exposure During Immunoglobulin G Purification Methods Results in Aggregates That Avidly Bind Fcγ Receptors: Implications for Measuring Fc Dependent Antibody Functions. Front Immunol 2019; 10:2415. [PMID: 31681303 PMCID: PMC6797627 DOI: 10.3389/fimmu.2019.02415] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/26/2019] [Indexed: 12/22/2022] Open
Abstract
Evaluating the biophysical and functional nature of IgG is key to defining correlates of protection in infectious disease, and autoimmunity research cohorts, as well as vaccine efficacy trials. These studies often require small quantities of IgG to be purified from plasma for downstream analysis with high throughput immunoaffinity formats which elute IgG at low-pH, such as Protein G and Protein A. Herein we sought to compare Protein G purification of IgG with an immunoaffinity method which elutes at physiological pH (Melon Gel). Critical factors impacting Fc functionality with the potential to significantly influence FcγR binding, such as IgG subclass distribution, N-glycosylation, aggregation, and IgG conformational changes were investigated and compared. We observed that transient exposure of IgG to the low-pH elution buffer, used during the Protein G purification process, artificially enhanced recognition of Fcγ Receptors (FcγRs) as demonstrated by Surface Plasmon Resonance (SPR), FcγR dimer ELISA, and a functional cell-based assay. Furthermore, low-pH exposed IgG caused conformational changes resulting in increased aggregation and hydrophobicity; factors likely to contribute to the observed enhanced interaction with FcγRs. These results highlight that methods employed to purify IgG can significantly alter FcγR-binding behavior and biological activity and suggest that the IgG purification approach selected may be a previously overlooked factor contributing to the poor reproducibility across current assays employed to evaluate Fc-mediated antibody effector functions.
Collapse
Affiliation(s)
- Ester Lopez
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Bruce D Wines
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia.,Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - P Mark Hogarth
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia.,Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia.,Infectious Diseases Department, Melbourne Sexual Health Centre, Central Clinical School, Alfred Health, Monash University, Melbourne, VIC, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, VIC, Australia
| | - Amy W Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
12
|
Shibata C, Iwashita K, Shiraki K. Selective separation method of aggregates from IgG solution by aqueous two-phase system. Protein Expr Purif 2019; 161:57-62. [PMID: 31054316 DOI: 10.1016/j.pep.2019.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/16/2019] [Accepted: 05/01/2019] [Indexed: 11/17/2022]
Abstract
Aggregation of immunoglobulin G (IgG) is a serious concern that results in immunogenicity in pharmaceutical applications. Removal of the small and soluble aggregates in protein solutions through a simple method remains challenging. Here we show that an aqueous two-phase system (ATPS) can be used for the elimination of soluble aggregates from IgG solution. Polyethylene glycol (PEG) and dextran (DEX) were selected as components of the ATPS. As expected, IgG monomers were partitioned into the top or bottom phases of ATPS. Interestingly, almost all the small and soluble aggregates of IgG were extracted to the interface between top and bottom phases, rather than in the liquid phases. The partitioning of monomers and aggregates of IgG can be attributed to the solubility of these protein states in PEG and DEX. Thus, ATPS using PEG and DEX can be employed for the simple removal method of soluble aggregates from IgG solution.
Collapse
Affiliation(s)
- Chika Shibata
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Kazuki Iwashita
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.
| |
Collapse
|
13
|
Senga Y, Honda S. Suppression of Aggregation of Therapeutic Monoclonal Antibodies during Storage by Removal of Aggregation Precursors Using a Specific Adsorbent of Non-Native IgG Conformers. Bioconjug Chem 2018; 29:3250-3261. [PMID: 30264991 DOI: 10.1021/acs.bioconjchem.8b00360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The quality of preparations of therapeutic IgG molecules, widely used for the treatment of various diseases, should be maintained during storage and administration. Nevertheless, recent studies demonstrate that IgG aggregation is one of the most critical immunogenicity risk factors that compromises safety and efficacy of therapeutic IgG molecules in the clinical setting. During the IgG manufacturing process, 0.22-μm membrane filters are commonly used to remove aggregates. However, particles with a diameter below 0.22 μm (small aggregates) are not removed from the final product. The residual species may grow into large aggregates during the storage period. In the current study, we devised a strategy to suppress IgG aggregate growth by removing aggregation precursors using the artificial protein AF.2A1. This protein efficiently binds the Fc region of non-native IgG conformers generated under chemical and physical stresses. Magnetic beads conjugated with AF.2A1 were used to remove non-native monomers and aggregates from solutions of native IgG and from native IgG solutions spiked with stressed IgG. The time-dependent growth of aggregates after the removal treatment was monitored. The removal of aggregation precursors, i.e., non-native monomers and nanometer aggregates (<100 nm), suppressed the aggregate growth. The presented findings demonstrate that a removal treatment with a specific adsorbent of non-native IgG conformers enables long-term stable storage of therapeutic IgG molecules and will facilitate mitigation of the immunogenicity of IgG preparations.
Collapse
Affiliation(s)
- Yukako Senga
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , Higashi, Tsukuba , Ibaraki 305-8566 , Japan
| | - Shinya Honda
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , Higashi, Tsukuba , Ibaraki 305-8566 , Japan
| |
Collapse
|
14
|
High Throughput Prediction Approach for Monoclonal Antibody Aggregation at High Concentration. Pharm Res 2017; 34:1831-1839. [DOI: 10.1007/s11095-017-2191-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 05/23/2017] [Indexed: 02/05/2023]
|
15
|
Huang RYC, Iacob RE, Krystek SR, Jin M, Wei H, Tao L, Das TK, Tymiak AA, Engen JR, Chen G. Characterization of Aggregation Propensity of a Human Fc-Fusion Protein Therapeutic by Hydrogen/Deuterium Exchange Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:795-802. [PMID: 27527097 DOI: 10.1007/s13361-016-1452-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 05/20/2023]
Abstract
Aggregation of protein therapeutics has long been a concern across different stages of manufacturing processes in the biopharmaceutical industry. It is often indicative of aberrant protein therapeutic higher-order structure. In this study, the aggregation propensity of a human Fc-fusion protein therapeutic was characterized. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) was applied to examine the conformational dynamics of dimers collected from a bioreactor. HDX-MS data combined with spatial aggregation propensity calculations revealed a potential aggregation interface in the Fc domain. This study provides a general strategy for the characterization of the aggregation propensity of Fc-fusion proteins at the molecular level.Graphical Abstract.
Collapse
Affiliation(s)
- Richard Y-C Huang
- Bioanalytical and Discovery Analytical Sciences, Research and Development, Bristol-Myers Squibb Company, Route 206 & Province Line Road, Princeton, NJ, 08543, USA
| | - Roxana E Iacob
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| | - Stanley R Krystek
- Molecular Structure and Design, Research and Development, Bristol-Myers Squibb Company, Route 206 & Province Line Road, Princeton, NJ, 08543, USA
| | - Mi Jin
- Biologics Development and Operations, Global Manufacturing & Supply, Bristol-Myers Squibb Company, 6000 Thompson Road, Syracuse, NY, 13057, USA
| | - Hui Wei
- Biologics Development and Operations, Global Manufacturing & Supply, Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Hopewell, NJ, 08534, USA
| | - Li Tao
- Biologics Development and Operations, Global Manufacturing & Supply, Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Hopewell, NJ, 08534, USA
| | - Tapan K Das
- Biologics Development and Operations, Global Manufacturing & Supply, Bristol-Myers Squibb Company, 311 Pennington-Rocky Hill Road, Hopewell, NJ, 08534, USA
| | - Adrienne A Tymiak
- Bioanalytical and Discovery Analytical Sciences, Research and Development, Bristol-Myers Squibb Company, Route 206 & Province Line Road, Princeton, NJ, 08543, USA
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| | - Guodong Chen
- Bioanalytical and Discovery Analytical Sciences, Research and Development, Bristol-Myers Squibb Company, Route 206 & Province Line Road, Princeton, NJ, 08543, USA.
| |
Collapse
|
16
|
Lo M, Kim HS, Tong RK, Bainbridge TW, Vernes JM, Zhang Y, Lin YL, Chung S, Dennis MS, Zuchero YJY, Watts RJ, Couch JA, Meng YG, Atwal JK, Brezski RJ, Spiess C, Ernst JA. Effector-attenuating Substitutions That Maintain Antibody Stability and Reduce Toxicity in Mice. J Biol Chem 2017; 292:3900-3908. [PMID: 28077575 DOI: 10.1074/jbc.m116.767749] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Indexed: 01/07/2023] Open
Abstract
The antibody Fc region regulates antibody cytotoxic activities and serum half-life. In a therapeutic context, however, the cytotoxic effector function of an antibody is often not desirable and can create safety liabilities by activating native host immune defenses against cells expressing the receptor antigens. Several amino acid changes in the Fc region have been reported to silence or reduce the effector function of antibodies. These earlier studies focused primarily on the interaction of human antibodies with human Fc-γ receptors, and it remains largely unknown how such changes to Fc might translate to the context of a murine antibody. We demonstrate that the commonly used N297G (NG) and D265A, N297G (DANG) variants that are efficacious in attenuating effector function in primates retain potent complement activation capacity in mice, leading to safety liabilities in murine studies. In contrast, we found an L234A, L235A, P329G (LALA-PG) variant that eliminates complement binding and fixation as well as Fc-γ-dependent, antibody-dependent, cell-mediated cytotoxity in both murine IgG2a and human IgG1. These LALA-PG substitutions allow a more accurate translation of results generated with an "effectorless" antibody between mice and primates. Further, we show that both human and murine antibodies containing the LALA-PG variant have typical pharmacokinetics in rodents and retain thermostability, enabling efficient knobs-into-holes bispecific antibody production and a robust path to generating highly effector-attenuated bispecific antibodies for preclinical studies.
Collapse
Affiliation(s)
- Megan Lo
- From the Departments of Protein Chemistry
| | | | | | | | | | | | | | | | | | | | | | - Jessica A Couch
- Neuroscience, and.,Safety Assessment, Genentech Inc., South San Francisco, California 94080
| | | | | | | | | | - James A Ernst
- From the Departments of Protein Chemistry, .,Neuroscience, and
| |
Collapse
|
17
|
Sarangapani PS, Weaver J, Parupudi A, Besong TM, Adams GG, Harding SE, Manikwar P, Castellanos MM, Bishop SM, Pathak JA. Both Reversible Self-Association and Structural Changes Underpin Molecular Viscoelasticity of mAb Solutions. J Pharm Sci 2016; 105:3496-3506. [DOI: 10.1016/j.xphs.2016.08.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 07/27/2016] [Accepted: 08/23/2016] [Indexed: 10/20/2022]
|
18
|
Chakroun N, Hilton D, Ahmad SS, Platt GW, Dalby PA. Mapping the Aggregation Kinetics of a Therapeutic Antibody Fragment. Mol Pharm 2016; 13:307-19. [PMID: 26692229 DOI: 10.1021/acs.molpharmaceut.5b00387] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The analytical characterization of biopharmaceuticals is a fundamental step in the early stages of development and prediction of their behavior in bioprocesses. Protein aggregation in particular is a common issue as it affects all stages of product development. In the present work, we investigate the stability and the aggregation kinetics of A33Fab, a therapeutically relevant humanized antibody fragment at a wide range of pH, ionic strength, and temperature. We show that the propensity of A33Fab to aggregate under thermally accelerated conditions is pH and ionic-strength dependent with a stronger destabilizing effect of ionic strength at low pH. In the absence of added salts, A33Fab molecules appear to be protected from aggregation due to electrostatic colloidal repulsion at low pH. Analysis by transmission electron microscopy identified significantly different aggregate species formed at low and high pH. The correlations between apparent midpoints of thermal transitions (Tm,app values), or unfolded mole fractions, and aggregation rates are reported here to be significant only at the elevated incubation temperature of 65 °C, where aggregation from the unfolded state predominates. At all other conditions, particularly at 4-45 °C, aggregation of A33 Fab was predominantly from a native-like state, and the kinetics obeyed Arrhenius behavior. Despite this, the rank order of aggregation rates observed at 45 °C, 23 and 4 °C still did not correlate well to each other, indicating that forced degradation at elevated temperatures was not a good screen for predicting behavior at low temperature.
Collapse
Affiliation(s)
- Nesrine Chakroun
- EPSRC Centre for Innovative Manufacturing in Emergent Macromolecular Therapies, Department of Biochemical Engineering, University College London , London WC1H 0AH, U.K.,Department of Biochemical Engineering, University College London , London WC1H 0AH, U.K
| | - David Hilton
- EPSRC Centre for Innovative Manufacturing in Emergent Macromolecular Therapies, Department of Biochemical Engineering, University College London , London WC1H 0AH, U.K.,Department of Biochemical Engineering, University College London , London WC1H 0AH, U.K
| | - Shahina S Ahmad
- Department of Biochemical Engineering, University College London , London WC1H 0AH, U.K
| | - Geoffrey W Platt
- Unchained Laboratories, Unit 706, Avenue E West, Thorp Arch Estate, Wetherby LS23 7EG, U.K
| | - Paul A Dalby
- EPSRC Centre for Innovative Manufacturing in Emergent Macromolecular Therapies, Department of Biochemical Engineering, University College London , London WC1H 0AH, U.K.,Department of Biochemical Engineering, University College London , London WC1H 0AH, U.K
| |
Collapse
|
19
|
Su JG, Zhang X, Han XM, Zhao SX, Li CH. The Intrinsic Dynamics and Unfolding Process of an Antibody Fab Fragment Revealed by Elastic Network Model. Int J Mol Sci 2015; 16:29720-31. [PMID: 26690429 PMCID: PMC4691140 DOI: 10.3390/ijms161226197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 01/29/2023] Open
Abstract
Antibodies have been increasingly used as pharmaceuticals in clinical treatment. Thermal stability and unfolding process are important properties that must be considered in antibody design. In this paper, the structure-encoded dynamical properties and the unfolding process of the Fab fragment of the phosphocholine-binding antibody McPC603 are investigated by use of the normal mode analysis of Gaussian network model (GNM). Firstly, the temperature factors for the residues of the protein were calculated with GNM and then compared with the experimental measurements. A good result was obtained, which provides the validity for the use of GNM to study the dynamical properties of the protein. Then, with this approach, the mean-square fluctuation (MSF) of the residues, as well as the MSF in the internal distance (MSFID) between all pairwise residues, was calculated to investigate the mobility and flexibility of the protein, respectively. It is found that the mobility and flexibility of the constant regions are higher than those of the variable regions, and the six complementarity-determining regions (CDRs) in the variable regions also exhibit relative large mobility and flexibility. The large amplitude motions of the CDRs are considered to be associated with the immune function of the antibody. In addition, the unfolding process of the protein was simulated by iterative use of the GNM. In our method, only the topology of protein native structure is taken into account, and the protein unfolding process is simulated through breaking the native contacts one by one according to the MSFID values between the residues. It is found that the flexible regions tend to unfold earlier. The sequence of the unfolding events obtained by our method is consistent with the hydrogen-deuterium exchange experimental results. Our studies imply that the unfolding behavior of the Fab fragment of antibody McPc603 is largely determined by the intrinsic dynamics of the protein.
Collapse
Affiliation(s)
- Ji-Guo Su
- College of Science, Yanshan University, Qinhuangdao 066004, China.
| | - Xiao Zhang
- College of Science, Yanshan University, Qinhuangdao 066004, China.
| | - Xiao-Ming Han
- College of Science, Yanshan University, Qinhuangdao 066004, China.
| | - Shu-Xin Zhao
- College of Science, Yanshan University, Qinhuangdao 066004, China.
| | - Chun-Hua Li
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100024, China.
| |
Collapse
|
20
|
Sedlák E, Schaefer JV, Marek J, Gimeson P, Plückthun A. Advanced analyses of kinetic stabilities of iggs modified by mutations and glycosylation. Protein Sci 2015; 24:1100-13. [PMID: 25966898 DOI: 10.1002/pro.2691] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/11/2015] [Accepted: 04/29/2015] [Indexed: 01/07/2023]
Abstract
The stability of Immunoglobulin G (IgG) affects production, storage and usability, especially in the clinic. The complex thermal and isothermal transitions of IgGs, especially their irreversibilities, pose a challenge to the proper determination of parameters describing their thermodynamic and kinetic stability. Here, we present a reliable mathematical model to study the irreversible thermal denaturations of antibody variants. The model was applied to two unrelated IgGs and their variants with stabilizing mutations as well as corresponding non-glycosylated forms of IgGs and Fab fragments. Thermal denaturations of IgGs were analyzed with three transitions, one reversible transition corresponding to C(H)2 domain unfolding followed by two consecutive irreversible transitions corresponding to Fab and C(H)3 domains, respectively. The parameters obtained allowed us to examine the effects of these mutations on the stabilities of individual domains within the full-length IgG. We found that the kinetic stability of the individual Fab fragment is significantly lowered within the IgG context, possibly because of intramolecular aggregation upon heating, while the stabilizing mutations have an especially beneficial effect. Thermal denaturations of non-glycosylated variants of IgG consist of more than three transitions and could not be analyzed by our model. However, isothermal denaturations demonstrated that the lack of glycosylation affects the stability of all and not just of the C(H)2 domain, suggesting that the partially unfolded domains may interact with each other during unfolding. Investigating thermal denaturation of IgGs according to our model provides a valuable tool for detecting subtle changes in thermodynamic and/or kinetic stabilities of individual domains.
Collapse
Affiliation(s)
- Erik Sedlák
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.,Centre for Interdisciplinary Biosciences, P.J. Šafárik University, Moyzesova 11, Košice, 040 01, Slovakia.,Department of Biochemistry, P.J. Šafárik University, Moyzesova 11, Košice, 040 01, Slovakia
| | - Jonas V Schaefer
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Jozef Marek
- Department of Biophysics, Institute of Experimental Physics, Watsonova 47, Košice, 040 01, Slovakia
| | - Peter Gimeson
- Malvern Instruments Inc., Northampton, Massachusetts, 01060-2327
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
21
|
Jasion VS, Burnett BP. Survival and digestibility of orally-administered immunoglobulin preparations containing IgG through the gastrointestinal tract in humans. Nutr J 2015; 14:22. [PMID: 25880525 PMCID: PMC4355420 DOI: 10.1186/s12937-015-0010-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/13/2015] [Indexed: 12/15/2022] Open
Abstract
Oral immunoglobulin (Ig) preparations are prime examples of medicinal nutrition from natural sources. Plasma products containing Ig have been used for decades in animal feed for intestinal disorders to mitigate the damaging effects of early weaning. These preparations reduce overall mortality and increase feed utilization in various animal species leading to improved growth. Oral administration of Ig preparations from human serum as well as bovine colostrum and serum have been tested and proven to be safe as well as effective in human clinical trials for a variety of enteric microbial infections and other conditions which cause diarrhea. In infants, children, and adults, the amount of intact IgG recovered in stool ranges from trace amounts up to 25% of the original amount ingested. It is generally understood that IgG can only bind to antigens within the GI tract if the Fab structure is intact and has not been completely denatured through acidic pH or digestive proteolytic enzymes. This is a comprehensive review of human studies regarding the survivability of orally-administered Ig preparations, with a focus on IgG. This review also highlights various biochemical studies on IgG which potentially explain which structural elements are responsible for increased stability against digestion.
Collapse
Affiliation(s)
- Victoria S Jasion
- Department of Medical Affairs, Entera Health, 2000 Regency Parkway, Suite 255, Cary, NC, 27518, USA.
| | - Bruce P Burnett
- Department of Medical Affairs, Entera Health, 2000 Regency Parkway, Suite 255, Cary, NC, 27518, USA.
| |
Collapse
|
22
|
Leow CH, Jones M, Cheng Q, Mahler S, McCarthy J. Production and characterization of specific monoclonal antibodies binding the Plasmodium falciparum diagnostic biomarker, histidine-rich protein 2. Malar J 2014; 13:277. [PMID: 25037150 PMCID: PMC4120728 DOI: 10.1186/1475-2875-13-277] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/30/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Early and accurate diagnosis of Plasmodium falciparum infection is important for providing appropriate treatment to patients with malaria. However, technical limitations of currently available diagnostic tests limit their use in control programs. One possible explanation for the vulnerability of current antibodies used in RDTs is their propensity to degrade at high ambient temperatures. Isolation of new antibodies with better thermal stability represents an appealing approach to improve the performance of RDTs. METHODS In this study, phage display technology was deployed to isolate novel binders by screening a human naïve scFv antibody library against recombinant Plasmodium falciparum histidine rich protein 2 (rPfHRP2). The isolated scFv clones were reformatted to whole IgG and the recombinant mAbs were produced in a mammalian CHO cell expression system. To verify the biological activity of these purified recombinant mAbs, range of functional assays were characterized. RESULTS Two unique clones (D2 and F9) were isolated after five rounds of biopanning. The reformatted and expressed antibodies demonstrated high binding specificity to malaria recombinant PfHRP2 and native proteins. When 5 μg/mL of mAbs applied, mAb C1-13 had the highest sensitivity, with an OD value of 1, the detection achieved 5 ng/mL of rPfHRP2, followed by mAbs D2 and F9 at 10 ng/mL and 100 ng/mL of rPfHRP2, respectively. Although the sensitivity of mAbs D2 and F9 was lower than the control, these recombinant human mAbs have shown better stability compared to mouse mAb C1-13 at various temperatures in DSC and blot assays. In view of epitope mapping, the predominant motif of rPfHRP2 recognized by mAb D2 was AHHAADAHHA, whereas mAb F9 was one amino acid shorter, resulting in AHHAADAHH. mAb F9 had the strongest binding affinity to rPfHRP2 protein, with a KD value of 4.27 × 10(-11) M, followed by control mAb C1-13 at 1.03 × 10(-10) M and mAb D2 at 3.05 × 10(-10) M. CONCLUSIONS Overall, the performance of these mAbs showed comparability to currently available PfHRP2-specific mouse mAb C1-13. The stability of these novel binders indicate that they merit further work to evaluate their utility in the development of new generation point of care diagnosis of malaria.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/isolation & purification
- Antibodies, Protozoan/chemistry
- Antibodies, Protozoan/immunology
- Antibodies, Protozoan/isolation & purification
- Antibody Specificity
- Antigen-Antibody Reactions
- Antigens, Protozoan/immunology
- CHO Cells
- Cricetinae
- Cricetulus
- Drug Storage
- Early Diagnosis
- Enzyme-Linked Immunosorbent Assay
- Epitopes/immunology
- Escherichia coli
- Humans
- Immunoglobulin Fragments/genetics
- Immunoglobulin Fragments/immunology
- Malaria, Falciparum/blood
- Malaria, Falciparum/diagnosis
- Malaria, Falciparum/immunology
- Mice
- Peptide Library
- Plasmodium falciparum/immunology
- Protein Stability
- Protozoan Proteins/immunology
- Recombinant Proteins/immunology
- Sensitivity and Specificity
- Single-Chain Antibodies/genetics
- Single-Chain Antibodies/immunology
- Temperature
Collapse
Affiliation(s)
- Chiuan Herng Leow
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, Malaysia
| | - Martina Jones
- Australian Institute for Bioengineering & Nanotechnology (AIBN), University of Queensland, Brisbane, Australia
| | - Qin Cheng
- Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia
| | - Stephen Mahler
- Australian Institute for Bioengineering & Nanotechnology (AIBN), University of Queensland, Brisbane, Australia
| | - James McCarthy
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|
23
|
Heu W, Choi JM, Lee JJ, Jeong S, Kim HS. Protein binder for affinity purification of human immunoglobulin antibodies. Anal Chem 2014; 86:6019-25. [PMID: 24877609 DOI: 10.1021/ac501158t] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The importance of a downstream process for the purification of immunoglobulin antibodies is increasing with the growing application of monoclonal antibodies in many different areas. Although protein A is most commonly used for the affinity purification of antibodies, certain properties could be further improved: higher stability in alkaline solution and milder elution condition. Herein, we present the development of Fc-specific repebody by modular engineering approach and its potential as an affinity ligand for purification of human immunoglobulin antibodies. We previously developed the repebody scaffold composed of Leucine-rich repeat (LRR) modules. The scaffold was shown to be highly stable over a wide range of pH and temperature, exhibiting a modular architecture. We first selected a repebody that binds the Fc fragment of human immunoglobulin G (IgG) through a phage display and increased its binding affinity up to 1.9 × 10(-7) M in a module-by-module approach. The utility of the Fc-specific repebody was demonstrated by the performance of an immobilized repebody in affinity purification of antibodies from a mammalian cell-cultured medium. Bound-antibodies on an immobilized repebody were shown to be eluted at pH 4.0 with high purity (>94.6%) and recovery yield (>95.7%). The immobilized repebody allowed a repetitive purification process more than ten times without any loss of binding capability. The repebody remained almost intact even after incubation with 0.5 M NaOH for 15 days. The present approach could be effectively used for developing a repeat module-based binder for other target molecules for affinity purification.
Collapse
Affiliation(s)
- Woosung Heu
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 305-701, Korea
| | | | | | | | | |
Collapse
|
24
|
Arakawa T, Tsumoto K, Ejima D. Alternative downstream processes for production of antibodies and antibody fragments. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:2032-2040. [PMID: 24859179 DOI: 10.1016/j.bbapap.2014.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 04/24/2014] [Accepted: 05/15/2014] [Indexed: 01/26/2023]
Abstract
Protein-A or Protein-L affinity chromatography and virus inactivation are key processes for the manufacturing of therapeutic antibodies and antibody fragments. These two processes often involve exposure of therapeutic proteins to denaturing low pH conditions. Antibodies have been shown to undergo conformational changes at low pH, which can lead to irreversible damages on the final product. Here, we review alternative downstream approaches that can reduce the degree of low pH exposure and consequently damaged product. We and others have been developing technologies that minimize or eliminate such low pH processes. We here cover facilitated elution of antibodies using arginine in Protein-A and Protein-G affinity chromatography, a more positively charged amidated Protein-A, two Protein-A mimetics (MEP and Mabsorbent), mixed-mode and steric exclusion chromatography, and finally enhanced virus inactivation by solvents containing arginine. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.
Collapse
Affiliation(s)
- Tsutomu Arakawa
- Alliance Protein Laboratories, 6042 Cornerstone Court West, Suite A, San Diego, CA 9212, USA.
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering and Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, Japan
| | - Daisuke Ejima
- Institute of Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan
| |
Collapse
|
25
|
Tao Y, Ibraheem A, Conley L, Cecchini D, Ghose S. Evaluation of high-capacity cation exchange chromatography for direct capture of monoclonal antibodies from high-titer cell culture processes. Biotechnol Bioeng 2014; 111:1354-64. [PMID: 24420791 DOI: 10.1002/bit.25192] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/09/2014] [Accepted: 01/10/2014] [Indexed: 11/07/2022]
Abstract
Advances in molecular biology and cell culture technology have led to monoclonal antibody titers in excess of 10 g/L. Such an increase can pose concern to traditional antibody purification processes due to limitations in column hardware and binding capacity of Protein A resins. Recent development of high capacity cation exchangers can make cation exchange chromatography (CEX) a promising and economic alternative to Protein A capture. This work investigates the feasibility of using CEX for direct capture of monoclonal antibodies from high titer cell culture fluids. Two resin candidates were selected from seven newer generation cation exchangers for their higher binding capacity and selectivity. Two monoclonal antibodies with widely differing pI values were used to evaluate the capability of CEX as a platform capture step. Screening of loading pH and conductivity showed both resins to be capable of directly capturing both antibodies from undiluted cell culture fluid. At appropriate acidic pH range, product loading of over 65 g/L resin was achieved for both antibodies. A systematic design of experiment (DOE) approach was used to optimize the elution conditions for the CEX step. Elution pH showed the most significant impact on clearance of host cell proteins (HCPs). Under optimal conditions, HCP reduction factors in the range of 9-44 were achieved on the CEX step based on the pI of the antibody. Apart from comparing CEX directly to Protein A as the capture method, material from either modality was also processed through the subsequent polishing steps to compare product quality at the drug substance level. Process performance and product quality was found to be acceptable using the non-affinity based process scheme. The results shown here present a cheaper and higher capacity generic capture method for high-titer antibody processes.
Collapse
Affiliation(s)
- Yinying Tao
- Department of Process Biochemistry, Biogen Idec, 5000 Davis Drive, Research Triangle Park, North Carolina
| | | | | | | | | |
Collapse
|
26
|
Kim NA, Lim DG, Lim JY, Kim KH, Jeong SH. Comprehensive evaluation of etanercept stability in various concentrations with biophysical assessment. Int J Pharm 2014; 460:108-18. [DOI: 10.1016/j.ijpharm.2013.11.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/14/2013] [Accepted: 11/13/2013] [Indexed: 10/26/2022]
|
27
|
Ito T, Tsumoto K. Effects of subclass change on the structural stability of chimeric, humanized, and human antibodies under thermal stress. Protein Sci 2013; 22:1542-51. [PMID: 23963869 PMCID: PMC3831669 DOI: 10.1002/pro.2340] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 07/31/2013] [Accepted: 08/06/2013] [Indexed: 01/22/2023]
Abstract
To address how changes in the subclass of antibody molecules affect their thermodynamic stability, we prepared three types of four monoclonal antibody molecules (chimeric, humanized, and human) and analyzed their structural stability under thermal stress by using size-exclusion chromatography, differential scanning calorimetry (DSC), circular dichroism (CD), and differential scanning fluoroscopy (DSF) with SYPRO Orange as a dye probe. All four molecules showed the same trend in change of structural stability; the order of the total amount of aggregates was IgG1 < IgG2 < IgG4. We thus successfully cross-validated the effects of subclass change on the structural stability of antibodies under thermal stress by using four methods. The T(h) values obtained with DSF were well correlated with the onset temperatures obtained with DSC and CD, suggesting that structural perturbation of the CH2 region could be monitored by using DSF. Our results suggested that variable domains dominated changes in structural stability and that the physicochemical properties of the constant regions of IgG were not altered, regardless of the variable regions fused.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal, Humanized/chemistry
- Antibodies, Monoclonal, Humanized/immunology
- CHO Cells
- Calorimetry, Differential Scanning
- Chromatography, Gel
- Circular Dichroism
- Cricetulus
- Fluorescent Dyes
- Fluoroscopy
- Humans
- Immunoglobulin G/chemistry
- Immunoglobulin G/immunology
- Immunoglobulin Variable Region/chemistry
- Immunoglobulin Variable Region/immunology
- Protein Stability
- Protein Structure, Secondary
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/immunology
- Reproducibility of Results
- Stress, Physiological
- Temperature
- Thermodynamics
Collapse
Affiliation(s)
- Takahiko Ito
- Bio Process Research and Development Laboratories, Production DivisionKyowa Hakko Kirin Company Limited, 100-1 Hagiwara-machi, Takasaki, Gunma, 370-0013, Japan
- Institute of Medical Science, The University of Tokyo4–6-1 Shirokanedai, Minato-ku, Tokyo, 108–8639, Japan
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of TokyoKashiwa, 277–8562, Japan
| | - Kouhei Tsumoto
- Institute of Medical Science, The University of Tokyo4–6-1 Shirokanedai, Minato-ku, Tokyo, 108–8639, Japan
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of TokyoKashiwa, 277–8562, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of TokyoTokyo, 113-0024, Japan
- Department of Bioengineering, School of Engineering, The University of TokyoTokyo, 113-0024, Japan
| |
Collapse
|
28
|
Iwura T, Fukuda J, Yamazaki K, Kanamaru S, Arisaka F. Intermolecular interactions and conformation of antibody dimers present in IgG1 biopharmaceuticals. J Biochem 2013; 155:63-71. [PMID: 24155259 DOI: 10.1093/jb/mvt095] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Intermolecular interactions and conformation in dimer species of Palivizumab, a monoclonal antibody (IgG1), were investigated to elucidate the physical and chemical properties of the dimerized antibody. Palivizumab solution contains ∼1% dimer and 99% monomer. The dimer species was isolated by size-exclusion chromatography and analysed by a number of methods including analytical ultracentrifugation-sedimantetion velocity (AUC-SV). AUC-SV in the presence of sodium dodecyl sulphate indicated that approximately half of the dimer fraction was non-covalently associated, whereas the other half was dimerized by covalent bond. Disulphide bond and dityrosine formation were likely to be involved in the covalent dimerization. Limited proteolysis of the isolated dimer by Lys-C and mass spectrometry for the resultant products indicated that the dimer species were formed by Fab-Fc or Fab-Fab interactions, whereas Fc-Fc interactions were not found. It is thus likely that the dimerization occurs mainly via the Fab region. With regard to the conformation of the dimer species, the secondary and tertiary structures were shown to be almost identical to those of the monomer. Furthermore, the thermal stability turned out also to be very similar between the dimer and monomer.
Collapse
Affiliation(s)
- Takafumi Iwura
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 B-9 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501; and Bio Process Research and Development Laboratories, Production Division, Kyowa Hakko Kirin Co., Ltd.; 100-1 Hagiwara-machi, Takasaki, Gunma 370-0013, Japan
| | | | | | | | | |
Collapse
|
29
|
Wang T, Kumru OS, Yi L, Wang YJ, Zhang J, Kim JH, Joshi SB, Middaugh CR, Volkin DB. Effect of ionic strength and pH on the physical and chemical stability of a monoclonal antibody antigen-binding fragment. J Pharm Sci 2013; 102:2520-37. [PMID: 23824562 DOI: 10.1002/jps.23645] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/29/2013] [Accepted: 05/31/2013] [Indexed: 12/21/2022]
Abstract
Monoclonal antibody (mAb) fragments are emerging as promising alternatives to full-length mAbs as protein therapeutic candidates. Antigen-binding fragments (Fabs) are the most advanced with three Fab-based drug products currently approved. This work presents preformulation characterization data on the effect of pH, NaCl concentration, and various cationic excipients on the physical and chemical stability of a Fab molecule with multiple negatively charged Asp residues in the complementarity-determining region. Conformational stability was evaluated using an empirical phase diagram approach based on circular dichroism, intrinsic Trp and extrinsic 8-anilino-1-naphthalene sulfonate (ANS) fluorescence, and static light scattering measurements. The effect of NaCl concentration, various cationic excipients and pH on the Fab molecule's conformational stability, aggregation propensity, and chemical stability (Asp isomerization) was determined by differential scanning calorimetry, optical density measurements at 350 nm (OD350 ), and ion-exchange chromatography, respectively. Increasing NaCl concentration increased the overall conformational stability, decreased aggregation rates, and lowered the rates of Asp isomerization. No such trends were noted for pH or cationic excipients. The potential interrelationships between protein conformational and chemical stability are discussed in the context of designing stable protein formulations.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Manikwar P, Majumdar R, Hickey JM, Thakkar SV, Samra HS, Sathish HA, Bishop SM, Middaugh CR, Weis DD, Volkin DB. Correlating Excipient Effects on Conformational and Storage Stability of an IgG1 Monoclonal Antibody with Local Dynamics as Measured by Hydrogen/Deuterium-Exchange Mass Spectrometry. J Pharm Sci 2013; 102:2136-51. [DOI: 10.1002/jps.23543] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 03/18/2013] [Indexed: 12/23/2022]
|
31
|
Watanabe H, Matsumaru H, Ooishi A, Honda S. Structure-based histidine substitution for optimizing pH-sensitive Staphylococcus protein A. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 929:155-60. [PMID: 23688820 DOI: 10.1016/j.jchromb.2013.04.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/19/2013] [Accepted: 04/21/2013] [Indexed: 10/26/2022]
Abstract
Optimizing antibody purification is crucial to overcoming a bottleneck in the costly manufacturing process for antibody therapy. To address this issue, we designed a pH-sensitive Staphylococcus aureus protein A variant that retained its innate stability and affinity toward antibody. On the basis of structural information and mutation analysis data, we identified candidate positions for accumulative histidine substitutions to cause electrostatic repulsion under acidic conditions. The histidine substitutions effectively decreased the dissociation rate under acidic conditions by three orders of magnitude. Avoiding deleterious effects of the substitutions, we successfully engineered a protein A variant that exhibited high pH sensitivity and maintained affinity, thermal stability, and alkaline tolerance. The variant was capable of serving as an affinity ligand that made affinity chromatography under milder acidic conditions possible; the elution peak shifted from pH 4.2 to 5.6. Only two substitutions were needed to achieve this pH sensitivity. This structure-based approach is applicable to other protein-based ligands.
Collapse
Affiliation(s)
- Hideki Watanabe
- The National Institute of Advanced Industrial Science and Technology, Central 6, Higashi, Tsukuba 305-8566, Japan
| | | | | | | |
Collapse
|
32
|
Saito S, Hasegawa J, Kobayashi N, Tomitsuka T, Uchiyama S, Fukui K. Effects of ionic strength and sugars on the aggregation propensity of monoclonal antibodies: influence of colloidal and conformational stabilities. Pharm Res 2013; 30:1263-80. [PMID: 23319172 DOI: 10.1007/s11095-012-0965-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 12/13/2012] [Indexed: 10/27/2022]
Abstract
PURPOSE To develop a general strategy for optimizing monoclonal antibody (MAb) formulations. METHODS Colloidal stabilities of four representative MAbs solutions were assessed based on the second virial coefficient (B 2) at 20°C and 40°C, and net charges at different NaCl concentrations, and/or in the presence of sugars. Conformational stabilities were evaluated from the unfolding temperatures. The aggregation propensities were determined at 40°C and after freeze-thawing. The electrostatic potential of antibody surfaces was simulated for the development of rational formulations. RESULTS Similar B 2 values were obtained at 20°C and 40°C, implying little dependence on temperature. B 2 correlated quantitatively with aggregation propensities at 40°C. The net charge partly correlated with colloidal stability. Salts stabilized or destabilized MAbs, depending on repulsive or attractive interactions. Sugars improved the aggregation propensity under freeze-thaw stress through improved conformational stability. Uneven and even distributions of potential surfaces were attributed to attractive and strong repulsive electrostatic interactions. CONCLUSIONS Assessment of colloidal stability at the lowest ionic strength is particularly effective for the development of formulations. If necessary, salts are added to enhance the colloidal stability. Sugars further improved aggregation propensities by enhancing conformational stability. These behaviors are rationally predictable according to the surface potentials of MAbs.
Collapse
Affiliation(s)
- Shuntaro Saito
- Analytical & Quality Evaluation Research Laboratories, Daiichi Sankyo Co., Ltd., 1-12-1, Shinomiya, Hiratsuka-shi, Kanagawa, 254-0014, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Liquid Formulations for Long-Term Storage of Monoclonal IgGs. Appl Biochem Biotechnol 2013; 169:1431-48. [DOI: 10.1007/s12010-012-0084-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 12/28/2012] [Indexed: 10/27/2022]
|
34
|
Mueller M, Loh MQT, Tscheliessnig R, Tee DHY, Tan E, Bardor M, Jungbauer A. Liquid Formulations for Stabilizing IgMs During Physical Stress and Long-Term Storage. Pharm Res 2012; 30:735-50. [DOI: 10.1007/s11095-012-0914-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 10/12/2012] [Indexed: 11/24/2022]
|
35
|
Koellhoffer JF, Chen G, Sandesara RG, Bale S, Saphire EO, Chandran K, Sidhu SS, Lai JR. Two synthetic antibodies that recognize and neutralize distinct proteolytic forms of the ebola virus envelope glycoprotein. Chembiochem 2012; 13:2549-57. [PMID: 23111988 DOI: 10.1002/cbic.201200493] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Indexed: 11/06/2022]
Abstract
Ebola virus (EBOV) is a highly pathogenic member of the Filoviridae family of viruses that causes severe hemorrhagic fever. Infection proceeds through fusion of the host cell and viral membranes, a process that is mediated by the viral envelope glycoprotein (GP). Following endosomal uptake, a key step in viral entry is the proteolytic cleavage of GP by host endosomal cysteine proteases. Cleavage exposes a binding site for the host cell receptor Niemann-Pick C1 (NPC1) and may induce conformational changes in GP leading to membrane fusion. However, the precise details of the structural changes in GP associated with proteolysis and the role of these changes in viral entry have not been established. Here, we have employed synthetic antibody technology to identify antibodies targeting EBOV GP prior to and following proteolysis (i.e. in the "uncleaved" [GP(UNCL)] and "cleaved" [GP(CL)] forms). We identified antibodies with distinct recognition profiles: Fab(CL) bound preferentially to GP(CL) (EC(50)=1.7 nM), whereas Fab(UNCL) bound specifically to GP(UNCL) (EC(50)=75 nM). Neutralization assays with GP-containing pseudotyped viruses indicated that these antibodies inhibited GP(CL)- or GP(UNCL)-mediated viral entry with specificity matching their recognition profiles (IC(50): 87 nM for IgG(CL); 1 μM for Fab(UNCL)). Competition ELISAs indicate that Fab(CL) binds an epitope distinct from that of KZ52, a well-characterized EBOV GP antibody, and from that of the luminal domain of NPC1. The binding epitope of Fab(UNCL) was also distinct from that of KZ52, suggesting that Fab(UNCL) binds a novel neutralization epitope on GP(UNCL). Furthermore, the neutralizing ability of Fab(CL) suggests that there are targets on GP(CL) available for neutralization. This work showcases the applicability of synthetic antibody technology to the study of viral membrane fusion, and provides new tools for dissecting intermediates of EBOV entry.
Collapse
Affiliation(s)
- Jayne F Koellhoffer
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Soares PA, Vaz AF, Correia MT, Pessoa A, Carneiro-da-Cunha MG. Purification of bromelain from pineapple wastes by ethanol precipitation. Sep Purif Technol 2012. [DOI: 10.1016/j.seppur.2012.06.042] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Schersch K, Betz O, Garidel P, Muehlau S, Bassarab S, Winter G. Systematic Investigation of the Effect of Lyophilizate Collapse on Pharmaceutically Relevant Proteins, Part 2: Stability During Storage at Elevated Temperatures. J Pharm Sci 2012; 101:2288-306. [DOI: 10.1002/jps.23121] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Revised: 02/16/2012] [Accepted: 02/28/2012] [Indexed: 02/04/2023]
|
38
|
Cheng W, Joshi SB, He F, Brems DN, He B, Kerwin BA, Volkin DB, Middaugh CR. Comparison of High-Throughput Biophysical Methods to Identify Stabilizing Excipients for a Model IgG2 Monoclonal Antibody: Conformational Stability and Kinetic Aggregation Measurements. J Pharm Sci 2012; 101:1701-20. [DOI: 10.1002/jps.23076] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 01/06/2012] [Accepted: 01/18/2012] [Indexed: 12/12/2022]
|
39
|
Bhambhani A, Kissmann JM, Joshi SB, Volkin DB, Kashi RS, Russell Middaugh C. Formulation Design and High-Throughput Excipient Selection Based on Structural Integrity and Conformational Stability of Dilute and Highly Concentrated IgG1 Monoclonal Antibody Solutions. J Pharm Sci 2012; 101:1120-35. [DOI: 10.1002/jps.23008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 11/07/2011] [Accepted: 11/15/2011] [Indexed: 01/14/2023]
|
40
|
Samra HS, He F. Advancements in high throughput biophysical technologies: applications for characterization and screening during early formulation development of monoclonal antibodies. Mol Pharm 2012; 9:696-707. [PMID: 22263524 DOI: 10.1021/mp200404c] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The formulation development of monoclonal antibodies is extremely challenging, due to the diversity and complexity contained within this class of molecules. The physical and chemical properties of a monoclonal antibody dictate the behavior of the protein drug during manufacturing, storage and clinical administration. In the past few years, the use of high throughput technologies has been widely adapted to delineate unique properties of individual immunoglobulin G's (IgG's) important for their development. Numerous screening techniques have been designed to reveal physical and chemical characteristics of a protein relevant to stability under production, formulation and delivery conditions. In addition, protein stability under accelerated stresses has been utilized to predict long-term storage behavior for monoclonal antibodies in the formulation. In this review, we summarize the recent advancements in the field of biophysical technology, with a specific focus on the techniques that can be directly applied to the formulation development of monoclonal antibodies. Several case studies are also presented here to provide examples of combining existing biophysical methods with high throughput screening technology in the formulation development of monoclonal antibody drugs.
Collapse
Affiliation(s)
- Hardeep S Samra
- Department of Formulation Sciences, MedImmune , One MedImmune Way, Gaithersburg, Maryland 20878, USA.
| | | |
Collapse
|
41
|
Wen J, Arthur K, Chemmalil L, Muzammil S, Gabrielson J, Jiang Y. Applications of differential scanning calorimetry for thermal stability analysis of proteins: qualification of DSC. J Pharm Sci 2011; 101:955-64. [PMID: 22147423 DOI: 10.1002/jps.22820] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/03/2011] [Accepted: 10/28/2011] [Indexed: 11/08/2022]
Abstract
Differential scanning calorimetry (DSC) has been used to characterize protein thermal stability, overall conformation, and domain folding integrity by the biopharmaceutical industry. Recently, there have been increased requests from regulatory agencies for the qualification of characterization methods including DSC. Understanding the method precision can help determine what differences between samples are significant and also establish the acceptance criteria for comparability and other characterization studies. In this study, we identify the parameters for the qualification of DSC for thermal stability analysis of proteins. We use these parameters to assess the precision and sensitivity of DSC and demonstrate that DSC is suitable for protein thermal stability analysis for these purposes. Several molecules from different structural families were studied. The experiments and data analyses were performed by different analysts using different instruments at different sites. The results show that the (apparent) thermal transition midpoint (T(m)) values obtained for the same protein by same and different instruments and/or analysts are quite reproducible, and the profile similarity values obtained for the same protein from the same instrument are also high. DSC is an appropriate method for assessing protein thermal stability and conformational changes.
Collapse
Affiliation(s)
- Jie Wen
- Product Attribute Sciences, Amgen Inc., Thousand Oaks, California 91320, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Dave S, Mahajan S, Chandra V, Gupta P. Trifluoroethanol stabilizes the molten globule state and induces non-amyloidic turbidity in stem bromelain near its isoelectric point. Int J Biol Macromol 2011; 49:536-42. [DOI: 10.1016/j.ijbiomac.2011.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 06/03/2011] [Accepted: 06/07/2011] [Indexed: 11/28/2022]
|
43
|
Kim DH, Seo SM, Paek SH, Lim GS, Paek SH. Premature antibodies with rapid reaction kinetics and their characterization for diagnostic applications. Anal Biochem 2011; 420:54-60. [PMID: 21964440 DOI: 10.1016/j.ab.2011.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/02/2011] [Accepted: 09/08/2011] [Indexed: 10/17/2022]
Abstract
In this study, rapidly reversible antibodies were produced and the binding kinetics, stability, and utility as an analytical binder were evaluated. The number of times the animals were immunized with the antigen (myoglobin as marker for acute myocardial infarction [AMI]) was limited to two, increasing the chances of producing premature antibodies that rapidly reacted with the binding partner in both association and dissociation. The rate constants were higher than 1×10(6)M(-1)s(-1) and 1×10(-3)s(-1), respectively, and the affinity exceeded 10(8)M(-1). They responded to an abrupt environmental change (acidic pH in this study) where the reaction kinetics was changed to slow binding, particularly for dissociation, resulting in a 10-fold increase in affinity. The binding characteristic before and after the transition were stable at 37°C for longer than 1 month, suggesting that the rapidly reversible antibody was the intermediate of the slow binder. The rapid kinetic antibody was used as the primary binder in the conventional competitive immunoassay, which displayed a lower sensitivity than the transformed antibody due to its lower affinity. We further demonstrated that, on combination with a microfluidic label-free sensor, the reaction could be continuously monitored in serum medium by recycling the same antibody without employing the regeneration step.
Collapse
Affiliation(s)
- Dong-Hyung Kim
- Department of Bio-Microsystem Technology, Korea University, Sungbuk-gu, Seoul 136-701, Republic of Korea
| | | | | | | | | |
Collapse
|
44
|
King AC, Woods M, Liu W, Lu Z, Gill D, Krebs MRH. High-throughput measurement, correlation analysis, and machine-learning predictions for pH and thermal stabilities of Pfizer-generated antibodies. Protein Sci 2011; 20:1546-57. [PMID: 21710487 PMCID: PMC3190149 DOI: 10.1002/pro.680] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 05/17/2011] [Accepted: 06/12/2011] [Indexed: 12/16/2022]
Abstract
Generating stable antibodies is an important goal in the development of antibody-based drugs. Often, thermal stability is assumed predictive of overall stability. To test this, we used different internally created antibodies and first studied changes in antibody structure as a function of pH, using the dye ANS. Comparison of the pH(50) values, the midpoint of the transition from the high-pH to the low-pH conformation, allowed us for the first time to rank antibodies based on their pH stability. Next, thermal stability was probed by heating the protein in the presence of the dye Sypro Orange. A new data analysis method allowed extraction of all three antibody unfolding transitions and showed close correspondence to values obtained by differential scanning calorimetry. T(1%) , the temperature at which 1% of the protein is unfolded, was also determined. Importantly, no correlations could be found between thermal stability and pH(50) , suggesting that to accurately quantify antibody stability, different measures of protein stability are necessary. The experimental data were further analyzed using a machine-learning approach with a trained model that allowed the prediction of biophysical stability using primary sequence alone. The pH stability predictions proved most successful and were accurate to within pH ±0.2.
Collapse
Affiliation(s)
| | | | | | | | | | - Mark R H Krebs
- Pfizer Global BioTherapeutic Technologies87 CambridgePark Drive, Cambridge, Massachusetts 02140
| |
Collapse
|
45
|
Distinct Aggregation Mechanisms of Monoclonal Antibody Under Thermal and Freeze-Thaw Stresses Revealed by Hydrogen Exchange. Pharm Res 2011; 29:236-50. [DOI: 10.1007/s11095-011-0538-y] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 07/07/2011] [Indexed: 11/30/2022]
|
46
|
Goldberg DS, Bishop SM, Shah AU, Sathish HA. Formulation Development of Therapeutic Monoclonal Antibodies Using High-Throughput Fluorescence and Static Light Scattering Techniques: Role of Conformational and Colloidal Stability. J Pharm Sci 2011; 100:1306-15. [DOI: 10.1002/jps.22371] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 09/13/2010] [Accepted: 09/16/2010] [Indexed: 11/11/2022]
|
47
|
Yoshino T, Ishikawa T, Ishihara T, Takeuchi Y, Yoshikawa H, Yoshida H, Yoshida H, Wakamatsu K. Evaluation of the Aggregation States of Monoclonal Antibodies by Diverse and Complementary Methods. Biol Pharm Bull 2011; 34:1273-8. [DOI: 10.1248/bpb.34.1273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tetsuya Yoshino
- Bio Process Research and Development Laboratories, Production Division, Kyowa Hakko Kirin Co., Ltd
- Department of Chemistry and Chemical Biology, Graduate School of Engineering, Gunma University
| | - Tomoyoshi Ishikawa
- Bio Process Research and Development Laboratories, Production Division, Kyowa Hakko Kirin Co., Ltd
| | - Takashi Ishihara
- Bio Process Research and Development Laboratories, Production Division, Kyowa Hakko Kirin Co., Ltd
| | - Yoshimi Takeuchi
- Bio Process Research and Development Laboratories, Production Division, Kyowa Hakko Kirin Co., Ltd
| | | | | | - Hitoshi Yoshida
- Innovative Drug Research Laboratories, Research Division, Kyowa Hakko Kirin Co., Ltd
| | - Kaori Wakamatsu
- Department of Chemistry and Chemical Biology, Graduate School of Engineering, Gunma University
| |
Collapse
|
48
|
Hari SB, Lau H, Razinkov VI, Chen S, Latypov RF. Acid-Induced Aggregation of Human Monoclonal IgG1 and IgG2: Molecular Mechanism and the Effect of Solution Composition. Biochemistry 2010; 49:9328-38. [DOI: 10.1021/bi100841u] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Sanjay B. Hari
- Process and Product Development, Amgen Inc., Seattle, Washington 98119, United States
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Hollis Lau
- Process and Product Development, Amgen Inc., Seattle, Washington 98119, United States
| | - Vladimir I. Razinkov
- Process and Product Development, Amgen Inc., Seattle, Washington 98119, United States
| | - Shuang Chen
- Process and Product Development, Amgen Inc., Seattle, Washington 98119, United States
- School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ramil F. Latypov
- Process and Product Development, Amgen Inc., Seattle, Washington 98119, United States
| |
Collapse
|
49
|
Borlido L, Azevedo AM, Aires-Barros MR. Extraction of Human IgG in Thermo-Responsive Aqueous Two-Phase Systems: Assessment of Structural Stability by Circular Dichroism. SEP SCI TECHNOL 2010. [DOI: 10.1080/01496395.2010.507441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Specific molten globule conformation of stem bromelain at alkaline pH. Arch Biochem Biophys 2010; 499:26-31. [DOI: 10.1016/j.abb.2010.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 05/05/2010] [Accepted: 05/05/2010] [Indexed: 11/20/2022]
|