1
|
Dong Z, Yang S, Dong X, Yang Y, Yan X, Su J, Tang C, Yao L, Kan Y. Characteristics, Protein Engineering, Heterologous Production, and Industrial Applications of Microbial Isoamylases. STARCH-STARKE 2021. [DOI: 10.1002/star.202100192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zixing Dong
- Henan Provincial Engineering Laboratory of Insect Bio‐reactor College of Life Science and Agricultural Engineering Nanyang Normal University Nanyang 473061 China
| | - Shuangshuang Yang
- College of Physical Education Nanyang Normal University Nanyang 473061 China
| | - Xiaoxiao Dong
- Henan Provincial Engineering Laboratory of Insect Bio‐reactor College of Life Science and Agricultural Engineering Nanyang Normal University Nanyang 473061 China
| | - Yongna Yang
- Henan Provincial Engineering Laboratory of Insect Bio‐reactor College of Life Science and Agricultural Engineering Nanyang Normal University Nanyang 473061 China
| | - Xueting Yan
- Henan Provincial Engineering Laboratory of Insect Bio‐reactor College of Life Science and Agricultural Engineering Nanyang Normal University Nanyang 473061 China
| | - Jiejie Su
- Henan Provincial Engineering Laboratory of Insect Bio‐reactor College of Life Science and Agricultural Engineering Nanyang Normal University Nanyang 473061 China
| | - Cunduo Tang
- Henan Provincial Engineering Laboratory of Insect Bio‐reactor College of Life Science and Agricultural Engineering Nanyang Normal University Nanyang 473061 China
- China‐UK‐NYNU‐RRes Joint Laboratory of Insect Biology Henan Key Laboratory of Insect Biology in Funiu Mountain Nanyang Normal University Nanyang Henan 473061 China
| | - Lunguang Yao
- Henan Provincial Engineering Laboratory of Insect Bio‐reactor College of Life Science and Agricultural Engineering Nanyang Normal University Nanyang 473061 China
- Henan Key Laboratory of Ecological Security for Water Region of Mid‐line of South‐to‐North Nanyang Normal University Nanyang 473061 China
| | - Yunchao Kan
- Henan Provincial Engineering Laboratory of Insect Bio‐reactor College of Life Science and Agricultural Engineering Nanyang Normal University Nanyang 473061 China
- China‐UK‐NYNU‐RRes Joint Laboratory of Insect Biology Henan Key Laboratory of Insect Biology in Funiu Mountain Nanyang Normal University Nanyang Henan 473061 China
| |
Collapse
|
2
|
Marín S, Cortés M, Acosta M, Delgado K, Escuti C, Ayma D, Demergasso C. From Laboratory towards Industrial Operation: Biomarkers for Acidophilic Metabolic Activity in Bioleaching Systems. Genes (Basel) 2021; 12:genes12040474. [PMID: 33806162 PMCID: PMC8065656 DOI: 10.3390/genes12040474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/02/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023] Open
Abstract
In the actual mining scenario, copper bioleaching, mainly raw mined material known as run-of-mine (ROM) copper bioleaching, is the best alternative for the treatment of marginal resources that are not currently considered part of the profitable reserves because of the cost associated with leading technologies in copper extraction. It is foreseen that bioleaching will play a complementary role in either concentration-as it does in Minera Escondida Ltd. (MEL)-or chloride main leaching plants. In that way, it will be possible to maximize mines with installed solvent-extraction and electrowinning capacities that have not been operative since the depletion of their oxide ores. One of the main obstacles for widening bioleaching technology applications is the lack of knowledge about the key events and the attributes of the technology's critical events at the industrial level and mainly in ROM copper bioleaching industrial operations. It is relevant to assess the bed environment where the bacteria-mineral interaction occurs to learn about the limiting factors determining the leaching rate. Thus, due to inability to accurately determine in-situ key variables, their indirect assessment was evaluated by quantifying microbial metabolic-associated responses. Several candidate marker genes were selected to represent the predominant components of the microbial community inhabiting the industrial heap and the metabolisms involved in microbial responses to changes in the heap environment that affect the process performance. The microbial community's predominant components were Acidithiobacillus ferrooxidans, At. thiooxidans, Leptospirillum ferriphilum, and Sulfobacillus sp. Oxygen reduction, CO2 and N2 fixation/uptake, iron and sulfur oxidation, and response to osmotic stress were the metabolisms selected regarding research results previously reported in the system. After that, qPCR primers for each candidate gene were designed and validated. The expression profile of the selected genes vs. environmental key variables in pure cultures, column-leaching tests, and the industrial bioleaching heap was defined. We presented the results obtained from the industrial validation of the marker genes selected for assessing CO2 and N2 availability, osmotic stress response, as well as ferrous iron and sulfur oxidation activity in the bioleaching heap process of MEL. We demonstrated that molecular markers are useful for assessing limiting factors like nutrients and air supply, and the impact of the quality of recycled solutions. We also learned about the attributes of variables like CO2, ammonium, and sulfate levels that affect the industrial ROM-scale operation.
Collapse
Affiliation(s)
- Sabrina Marín
- Centro de Biotecnología, Universidad Católica del Norte, Antofagasta 1240000, Chile
| | - Mayra Cortés
- Centro de Biotecnología, Universidad Católica del Norte, Antofagasta 1240000, Chile
| | - Mauricio Acosta
- Centro de Biotecnología, Universidad Católica del Norte, Antofagasta 1240000, Chile
| | - Karla Delgado
- Centro de Biotecnología, Universidad Católica del Norte, Antofagasta 1240000, Chile
| | - Camila Escuti
- Centro de Biotecnología, Universidad Católica del Norte, Antofagasta 1240000, Chile
| | - Diego Ayma
- Departamento de Matemáticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta 1240000, Chile
| | - Cecilia Demergasso
- Centro de Biotecnología, Universidad Católica del Norte, Antofagasta 1240000, Chile
| |
Collapse
|
3
|
Cheng K, Zhang F, Sun F, Chen H, Percival Zhang YH. Doubling Power Output of Starch Biobattery Treated by the Most Thermostable Isoamylase from an Archaeon Sulfolobus tokodaii. Sci Rep 2015; 5:13184. [PMID: 26289411 PMCID: PMC4542469 DOI: 10.1038/srep13184] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/17/2015] [Indexed: 01/07/2023] Open
Abstract
Biobattery, a kind of enzymatic fuel cells, can convert organic compounds (e.g., glucose, starch) to electricity in a closed system without moving parts. Inspired by natural starch metabolism catalyzed by starch phosphorylase, isoamylase is essential to debranch alpha-1,6-glycosidic bonds of starch, yielding linear amylodextrin – the best fuel for sugar-powered biobattery. However, there is no thermostable isoamylase stable enough for simultaneous starch gelatinization and enzymatic hydrolysis, different from the case of thermostable alpha-amylase. A putative isoamylase gene was mined from megagenomic database. The open reading frame ST0928 from a hyperthermophilic archaeron Sulfolobus tokodaii was cloned and expressed in E. coli. The recombinant protein was easily purified by heat precipitation at 80 oC for 30 min. This enzyme was characterized and required Mg2+ as an activator. This enzyme was the most stable isoamylase reported with a half lifetime of 200 min at 90 oC in the presence of 0.5 mM MgCl2, suitable for simultaneous starch gelatinization and isoamylase hydrolysis. The cuvett-based air-breathing biobattery powered by isoamylase-treated starch exhibited nearly doubled power outputs than that powered by the same concentration starch solution, suggesting more glucose 1-phosphate generated.
Collapse
Affiliation(s)
- Kun Cheng
- College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China.,Biological Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, Virginia 24061, USA
| | - Fei Zhang
- Cell Free Bioinnovations Inc. 1800 Kraft Drive, Suite 222, Blacksburg, Virginia 24060, USA
| | - Fangfang Sun
- Cell Free Bioinnovations Inc. 1800 Kraft Drive, Suite 222, Blacksburg, Virginia 24060, USA
| | - Hongge Chen
- College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China
| | - Y-H Percival Zhang
- Biological Systems Engineering Department, Virginia Tech, 304 Seitz Hall, Blacksburg, Virginia 24061, USA.,Cell Free Bioinnovations Inc. 1800 Kraft Drive, Suite 222, Blacksburg, Virginia 24060, USA.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| |
Collapse
|
4
|
Reaction kinetics of substrate transglycosylation catalyzed by TreX of Sulfolobus solfataricus and effects on glycogen breakdown. J Bacteriol 2014; 196:1941-9. [PMID: 24610710 DOI: 10.1128/jb.01442-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We studied the activity of a debranching enzyme (TreX) from Sulfolobus solfataricus on glycogen-mimic substrates, branched maltotetraosyl-β-cyclodextrin (Glc₄-β-CD), and natural glycogen to better understand substrate transglycosylation and the effect thereof on glycogen debranching in microorganisms. The validation test of Glc₄-β-CD as a glycogen mimic substrate showed that it followed the breakdown process of the well-known yeast and rat liver extract. TreX catalyzed both hydrolysis of α-1,6-glycosidic linkages and transglycosylation at relatively high (>0.5 mM) substrate concentrations. TreX transferred maltotetraosyl moieties from the donor substrate to acceptor molecules, resulting in the formation of two positional isomers of dimaltotetraosyl-α-1,6-β-cyclodextrin [(Glc₄)₂-β-CD]; these were 6(1),6(3)- and 6(1),6(4)-dimaltotetraosyl-α-1,6-β-CD. Use of a modified Michaelis-Menten equation to study substrate transglycosylation revealed that the kcat and Km values for transglycosylation were 1.78 × 10(3) s(-1) and 3.30 mM, respectively, whereas the values for hydrolysis were 2.57 × 10(3) s(-1) and 0.206 mM, respectively. Also, enzyme catalytic efficiency (the kcat/Km ratio) increased as the degree of polymerization of branch chains rose. In the model reaction system of Escherichia coli, glucose-1-phosphate production from glycogen by the glycogen phosphorylase was elevated ∼1.45-fold in the presence of TreX compared to that produced in the absence of TreX. The results suggest that outward shifting of glycogen branch chains via transglycosylation increases the number of exposed chains susceptible to phosphorylase action. We developed a model of the glycogen breakdown process featuring both hydrolysis and transglycosylation catalyzed by the debranching enzyme.
Collapse
|
5
|
Genome-driven investigation of compatible solute biosynthesis pathways of Pseudomonas syringae pv. syringae and their contribution to water stress tolerance. Appl Environ Microbiol 2010; 76:5452-62. [PMID: 20581190 DOI: 10.1128/aem.00686-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The foliar pathogen Pseudomonas syringae pv. syringae exhibits an exceptional ability to survive on asymptomatic plants as an epiphyte. Intermittent wetting events on plants lead to osmotic and matric stresses which must be tolerated for survival as an epiphyte. In this study, we have applied bioinformatic, genetic, and biochemical approaches to address water stress tolerance in P. syringae pv. syringae strain B728a, for which a complete genome sequence is available. P. syringae pv. syringae B728a is able to produce the compatible solutes betaine, ectoine, N-acetylglutaminylglutamine amide (NAGGN), and trehalose. Analysis of osmolyte profiles of P. syringae pv. syringae B728a under a variety of in vitro and in planta conditions reveals that the osmolytes differentially contribute to water stress tolerance in this species and that they interact at the level of transcription to yield a hierarchy of expression. While the interruption of a putative gene cluster coding for NAGGN biosynthesis provided the first experimental evidence of the NAGGN biosynthetic pathway, application of this knockout strain and also a gfp reporter gene fusion strain demonstrated the small contribution of NAGGN to cell survival and desiccation tolerance of P. syringae pv. syringae B728a under in planta conditions. Additionally, detailed investigation of ectC, an orphan of the ectoine cluster (lacking the ectA and ectB homologs), revealed its functionality and that ectoine production could be detected in NaCl-amended cultures of P. syringae pv. syringae B728a to which sterilized leaves of Syringa vulgaris had been added.
Collapse
|
6
|
Park JT, Park HS, Kang HK, Hong JS, Cha H, Woo EJ, Kim JW, Kim MJ, Boos W, Lee S, Park KH. Oligomeric and functional properties of a debranching enzyme (TreX) from the archaeonSulfolobus solfataricusP2. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420701806652] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Role of maltogenic amylase and pullulanase in maltodextrin and glycogen metabolism of Bacillus subtilis 168. J Bacteriol 2009; 191:4835-44. [PMID: 19465663 DOI: 10.1128/jb.00176-09] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The physiological functions of two amylolytic enzymes, a maltogenic amylase (MAase) encoded by yvdF and a debranching enzyme (pullulanase) encoded by amyX, in the carbohydrate metabolism of Bacillus subtilis 168 were investigated using yvdF, amyX, and yvdF amyX mutant strains. An immunolocalization study revealed that YvdF was distributed on both sides of the cytoplasmic membrane and in the periplasm during vegetative growth but in the cytoplasm of prespores. Small carbohydrates such as maltoheptaose and beta-cyclodextrin (beta-CD) taken up by wild-type B. subtilis cells via two distinct transporters, the Mdx and Cyc ABC transporters, respectively, were hydrolyzed immediately to form smaller or linear maltodextrins. On the other hand, the yvdF mutant exhibited limited degradation of the substrates, indicating that, in the wild type, maltodextrins and beta-CD were hydrolyzed by MAase while being taken up by the bacterium. With glycogen and branched beta-CDs as substrates, pullulanase showed high-level specificity for the hydrolysis of the outer side chains of glycogen with three to five glucosyl residues. To investigate the roles of MAase and pullulanase in glycogen utilization, the following glycogen-overproducing strains were constructed: a glg mutant with a wild-type background, yvdF glg and amyX glg mutants, and a glg mutant with a double mutant (DM) background. The amyX glg and glg DM strains accumulated significantly larger amounts of glycogen than the glg mutant, while the yvdF glg strain accumulated an intermediate amount. Glycogen samples from the amyX glg and glg DM strains exhibited average molecular masses two and three times larger, respectively, than that of glycogen from the glg mutant. The results suggested that glycogen breakdown may be a sequential process that involves pullulanase and MAase, whereby pullulanase hydrolyzes the alpha-1,6-glycosidic linkage at the branch point to release a linear maltooligosaccharide that is then hydrolyzed into maltose and maltotriose by MAase.
Collapse
|
8
|
Lee JS, Hai T, Pape H, Kim TJ, Suh JW. Three trehalose synthetic pathways in the acarbose-producing Actinoplanes sp. SN223/29 and evidence for the TreY role in biosynthesis of component C. Appl Microbiol Biotechnol 2008; 80:767-78. [DOI: 10.1007/s00253-008-1582-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 06/18/2008] [Accepted: 06/18/2008] [Indexed: 11/30/2022]
|
9
|
Teramoto N, Sachinvala ND, Shibata M. Trehalose and trehalose-based polymers for environmentally benign, biocompatible and bioactive materials. Molecules 2008; 13:1773-816. [PMID: 18794785 PMCID: PMC6245314 DOI: 10.3390/molecules13081773] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2008] [Accepted: 08/11/2008] [Indexed: 12/20/2022] Open
Abstract
Trehalose is a non-reducing disaccharide that is found in many organisms but not in mammals. This sugar plays important roles in cryptobiosis of selaginella mosses, tardigrades (water bears), and other animals which revive with water from a state of suspended animation induced by desiccation. The interesting properties of trehalose are due to its unique symmetrical low-energy structure, wherein two glucose units are bonded face-to-face by 1→1-glucoside links. The Hayashibara Co. Ltd., is credited for developing an inexpensive, environmentally benign and industrial-scale process for the enzymatic conversion of α-1,4-linked polyhexoses to α,α-d-trehalose, which made it easy to explore novel food, industrial, and medicinal uses for trehalose and its derivatives. Trehalose-chemistry is a relatively new and emerging field, and polymers of trehalose derivatives appear environmentally benign, biocompatible, and biodegradable. The discriminating properties of trehalose are attributed to its structure, symmetry, solubility, kinetic and thermodynamic stability and versatility. While syntheses of trehalose-based polymer networks can be straightforward, syntheses and characterization of well defined linear polymers with tailored properties using trehalose-based monomers is challenging, and typically involves protection and deprotection of hydroxyl groups to attain desired structural, morphological, biological, and physical and chemical properties in the resulting products. In this review, we will overview known literature on trehalose’s fascinating involvement in cryptobiology; highlight its applications in many fields; and then discuss methods we used to prepare new trehalose-based monomers and polymers and explain their properties.
Collapse
Affiliation(s)
- Naozumi Teramoto
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan; E-mail:
- Author to whom correspondence should be addressed; E-Mail:
| | - Navzer D. Sachinvala
- Retired, Southern Regional Research Center, USDA-ARS, New Orleans, LA, USA; Home: 2261 Brighton Place, Harvey, LA 70058; E-mail:
| | - Mitsuhiro Shibata
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan; E-mail:
| |
Collapse
|
10
|
Woo EJ, Lee S, Cha H, Park JT, Yoon SM, Song HN, Park KH. Structural insight into the bifunctional mechanism of the glycogen-debranching enzyme TreX from the archaeon Sulfolobus solfataricus. J Biol Chem 2008; 283:28641-8. [PMID: 18703518 DOI: 10.1074/jbc.m802560200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TreX is an archaeal glycogen-debranching enzyme that exists in two oligomeric states in solution, as a dimer and tetramer. Unlike its homologs, TreX from Sulfolobus solfataricus shows dual activities for alpha-1,4-transferase and alpha-1,6-glucosidase. To understand this bifunctional mechanism, we determined the crystal structure of TreX in complex with an acarbose ligand. The acarbose intermediate was covalently bound to Asp363, occupying subsites -1 to -3. Although generally similar to the monomeric structure of isoamylase, TreX exhibits two different active-site configurations depending on its oligomeric state. The N terminus of one subunit is located at the active site of the other molecule, resulting in a reshaping of the active site in the tetramer. This is accompanied by a large shift in the "flexible loop" (amino acids 399-416), creating connected holes inside the tetramer. Mutations in the N-terminal region result in a sharp increase in alpha-1,4-transferase activity and a reduced level of alpha-1,6-glucosidase activity. On the basis of geometrical analysis of the active site and mutational study, we suggest that the structural lid (acids 99-97) at the active site generated by the tetramerization is closely associated with the bifunctionality and in particular with the alpha-1,4-transferase activity. These results provide a structural basis for the modulation of activities upon TreX oligomerization that may represent a common mode of action for other glycogen-debranching enzymes in higher organisms.
Collapse
Affiliation(s)
- Eui-Jeon Woo
- Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, 111 Gwahangno, Yuseong-gu, Daejeon 305-806
| | | | | | | | | | | | | |
Collapse
|
11
|
Park HS, Park JT, Kang HK, Cha H, Kim DS, Kim JW, Park KH. TreX from Sulfolobus solfataricus ATCC 35092 displays isoamylase and 4-alpha-glucanotransferase activities. Biosci Biotechnol Biochem 2007; 71:1348-52. [PMID: 17485831 DOI: 10.1271/bbb.70016] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A treX in the trehalose biosynthesis gene cluster of Sulfolobus solfataricus ATCC 35092 has been reported to produce TreX, which hydrolyzes the alpha-1,6-branch portion of amylopectin and glycogen. TreX exhibited 4-alpha-D-glucan transferase activity, catalyzing the transfer of alpha-1,4-glucan oligosaccharides from one molecule to another in the case of linear maltooligosaccharides (G3-G7), and it produced cyclic glucans from amylopectin and amylose like 4-alpha-glucanotransferase. These results suggest that TreX is a novel isoamylase possessing the properties of 4-alpha-glucanotransferase.
Collapse
Affiliation(s)
- Hye-Sun Park
- Center for Agricultural Biomaterials and Department of Food Science and Biotechnology, School of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
12
|
Fang TY, Tseng WC, Yu CJ, Shih TY. Characterization of the thermophilic isoamylase from the thermophilic archaeon Sulfolobus solfataricus ATCC 35092. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.molcatb.2005.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Kubota M, Sawatani I, Oku K, Takeuchi K, Murai S. The Development of α,α-Trehalose Production and Its Applications. J Appl Glycosci (1999) 2004. [DOI: 10.5458/jag.51.63] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Michio Kubota
- Amase Institute, Hayashibara Biochemical Laboratories Inc
| | - Ikuo Sawatani
- Amase Institute, Hayashibara Biochemical Laboratories Inc
| | - Kazuyuki Oku
- Amase Institute, Hayashibara Biochemical Laboratories Inc
| | | | | |
Collapse
|
14
|
Tzvetkov M, Klopprogge C, Zelder O, Liebl W. Genetic dissection of trehalose biosynthesis in Corynebacterium glutamicum: inactivation of trehalose production leads to impaired growth and an altered cell wall lipid composition. MICROBIOLOGY (READING, ENGLAND) 2003; 149:1659-1673. [PMID: 12855718 DOI: 10.1099/mic.0.26205-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The analysis of the available Corynebacterium genome sequence data led to the proposal of the presence of all three known pathways for trehalose biosynthesis in bacteria, i.e. trehalose synthesis from UDP-glucose and glucose 6-phosphate (OtsA-OtsB pathway), from malto-oligosaccharides or alpha-1,4-glucans (TreY-TreZ pathway), or from maltose (TreS pathway). Inactivation of only one of the three pathways by chromosomal deletion did not have a severe impact on C. glutamicum growth, while the simultaneous inactivation of the OtsA-OtsB and TreY-TreZ pathway or of all three pathways resulted in the inability of the corresponding mutants to synthesize trehalose and to grow efficiently on various sugar substrates in minimal media. This growth defect was largely reversed by the addition of trehalose to the culture broth. In addition, a possible pathway for glycogen synthesis from ADP-glucose involving glycogen synthase (GlgA) was discovered. C. glutamicum was found to accumulate significant amounts of glycogen when grown under conditions of sugar excess. Insertional inactivation of the chromosomal glgA gene led to the failure of C. glutamicum cells to accumulate glycogen and to the abolition of trehalose production in a DeltaotsAB background, demonstrating that trehalose production via the TreY-TreZ pathway is dependent on a functional glycogen biosynthetic route. The trehalose-non-producing mutant with inactivated OtsA-OtsB and TreY-TreZ pathways displayed an altered cell wall lipid composition when grown in minimal broth in the absence of trehalose. Under these conditions, the mutant lacked both major trehalose-containing glycolipids, i.e. trehalose monocorynomycolate and trehalose dicorynomycolate, in its cell wall lipid fraction. The results suggest that a dramatically altered cell wall lipid bilayer of trehalose-less C. glutamicum mutants may be responsible for the observed growth deficiency of such strains in minimal medium. The results of the genetic and physiological dissection of trehalose biosynthesis in C. glutamicum reported here may be of general relevance for the whole phylogenetic group of mycolic-acid-containing coryneform bacteria.
Collapse
Affiliation(s)
- Mladen Tzvetkov
- Institut für Mikrobiologie und Genetik, Georg-August-Universität, Grisebachstr. 8, D-37077 Göttingen, Germany
| | | | | | - Wolfgang Liebl
- Institut für Mikrobiologie und Genetik, Georg-August-Universität, Grisebachstr. 8, D-37077 Göttingen, Germany
| |
Collapse
|
15
|
Abstract
Trehalose (alpha-D-glucopyranosyl alpha-D-glucopyranoside) is a unique sugar capable of protecting biomolecules against environmental stress. It is a stable, colorless, odor-free and non-reducing disaccharide, and is widespread in nature. Trehalose has a key role in the survival of some plants and insects, termed anhydrobionts, in harsh environments, even when most of their water body is removed. The properties of these types of organisms drove attention towards the study of trehalose. Since then, it proved to be an active stabilizer of enzymes, proteins, biomasses, pharmaceutical preparations and even organs for transplantation. Recently, trehalose has been accepted as a safe food ingredient by the European regulation system following approval by the US Food and Drug Administration. The wide range of applications of this sugar has increased the interest of many research groups into the development of novel and economically feasible production systems. This article provides a comprehensive review of the current achievements in the biotechnological production of trehalose.
Collapse
Affiliation(s)
- Chiara Schiraldi
- Section of Biotechnology and Molecular Biology, Department of Experimental Medicine, Second University of Naples, via De Crecchio 7, 80138, Naples, Italy
| | | | | |
Collapse
|