1
|
Zhang Y, Zhang J, Tan Y, Wang X, Chen H, Yu H, Chen F, Yan X, Sun J, Luo J, Song F. Kidney transcriptome analysis reveals the molecular responses to salinity adaptation in largemouth bass (Micropterus salmoides). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 53:101362. [PMID: 39566113 DOI: 10.1016/j.cbd.2024.101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
Recently, against the background of increasing land salinization and global warming, many studies have examined the mechanisms of freshwater fish adaptation to elevated salinity. However, the mechanisms underlying salinity tolerance in the kidney of Micropterus salmoides, a popular saline aquaculture species, remain poorly understood. We used RNA-seq to explore the differentially expressed genes (DEGs) in the kidney of M. salmoides at 0 ‰, 5 ‰, and 10 ‰ salinity for 24 d and 48 d. These DEGs mainly affected metabolism-related pathways, such as secondary metabolite biosynthesis, arachidonic acid metabolism, etc., and immunity-related pathways, such as IL-17 signaling and ECM-receptor interaction. Trend analysis on days 24 and 48 showed that, as salinity increased, the up-regulated genes were notably enriched in the cytochrome P450 xenobiotic metabolic pathway, and down-regulated genes substantially linked to cell cycle, phagosome, etc. More importantly, we identified a total of 22 genes enriched in the cytochrome P450 xenobiotic metabolic pathway, including seven UDP-glucuronosyltransferase genes (UGTs) and five glutathione S-transferase genes (GSTs). We speculated that M. salmoides kidneys removed toxic substances produced due to salinity stress and mitigated oxidative damage by up-regulating UGTs and GSTs, hence maintaining normal physiological function. In addition, genes such as Cystatin A1, significantly up-regulated with increasing salinity stress and duration, favoured the recovery of kidney injury. This research delved into the molecular processes involved in the adaptability of M. salmoides to high salinity stress and provided valuable information for the future breeding of salinity-tolerant strains.
Collapse
Affiliation(s)
- Yichun Zhang
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University; State Key Laboratory of Marine Resource Utilization in South China Sea; Hainan Aquaculture Breeding Engineering Research Center; Hainan Academician Team Innovation Center; Sanya Nanfan Research Institute of Hainan University; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Jinxin Zhang
- Jiangsu Fisheries Technology Promotion Center, Nanjing 210036, China
| | - Yafang Tan
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University; State Key Laboratory of Marine Resource Utilization in South China Sea; Hainan Aquaculture Breeding Engineering Research Center; Hainan Academician Team Innovation Center; Sanya Nanfan Research Institute of Hainan University; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Xinxin Wang
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University; State Key Laboratory of Marine Resource Utilization in South China Sea; Hainan Aquaculture Breeding Engineering Research Center; Hainan Academician Team Innovation Center; Sanya Nanfan Research Institute of Hainan University; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Huapeng Chen
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University; State Key Laboratory of Marine Resource Utilization in South China Sea; Hainan Aquaculture Breeding Engineering Research Center; Hainan Academician Team Innovation Center; Sanya Nanfan Research Institute of Hainan University; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Haoran Yu
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University; State Key Laboratory of Marine Resource Utilization in South China Sea; Hainan Aquaculture Breeding Engineering Research Center; Hainan Academician Team Innovation Center; Sanya Nanfan Research Institute of Hainan University; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Feiyang Chen
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University; State Key Laboratory of Marine Resource Utilization in South China Sea; Hainan Aquaculture Breeding Engineering Research Center; Hainan Academician Team Innovation Center; Sanya Nanfan Research Institute of Hainan University; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Xinling Yan
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University; State Key Laboratory of Marine Resource Utilization in South China Sea; Hainan Aquaculture Breeding Engineering Research Center; Hainan Academician Team Innovation Center; Sanya Nanfan Research Institute of Hainan University; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Junlong Sun
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University; State Key Laboratory of Marine Resource Utilization in South China Sea; Hainan Aquaculture Breeding Engineering Research Center; Hainan Academician Team Innovation Center; Sanya Nanfan Research Institute of Hainan University; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Jian Luo
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University; State Key Laboratory of Marine Resource Utilization in South China Sea; Hainan Aquaculture Breeding Engineering Research Center; Hainan Academician Team Innovation Center; Sanya Nanfan Research Institute of Hainan University; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Feibiao Song
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University; State Key Laboratory of Marine Resource Utilization in South China Sea; Hainan Aquaculture Breeding Engineering Research Center; Hainan Academician Team Innovation Center; Sanya Nanfan Research Institute of Hainan University; School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China.
| |
Collapse
|
2
|
Agost‐Beltrán L, Canseco‐Rodríguez A, Schirmeister T, Rodríguez S, Sánchez‐Pérez AM, González FV. Profiling Cysteine Proteases Activities in Neuroinflammatory Cells. ChemMedChem 2025; 20:e202400520. [PMID: 39475209 PMCID: PMC11793851 DOI: 10.1002/cmdc.202400520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/19/2024] [Indexed: 11/21/2024]
Abstract
A new activity-based probe (ABP) of cysteine proteases (FGA139) has been designed and synthesized. The design of the ABP has been done based upon the chemical structure of an irreversible inhibitor of cysteine proteases by attaching a bodipy fluorophore at the N-terminus of the peptide backbone. The synthetic route of the probe has a metathesis and a "click" reaction as key steps. Although some studies have been reported about the role played by cysteine proteases in neurodegenerative diseases, there are not definitive conclusions. The obtained ABP has been employed as a chemical tool to profile activities of cysteine proteases cathepsins B, L, and calpain in neurodegenerative cell models through confocal imaging. Colocalization of the probe to specific antibodies of the proteases and competitive experiments with non-fluorescent inhibitors confirm the specificity of the ABP. From a theranostic perspective, our findings strongly suggest that FGA139 exhibits a protective role in various cell lines against oxidative stress or pro-inflammatory toxicity and it effectively attenuates macrophage activation triggered by LPS.
Collapse
Affiliation(s)
- Laura Agost‐Beltrán
- Departament de Química Inorgànica i OrgànicaUniversitat Jaume ICastelló de la Plana12071Spain
| | - Ania Canseco‐Rodríguez
- Neurobiotecnologia, Institute of advanced materials (INAM)Universitat Jaume ICastelló de la Plana12071Spain
- Faculty of Health SciencesUniversitat Jaume ICastelló de la Plana12071Spain
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical SciencesJohannes Gutenberg University MainzStaudinger Weg 5MainzD-55128Germany
| | - Santiago Rodríguez
- Departament de Química Inorgànica i OrgànicaUniversitat Jaume ICastelló de la Plana12071Spain
| | - Ana María Sánchez‐Pérez
- Neurobiotecnologia, Institute of advanced materials (INAM)Universitat Jaume ICastelló de la Plana12071Spain
- Faculty of Health SciencesUniversitat Jaume ICastelló de la Plana12071Spain
| | - Florenci V. González
- Departament de Química Inorgànica i OrgànicaUniversitat Jaume ICastelló de la Plana12071Spain
| |
Collapse
|
3
|
Gurner KH, Gardner DK. Blastocyst-Derived Lactate as a Key Facilitator of Implantation. Biomolecules 2025; 15:100. [PMID: 39858494 PMCID: PMC11764449 DOI: 10.3390/biom15010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
The blastocyst develops a unique metabolism that facilitates the creation of a specialized microenvironment at the site of implantation characterized by high levels of lactate and reduced pH. While historically perceived as a metabolic waste product, lactate serves as a signaling molecule which facilitates the invasion of surrounding tissues by cancers and promotes blood vessel formation during wound healing. However, the role of lactate in reproduction, particularly at the implantation site, is still being considered. Here, we detail the biological significance of the microenvironment created by the blastocyst at implantation, exploring the origin and significance of blastocyst-derived lactate, its functional role at the implantation site and how understanding this mediator of the maternal-fetal dialogue may help to improve implantation in assisted reproduction.
Collapse
Affiliation(s)
| | - David K. Gardner
- Melbourne IVF, East Melbourne, VIC 3002, Australia;
- School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
4
|
Wang Y, Wang Y, Jiang Y, Qin Q, Wei S. The essential function of cathepsin X of the orange-spotted grouper, Epinephelus coioides during SGIV infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105278. [PMID: 39395685 DOI: 10.1016/j.dci.2024.105278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
Cathepsin X, a class of cysteine proteases in the lysosome, involved in intracellular protein degradation processes. Numerous reports revealed that many kinds of cysteine proteases played a crucial role in pathogen invasion. To investigate the relationship between cathepsin X of teleost fish and virus infection, EcCX was cloned and characterized in the orange-spotted grouper, Epinephelus coioides. The open reading frame (ORF) of EcCX included 909 nucleotides and encoded a protein consisting of 302 amino acids, which shared 75% and 56% identity with zebrafish and humans, respectively. The protein EcCX mainly consisted of a signal peptide (1-19 aa), a pro-pre-peptide region (20-55 aa), and a mature cysteine protease region (56-302 aa). Subcellular localization analysis showed that EcCX was mainly distributed in the cytoplasm, but EcCX ectoped to the vicinity of apoptotic vesicles in FHM cells during SGIV infection. Following stimulation with SGIV or Poly (dA:dT), there was a notable rise in the expression levels of EcCX. EcCX overexpression facilitated virus infection, upregulated the production of inflammatory factors, and induced the activation of the NF-κB promoter. Furthermore, the overexpression of EcCX also accelerated the process of SGIV-induced apoptosis, potentially by enhancing the promoter activity of P53 and AP-1. Overall, our findings demonstrated a correlation between the function of EcCX and SGIV infection, providing a new understanding of the mechanisms involved in fish virus infection.
Collapse
Affiliation(s)
- Yuexuan Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yewen Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yunxiang Jiang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511457, China.
| | - Shina Wei
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511457, China.
| |
Collapse
|
5
|
Gini ALR, João EE, Lopes JR, Da Cunha PST, Velasquez AMA, Graminha MAS, Dos Santos JL, Scarim CB. Advances in Cysteine Protease B Inhibitors for Leishmaniasis Treatment. Curr Drug Targets 2025; 26:88-108. [PMID: 39350405 DOI: 10.2174/0113894501324437240919064715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 02/27/2025]
Abstract
The expression and release of cysteine proteases by Leishmania spp. and their virulence factors significantly influence the modulation of host immune responses and metabolism, rendering cysteine proteases intriguing targets for drug development. This review article explores the substantial role of cysteine protease B (CPB) in medicinal chemistry from 2001 to 2024, particularly concerning combatting Leishmania parasites. We delve into contemporary advancements and potential prospects associated with targeting cysteine proteases for therapeutic interventions against leishmaniasis, emphasizing drug discovery in this context. Computational analysis using the pkCSM tool assessed the physicochemical properties of compounds, providing valuable insights into their molecular characteristics and drug-like potential, enriching our understanding of the pharmacological profiles, and aiding rational inhibitor design. Our investigation highlights that while nonpeptidic compounds constitute the majority (69.2%, 36 compounds) of the dataset, peptidomimetic- based derivatives (30.8%, 16 compounds) also hold promise in medicinal chemistry. Evaluating the most promising compounds based on dissociation constant (Ki) and half maximal inhibitory concentration (IC50) values revealed notable potency, with 41.7% and 80.0% of nonpeptidic compounds exhibiting values < 1 μM, respectively. On the other hand, all peptidic compounds evaluated for Ki (43.8%) and IC50 (31.3%) obtained values < 1 μM, respectively. Further analysis identified specific compounds within both categories (nonpeptidic: 1, 2, and 4; peptidic: 48-52) as particularly promising, warranting deeper investigation into their structure-activity relationships. These findings underscore the diverse landscape of inhibitors in medicinal chemistry and highlight the potential of both nonpeptidic and peptide-based compounds as valuable assets in therapeutic development against leishmaniasis.
Collapse
Affiliation(s)
- Ana Luisa Rodriguez Gini
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Emilio Emilio João
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Juliana Romano Lopes
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Pamela Souza Tada Da Cunha
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Angela Maria Arenas Velasquez
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Marcia Aparecida Silva Graminha
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Jean Leandro Dos Santos
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Caue Benito Scarim
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, SP, Brazil
| |
Collapse
|
6
|
Zheng S, Chen H, Lin Q, Zhu S. Effect of dentin conditioners on dentin bond strength: A systematic review and meta-analysis. J Prosthet Dent 2024; 132:509.e1-509.e11. [PMID: 38981805 DOI: 10.1016/j.prosdent.2024.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 07/11/2024]
Abstract
STATEMENT OF PROBLEM Although composite resin restorations have been widely used for dental restorations, the durability of the bond affects the rate of restoration failure. However, how multiple strategies for enhancing the resin-dentin bond affect durability is unclear. PURPOSE The purpose of this systematic review and meta-analysis was to evaluate the impact of dentin conditioners on resin-dentin bond strength with different pretreatments before the application of adhesives. MATERIAL AND METHODS The PubMed, Web of Science, EMBASE, and Cochrane Library databases were searched from 2013 to July 2023 for in vitro studies that evaluated the impact of dentin conditioners on resin-dentin bond strength. The meta-analysis was conducted using a random-effects model with pooled effect as standardized mean differences (α=.05). RESULTS A total of 23 studies met the inclusion criteria for qualitative analysis, of which 15 were used for quantitative analysis. The results demonstrated that, under dry bonding conditions, selective extrafibrillar demineralization dentin conditioners significantly enhanced the immediate bond strength (P<.001). The long-term bond strength was limited by the sample size of the subgroup, but a significant effect was found after using selective extrafibrillar demineralization dentin conditioners (P<.001). However, metal salt-based dentin conditioners improved the immediate bond strength only under wet bonding conditions (P=.010). Notably, acid-based dentin conditioners significantly improved the long-term bond strength under both dry and wet bonding conditions (P<.001 and P=.006). CONCLUSIONS The application of acid-based dentin conditioners significantly improved resin-dentin bond durability under both wet and dry bonding conditions. Furthermore, selective extrafibrillar demineralization dentin conditioners demonstrated remarkable effectiveness in improving resin-dentin bond durability under dry bonding conditions; however, more data are needed to support their use.
Collapse
Affiliation(s)
- Shuyao Zheng
- Postgraduate student, Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, PR China
| | - Huan Chen
- Postgraduate student, Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, PR China
| | - Qi Lin
- Postgraduate student, Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, PR China
| | - Song Zhu
- Professor, Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, PR China.
| |
Collapse
|
7
|
Navratna V, Kumar A, Rana JK, Mosalaganti S. Structure of the human heparan-α-glucosaminide N-acetyltransferase (HGSNAT). eLife 2024; 13:RP93510. [PMID: 39196614 DOI: 10.7554/elife.93510] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
Degradation of heparan sulfate (HS), a glycosaminoglycan (GAG) comprised of repeating units of N-acetylglucosamine and glucuronic acid, begins in the cytosol and is completed in the lysosomes. Acetylation of the terminal non-reducing amino group of α-D-glucosamine of HS is essential for its complete breakdown into monosaccharides and free sulfate. Heparan-α-glucosaminide N-acetyltransferase (HGSNAT), a resident of the lysosomal membrane, catalyzes this essential acetylation reaction by accepting and transferring the acetyl group from cytosolic acetyl-CoA to terminal α-D-glucosamine of HS in the lysosomal lumen. Mutation-induced dysfunction in HGSNAT causes abnormal accumulation of HS within the lysosomes and leads to an autosomal recessive neurodegenerative lysosomal storage disorder called mucopolysaccharidosis IIIC (MPS IIIC). There are no approved drugs or treatment strategies to cure or manage the symptoms of, MPS IIIC. Here, we use cryo-electron microscopy (cryo-EM) to determine a high-resolution structure of the HGSNAT-acetyl-CoA complex, the first step in the HGSNAT-catalyzed acetyltransferase reaction. In addition, we map the known MPS IIIC mutations onto the structure and elucidate the molecular basis for mutation-induced HGSNAT dysfunction.
Collapse
Affiliation(s)
- Vikas Navratna
- Life Sciences Institute, University of Michigan, Ann Arbor, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Arvind Kumar
- Thermo Fisher Scientific, Waltham, United States
| | - Jaimin K Rana
- Life Sciences Institute, University of Michigan, Ann Arbor, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Shyamal Mosalaganti
- Life Sciences Institute, University of Michigan, Ann Arbor, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States
- Department of Biophysics, College of Literature, Science and the Arts, University of Michigan, Ann Arbor, United States
| |
Collapse
|
8
|
Chiappa G, Fassio G, Modica MV, Oliverio M. Potential Ancestral Conoidean Toxins in the Venom Cocktail of the Carnivorous Snail Raphitoma purpurea (Montagu, 1803) (Neogastropoda: Raphitomidae). Toxins (Basel) 2024; 16:348. [PMID: 39195758 PMCID: PMC11359391 DOI: 10.3390/toxins16080348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Venomous marine gastropods of the superfamily Conoidea possess a rich arsenal of toxins, including neuroactive toxins. Venom adaptations might have played a fundamental role in the radiation of conoideans; nevertheless, there is still no knowledge about the venom of the most diversified family of the group: Raphitomidae Bellardi, 1875. In this study, transcriptomes were produced from the carcase, salivary glands, and proximal and distal venom ducts of the northeastern Atlantic species Raphitoma purpurea (Montagu, 1803). Using a gut barcoding approach, we were also able to report, for the first time, molecular evidence of a vermivorous diet for the genus. Transcriptomic analyses revealed over a hundred putative venom components (PVC), including 69 neurotoxins. Twenty novel toxin families, including some with high levels of expansion, were discovered. No significant difference was observed between the distal and proximal venom duct secretions. Peptides related to cone snail toxins (Cerm06, Pgam02, and turritoxin) and other venom-related proteins (disulfide isomerase and elevenin) were retrieved from the salivary glands. These salivary venom components may constitute ancestral adaptations for venom production in conoideans. Although often neglected, salivary gland secretions are of extreme importance for understanding the evolutionary history of conoidean venom.
Collapse
Affiliation(s)
- Giacomo Chiappa
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Viale dell’Università 32, 00185 Rome, Italy; (G.F.); (M.O.)
| | - Giulia Fassio
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Viale dell’Università 32, 00185 Rome, Italy; (G.F.); (M.O.)
| | - Maria Vittoria Modica
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Via Gregorio Allegri 1, 00198 Rome, Italy;
| | - Marco Oliverio
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Viale dell’Università 32, 00185 Rome, Italy; (G.F.); (M.O.)
| |
Collapse
|
9
|
Jia T, Liu T, Hu S, Li Y, Chen P, Qin F, He Y, Han F, Zhang C. Uncovering novel drug targets for bipolar disorder: a Mendelian randomization analysis of brain, cerebrospinal fluid, and plasma proteomes. Psychol Med 2024; 54:2996-3006. [PMID: 38720515 DOI: 10.1017/s0033291724001077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
BACKGROUND There is a clear demand for innovative therapeutics for bipolar disorder (BD). METHODS We integrated the largest BD genome-wide association study (GWAS) dataset (NCase = 41 917, NControl = 371 549) with protein quantitative trait loci from brain, cerebrospinal fluid, and plasma. Using a range of integrative analyses, including Mendelian randomization (MR), Steiger filter analysis, Bayesian colocalization, and phenome-wide MR analysis, we prioritized novel drug targets for BD. Additionally, we incorporated data from the UK Biobank (NCase = 1064, NControl = 365 476) and the FinnGen study (NCase = 7006, NControl = 329 192) for robust biological validation. RESULTS Through MR analysis, we found that in the brain, downregulation of DNM3, MCTP1, ABCB8 and elevation of DFNA5 and PDF were risk factors for BD. In cerebrospinal fluid, increased BD risk was associated with increased levels of FRZB, AGRP, and IL36A and decreased CTSF and LRP8. Plasma analysis revealed that decreased LMAN2L, CX3CL1, PI3, NCAM1, and TIMP4 correlated with increased BD risk, but ITIH1 did not. All these proteins passed Steiger filtering, and Bayesian colocalization confirmed that 12 proteins were colocalized with BD. Phenome-wide MR analysis revealed no significant side effects for potential drug targets, except for LRP8. External validation further underscored the concordance between the primary and validation cohorts, confirming MCTP1, DNM3, PDF, CTSF, AGRP, FRZB, LMAN2L, NCAM1, and TIMP4 are intriguing targets for BD. CONCLUSIONS Our study identified druggable proteins for BD, including MCTP1, DNM3, and PDF in the brain; CTSF, AGRP, and FRZB in cerebrospinal fluid; and LMAN2L, NCAM1, and TIMP4 in plasma, delineating promising avenues to development of novel therapies.
Collapse
Affiliation(s)
- Tingting Jia
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Department of Gastroenterology and Hepatology and Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Tiancheng Liu
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Shiyi Hu
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yongjun Li
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Peixi Chen
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Fengqin Qin
- Department of Neurology, the 3rd Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Yongji He
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Feng Han
- Department of Emergency Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Chengcheng Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Liu XH, Liu XT, Wu Y, Li SA, Ren KD, Cheng M, Huang B, Yang Y, Liu PP. Broadening Horizons: Exploring the Cathepsin Family as Therapeutic Targets for Alzheimer's Disease. Aging Dis 2024:AD.2024.0456. [PMID: 39122455 DOI: 10.14336/ad.2024.0456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/02/2024] [Indexed: 08/12/2024] Open
Abstract
Alzheimer's disease (AD) is an intricate neurodegenerative disorder characterized by the accumulation of misfolded proteins, including beta-amyloid (Aβ) and tau, leading to cognitive decline. Despite decades of research, the precise mechanisms underlying its onset and progression remain elusive. Cathepsins are a family of lysosomal enzymes that play vital roles in cellular processes, including protein degradation and regulation of immune responses. Emerging evidence suggests that cathepsins may be involved in AD pathogenesis. Cathepsins can influence the activation of microglia and astrocytes, the resident immune cells in the brain. However, cathepsin dysfunction may lead to the accumulation of misfolded proteins, notably Aβ and tau. In addition, dysregulated cathepsin activity may induce an exaggerated immune response, promoting chronic inflammation and neuronal dysfunction in patients with AD. By unraveling the classification, functions, and roles of cathepsins in AD's pathogenesis, this review sheds light on their intricate involvement in this devastating disease. Targeting cathepsin activity could be a promising and novel approach for mitigating the pathological processes that contribute to AD, providing new avenues for its treatment and prevention.
Collapse
Affiliation(s)
- Xiao-Hui Liu
- Clinical Systems Biology Laboratories, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiao-Tong Liu
- Clinical Laboratory, the First Hospital of Yongnian District, Yongnian, Hebei, China
| | - Yue Wu
- Clinical Systems Biology Laboratories, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shu-Ang Li
- Clinical Systems Biology Laboratories, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kai-Di Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Meng Cheng
- Translational Medical Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bing Huang
- Brain Function and Disease Laboratory, Shantou University Medical College, Shantou, China
| | - Yang Yang
- Clinical Systems Biology Laboratories, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Pei-Pei Liu
- Clinical Systems Biology Laboratories, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
11
|
Jiang C, Kong D, Li Y, Sun J, Chen Z, Yang M, Cao S, Yu C, Wang Z, Jiang J, Zhu C, Zhang N, Sun G, Zhang Q. Degradation and mechanism analysis of protein macromolecules by functional bacteria in tobacco leaves. Front Microbiol 2024; 15:1416734. [PMID: 39035444 PMCID: PMC11258012 DOI: 10.3389/fmicb.2024.1416734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/27/2024] [Indexed: 07/23/2024] Open
Abstract
Tobacco, a crop of significant economic importance, was greatly influenced in leaf quality by protein content. However, current processing parameters fail to adequately meet the requirements for protein degradation. Microorganisms possess potential advantages for degrading proteins and enhancing the quality of tobacco leaves, and hold substantial potential in the process of curing. To effectively reduce the protein content in tobacco leaves, thereby improving the quality and safety of the tobacco leaves. In this study, tobacco leaf were used as experimental material. From these, the BSP1 strain capable of effectively degrading proteins was isolated and identified as Bacillus subtilis by 16S rDNA analysis. Furthermore, the mechanisms were analyzed by integrating microbiome, transcriptome, and metabolome. Before curing, BSP1 was applied to the surface of tobacco leaves. The results indicated that BSP1 effectively improves the activity of key enzymes and the content of related substances, thereby enhancing protein degradation. Additionally, protein degradation was achieved by regulating the diversity of the microbial community on the surface of the tobacco leaves and the ubiquitin-proteasome pathway. This study provided new strategies for extracting and utilizing functional strains from tobacco leaves, opening new avenues for enhancing the quality of tobacco leaves.
Collapse
Affiliation(s)
- Chuandong Jiang
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Decai Kong
- Shandong China Tobacco Industry Co., Ltd., Jinan, China
| | - Yangyang Li
- Hunan Tobacco Research Institute, Changsha, China
| | - Jingguo Sun
- Hubei Provincial Tobacco Research Institute, Wuhan, China
| | - Zhenguo Chen
- Hubei Provincial Tobacco Research Institute, Wuhan, China
| | - Mingfeng Yang
- Shandong China Tobacco Industry Co., Ltd., Jinan, China
| | - Shoutao Cao
- Shandong China Tobacco Industry Co., Ltd., Jinan, China
| | - Cunfeng Yu
- Shandong China Tobacco Industry Co., Ltd., Jinan, China
| | - Zengyu Wang
- Shandong China Tobacco Industry Co., Ltd., Jinan, China
| | - Jiazhu Jiang
- Shandong China Tobacco Industry Co., Ltd., Jinan, China
| | | | - Nan Zhang
- Shandong China Tobacco Industry Co., Ltd., Jinan, China
| | - Guangwei Sun
- Hubei Provincial Tobacco Research Institute, Wuhan, China
| | - Qiang Zhang
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
12
|
Chi WY, Lee GH, Tang MJ, Chen BH, Lin WL, Fu TF. Disturbed intracellular folate homeostasis impairs autophagic flux and increases hepatocytic lipid accumulation. BMC Biol 2024; 22:146. [PMID: 38956599 PMCID: PMC11220954 DOI: 10.1186/s12915-024-01946-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Metabolic associated fatty liver disease (MAFLD), a prevalent liver disorder affecting one-third of the global population, encompasses a spectrum ranging from fatty liver to severe hepatic steatosis. Both genetic and lifestyle factors, particularly diet and nutrition, contribute to its etiology. Folate deficiency, a frequently encountered type of malnutrition, has been associated with the pathogenesis of MAFLD and shown to impact lipid deposition. However, the underlying mechanisms of this relationship remain incompletely understood. We investigated the impact of disturbed folate-mediated one-carbon metabolism (OCM) on hepatic lipid metabolism both in vitro using human hepatoma cells and in vivo using transgenic fluorescent zebrafish displaying extent-, stage-, and duration-controllable folate deficiency upon induction. RESULTS Disturbed folate-mediated one-carbon metabolism, either by inducing folate deficiency or adding anti-folate drug, compromises autophagy and causes lipid accumulation in liver cells. Disturbed folate status down-regulates cathepsin L, a key enzyme involved in autophagy, through inhibiting mTOR signaling. Interfered mitochondrial biology, including mitochondria relocation and increased fusion-fission dynamics, also occurs in folate-deficient hepatocytes. Folate supplementation effectively mitigated the impaired autophagy and lipid accumulation caused by the inhibition of cathepsin L activity, even when the inhibition was not directly related to folate deficiency. CONCLUSIONS Disruption of folate-mediated OCM diminishes cathepsin L expression and impedes autophagy via mTOR signaling, leading to lipid accumulation within hepatocytes. These findings underscore the crucial role of folate in modulating autophagic processes and regulating lipid metabolism in the liver.
Collapse
Affiliation(s)
- Wan-Yu Chi
- The Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Gang-Hui Lee
- International Center for Wound Repair & Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Jer Tang
- International Center for Wound Repair & Regeneration, National Cheng Kung University, Tainan, Taiwan
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bing-Hung Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wei-Ling Lin
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, No. 1, University Rd, Tainan, 701, Taiwan
| | - Tzu-Fun Fu
- The Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, No. 1, University Rd, Tainan, 701, Taiwan.
| |
Collapse
|
13
|
Navratna V, Kumar A, Rana JK, Mosalaganti S. Structure of the human heparan-α-glucosaminide N-acetyltransferase (HGSNAT). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.23.563672. [PMID: 37961489 PMCID: PMC10634761 DOI: 10.1101/2023.10.23.563672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Degradation of heparan sulfate (HS), a glycosaminoglycan (GAG) comprised of repeating units of N-acetylglucosamine and glucuronic acid, begins in the cytosol and is completed in the lysosomes. Acetylation of the terminal non-reducing amino group of a-D-glucosamine of HS is essential for its complete breakdown into monosaccharides and free sulfate. Heparan-a-glucosaminide N-acetyltransferase (HGSNAT), a resident of the lysosomal membrane, catalyzes this essential acetylation reaction by accepting and transferring the acetyl group from cytosolic acetyl-CoA to terminal a-D-glucosamine of HS in the lysosomal lumen. Mutation-induced dysfunction in HGSNAT causes abnormal accumulation of HS within the lysosomes and leads to an autosomal recessive neurodegenerative lysosomal storage disorder called mucopolysaccharidosis IIIC (MPS IIIC). There are no approved drugs or treatment strategies to cure or manage the symptoms of, MPS IIIC. Here, we use cryo-electron microscopy (cryo-EM) to determine a high-resolution structure of the HGSNAT-acetyl-CoA complex, the first step in HGSNAT catalyzed acetyltransferase reaction. In addition, we map the known MPS IIIC mutations onto the structure and elucidate the molecular basis for mutation-induced HGSNAT dysfunction.
Collapse
Affiliation(s)
- Vikas Navratna
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Arvind Kumar
- Thermo Fisher Scientific, Waltham, Massachusetts, 02451, United States
| | - Jaimin K. Rana
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Shyamal Mosalaganti
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109, United States
- Department of Biophysics, College of Literature, Science and the Arts, University of Michigan, Ann Arbor, Michigan, 48109, United States
| |
Collapse
|
14
|
Yaya-Candela AP, Ravagnani FG, Dietrich N, Sousa R, Baptista MS. Specific photodamage on HT-29 cancer cells leads to endolysosomal failure and autophagy blockage by cathepsin depletion. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 255:112919. [PMID: 38677261 DOI: 10.1016/j.jphotobiol.2024.112919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Endolysosomes perform a wide range of cellular functions, including nutrient sensing, macromolecule digestion and recycling, as well as plasma membrane repair. Because of their high activity in cancerous cells, endolysosomes are attractive targets for the development of novel cancer treatments. Light-activated compounds termed photosensitizers (PS) can catalyze the oxidation of specific biomolecules and intracellular organelles. To selectively damage endosomes and lysosomes, HT-29 colorectal cancer cells were incubated with nanomolar concentrations of meso-tetraphenylporphine disulfonate (TPPS2a), an amphiphilic PS taken up via endocytosis and activated by green light (522 nm, 2.1 J.cm-1). Several cellular responses were characterized by a combination of immunofluorescence and immunoblotting assays. We showed that TPPS2a photosensitization blocked autophagic flux without extensive endolysosomal membrane rupture. Nevertheless, there was a severe functional failure of endolysosomes due to a decrease in CTSD (cathepsin D, 55%) and CTSB (cathepsin B, 52%) maturation. PSAP (prosaposin) processing (into saposins) was also considerably impaired, a fact that could be detrimental to glycosphingolipid homeostasis. Therefore, photosensitization of HT-29 cells previously incubated with a low concentration of TPPS2a promotes endolysosomal dysfunction, an effect that can be used to improve cancer therapies.
Collapse
Affiliation(s)
| | | | - Natasha Dietrich
- Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Rafaela Sousa
- Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
15
|
Xu H, Wang X, Zhang Z, Hu J, Yu Y, Wang J, Liu Y, Liu J. Staphylococcus aureus promotes its intracellular survival by inhibiting Rab11-Rab11FIP4-mediated vesicle trafficking. Vet Microbiol 2024; 293:110091. [PMID: 38626624 DOI: 10.1016/j.vetmic.2024.110091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/18/2024]
Abstract
Mastitis in dairy cows is mainly caused by bacteria, in which Staphylococcus aureus appears frequently. Epithelial cells, as a major physical barrier of mammary gland, play an important role in preventing mastitis in dairy cows. Our previous study reported that Rab11fip4 (an effector of Rab11) was significantly changed in response to stimulation by S. aureus. So, in this study, the role of Rab11A in phagocytosis of bovine mammary epithelial cells (MAC-T) against S. aureus was evaluated. First, changes of Rab11A and Rab11fip4 were analyzed in response to S. aureus by immunofluorescence and western blotting. Subsequently, the effects of Rab11A and Rab11fip4 on proliferation of S. aureus, as well as formation and function of late endosomes (LEs) and lysosomes (LYSs) were investigated. The results showed that, after infection, Rab11A and Rab11fip4 were recruited to phagosomes containing S. aureus. Rab11A promoted bacterial clearance and rescues the destruction of LEs and LYSs by S. aureus, whereas Rab11fip4 did the opposite. These findings provide new insights into phagocytosis and control of S. aureus in host cells, thus lay the foundation to elucidate the pathogenesis of S. aureus in bovine mastitis.
Collapse
Affiliation(s)
- Huiling Xu
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong 271018, China
| | - Xiaozhou Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong 271018, China
| | - Zhizhong Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong 271018, China
| | - Jiaqing Hu
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong 271018, China
| | - Yongtao Yu
- School of Animal Science and Technology, Ningxia University, Yinchuan 750000, China
| | - Jiandong Wang
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia 750002, China
| | - Yongxia Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong 271018, China; Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai`an, Shandong 271018, China.
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong 271018, China.
| |
Collapse
|
16
|
Kim M, Park JH, Go M, Lee N, Seo J, Lee H, Kim D, Ha H, Kim T, Jeong MS, Kim S, Kim T, Kim HS, Kang D, Shim H, Lee SY. RUFY4 deletion prevents pathological bone loss by blocking endo-lysosomal trafficking of osteoclasts. Bone Res 2024; 12:29. [PMID: 38744829 PMCID: PMC11094054 DOI: 10.1038/s41413-024-00326-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 02/01/2024] [Accepted: 03/08/2024] [Indexed: 05/16/2024] Open
Abstract
Mature osteoclasts degrade bone matrix by exocytosis of active proteases from secretory lysosomes through a ruffled border. However, the molecular mechanisms underlying lysosomal trafficking and secretion in osteoclasts remain largely unknown. Here, we show with GeneChip analysis that RUN and FYVE domain-containing protein 4 (RUFY4) is strongly upregulated during osteoclastogenesis. Mice lacking Rufy4 exhibited a high trabecular bone mass phenotype with abnormalities in osteoclast function in vivo. Furthermore, deleting Rufy4 did not affect osteoclast differentiation, but inhibited bone-resorbing activity due to disruption in the acidic maturation of secondary lysosomes, their trafficking to the membrane, and their secretion of cathepsin K into the extracellular space. Mechanistically, RUFY4 promotes late endosome-lysosome fusion by acting as an adaptor protein between Rab7 on late endosomes and LAMP2 on primary lysosomes. Consequently, Rufy4-deficient mice were highly protected from lipopolysaccharide- and ovariectomy-induced bone loss. Thus, RUFY4 plays as a new regulator in osteoclast activity by mediating endo-lysosomal trafficking and have a potential to be specific target for therapies against bone-loss diseases such as osteoporosis.
Collapse
Affiliation(s)
- Minhee Kim
- Department of Life Science, Ewha Womans University, Seoul, 03760, South Korea
| | - Jin Hee Park
- Department of Life Science, Ewha Womans University, Seoul, 03760, South Korea
- The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, 03760, South Korea
| | - Miyeon Go
- Department of Life Science, Ewha Womans University, Seoul, 03760, South Korea
| | - Nawon Lee
- Department of Life Science, Ewha Womans University, Seoul, 03760, South Korea
| | - Jeongin Seo
- Department of Life Science, Ewha Womans University, Seoul, 03760, South Korea
| | - Hana Lee
- Department of Biomedical Engineering, Yonsei University, Wonju, 26493, South Korea
| | - Doyong Kim
- Department of Biomedical Engineering, Yonsei University, Wonju, 26493, South Korea
| | - Hyunil Ha
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054, South Korea
| | - Taesoo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054, South Korea
| | - Myeong Seon Jeong
- Chuncheon Center, Korea Basic Science Institute, Chuncheon, 24341, South Korea
| | - Suree Kim
- Fluorescence Core Imaging Center and Bioimaging Data Curation Center, Ewha Womans University, Seoul, 03760, South Korea
| | - Taesoo Kim
- Department of Life Science, Ewha Womans University, Seoul, 03760, South Korea
- The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, 03760, South Korea
- Multitasking Macrophage Research Center, Ewha Womans University, Seoul, 03760, South Korea
| | - Han Sung Kim
- Department of Biomedical Engineering, Yonsei University, Wonju, 26493, South Korea
| | - Dongmin Kang
- Department of Life Science, Ewha Womans University, Seoul, 03760, South Korea
- Fluorescence Core Imaging Center and Bioimaging Data Curation Center, Ewha Womans University, Seoul, 03760, South Korea
| | - Hyunbo Shim
- Department of Life Science, Ewha Womans University, Seoul, 03760, South Korea
| | - Soo Young Lee
- Department of Life Science, Ewha Womans University, Seoul, 03760, South Korea.
- The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, 03760, South Korea.
- Multitasking Macrophage Research Center, Ewha Womans University, Seoul, 03760, South Korea.
| |
Collapse
|
17
|
Yang H, Zhou JN, Zhang XM, Ling DD, Sun YB, Li CY, Zhou QQ, Shi GN, Wang SH, Lin XS, Fan T, Wang HY, Zeng Q, Jia YL, Xi JF, Jin YG, Pei XT, Yue W. Nanoengineered Red Blood Cells Loaded with TMPRSS2 and Cathepsin L Inhibitors Block SARS-CoV-2 Pseudovirus Entry into Lung ACE2 + Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310306. [PMID: 38194699 DOI: 10.1002/adma.202310306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/27/2023] [Indexed: 01/11/2024]
Abstract
The enzymatic activities of Furin, Transmembrane serine proteinase 2 (TMPRSS2), Cathepsin L (CTSL), and Angiotensin-converting enzyme 2 (ACE2) receptor binding are necessary for the entry of coronaviruses into host cells. Precise inhibition of these key proteases in ACE2+ lung cells during a viral infection cycle shall prevent viral Spike (S) protein activation and its fusion with a host cell membrane, consequently averting virus entry to the cells. In this study, dual-drug-combined (TMPRSS2 inhibitor Camostat and CTSL inhibitor E-64d) nanocarriers (NCs) are constructed conjugated with an anti-human ACE2 (hACE2) antibody and employ Red Blood Cell (RBC)-hitchhiking, termed "Nanoengineered RBCs," for targeting lung cells. The significant therapeutic efficacy of the dual-drug-loaded nanoengineered RBCs in pseudovirus-infected K18-hACE2 transgenic mice is reported. Notably, the modular nanoengineered RBCs (anti-receptor antibody+NCs+RBCs) precisely target key proteases of host cells in the lungs to block the entry of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), regardless of virus variations. These findings are anticipated to benefit the development of a series of novel and safe host-cell-protecting antiviral therapies.
Collapse
Affiliation(s)
- Hui Yang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jun-Nian Zhou
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xue-Mei Zhang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Dan-Dan Ling
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ying-Bao Sun
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Chen-Yan Li
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Qian-Qian Zhou
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Gao-Na Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Si-Han Wang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xiao-Song Lin
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Tao Fan
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Hai-Yang Wang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Quan Zeng
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ya-Li Jia
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jia-Fei Xi
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yi-Guang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xue-Tao Pei
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Wen Yue
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| |
Collapse
|
18
|
Stoka V, Vasiljeva O, Nakanishi H, Turk V. The Role of Cysteine Protease Cathepsins B, H, C, and X/Z in Neurodegenerative Diseases and Cancer. Int J Mol Sci 2023; 24:15613. [PMID: 37958596 PMCID: PMC10650516 DOI: 10.3390/ijms242115613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Papain-like cysteine proteases are composed of 11 human cysteine cathepsins, originally located in the lysosomes. They exhibit broad specificity and act as endopeptidases and/or exopeptidases. Among them, only cathepsins B, H, C, and X/Z exhibit exopeptidase activity. Recently, cysteine cathepsins have been found to be present outside the lysosomes and often participate in various pathological processes. Hence, they have been considered key signalling molecules. Their potentially hazardous proteolytic activities are tightly regulated. This review aims to discuss recent advances in understanding the structural aspects of these four cathepsins, mechanisms of their zymogen activation, regulation of their activities, and functional aspects of these enzymes in neurodegeneration and cancer. Neurodegenerative effects have been evaluated, particularly in Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, and neuropsychiatric disorders. Cysteine cathepsins also participate in tumour progression and metastasis through the overexpression and secretion of proteases, which trigger extracellular matrix degradation. To our knowledge, this is the first review to provide an in-depth analysis regarding the roles of cysteine cathepsins B, H, C, and X in neurodegenerative diseases and cancer. Further advances in understanding the functions of cysteine cathepsins in these conditions will result in the development of novel, targeted therapeutic strategies.
Collapse
Affiliation(s)
- Veronika Stoka
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia;
- Jožef Stefan International Postgraduate School, SI-1000 Ljubljana, Slovenia
| | - Olga Vasiljeva
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia;
- CytomX Therapeutics, Inc., South San Francisco, CA 94080, USA
| | - Hiroshi Nakanishi
- Department of Pharmacology, Faculty of Pharmacy, Yasuda Women’s University, Hiroshima 731-0153, Japan;
| | - Vito Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia;
- Jožef Stefan International Postgraduate School, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
19
|
Eugenín J, Eugenín-von Bernhardi L, von Bernhardi R. Age-dependent changes on fractalkine forms and their contribution to neurodegenerative diseases. Front Mol Neurosci 2023; 16:1249320. [PMID: 37818457 PMCID: PMC10561274 DOI: 10.3389/fnmol.2023.1249320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023] Open
Abstract
The chemokine fractalkine (FKN, CX3CL1), a member of the CX3C subfamily, contributes to neuron-glia interaction and the regulation of microglial cell activation. Fractalkine is expressed by neurons as a membrane-bound protein (mCX3CL1) that can be cleaved by extracellular proteases generating several sCX3CL1 forms. sCX3CL1, containing the chemokine domain, and mCX3CL1 have high affinity by their unique receptor (CX3CR1) which, physiologically, is only found in microglia, a resident immune cell of the CNS. The activation of CX3CR1contributes to survival and maturation of the neural network during development, glutamatergic synaptic transmission, synaptic plasticity, cognition, neuropathic pain, and inflammatory regulation in the adult brain. Indeed, the various CX3CL1 forms appear in some cases to serve an anti-inflammatory role of microglia, whereas in others, they have a pro-inflammatory role, aggravating neurological disorders. In the last decade, evidence points to the fact that sCX3CL1 and mCX3CL1 exhibit selective and differential effects on their targets. Thus, the balance in their level and activity will impact on neuron-microglia interaction. This review is focused on the description of factors determining the emergence of distinct fractalkine forms, their age-dependent changes, and how they contribute to neuroinflammation and neurodegenerative diseases. Changes in the balance among various fractalkine forms may be one of the mechanisms on which converge aging, chronic CNS inflammation, and neurodegeneration.
Collapse
Affiliation(s)
- Jaime Eugenín
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | | | - Rommy von Bernhardi
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
20
|
Thornton LB, Key M, Micchelli C, Stasic AJ, Kwain S, Floyd K, Moreno SN, Dominy BN, Whitehead DC, Dou Z. A cathepsin C-like protease mediates the post-translation modification of Toxoplasma gondii secretory proteins for optimal invasion and egress. mBio 2023; 14:e0017423. [PMID: 37326431 PMCID: PMC10470614 DOI: 10.1128/mbio.00174-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/01/2023] [Indexed: 06/17/2023] Open
Abstract
Microbial pathogens use proteases for their infections, such as digestion of proteins for nutrients and activation of their virulence factors. As an obligate intracellular parasite, Toxoplasma gondii must invade host cells to establish its intracellular propagation. To facilitate invasion, the parasites secrete invasion effectors from microneme and rhoptry, two unique organelles in apicomplexans. Previous work has shown that some micronemal invasion effectors experience a series of proteolytic cleavages within the parasite's secretion pathway for maturation, such as the aspartyl protease (TgASP3) and the cathepsin L-like protease (TgCPL), localized within the post-Golgi compartment and the endolysosomal system, respectively. Furthermore, it has been shown that the precise maturation of micronemal effectors is critical for Toxoplasma invasion and egress. Here, we show that an endosome-like compartment (ELC)-residing cathepsin C-like protease (TgCPC1) mediates the final trimming of some micronemal effectors, and its loss further results in defects in the steps of invasion, egress, and migration throughout the parasite's lytic cycle. Notably, the deletion of TgCPC1 completely blocks the activation of subtilisin-like protease 1 (TgSUB1) in the parasites, which globally impairs the surface-trimming of many key micronemal invasion and egress effectors. Additionally, we found that Toxoplasma is not efficiently inhibited by the chemical inhibitor targeting the malarial CPC ortholog, suggesting that these cathepsin C-like orthologs are structurally different within the apicomplexan phylum. Collectively, our findings identify a novel function of TgCPC1 in processing micronemal proteins within the Toxoplasma parasite's secretory pathway and expand the understanding of the roles of cathepsin C protease. IMPORTANCE Toxoplasma gondii is a microbial pathogen that is well adapted for disseminating infections. It can infect virtually all warm-blooded animals. Approximately one-third of the human population carries toxoplasmosis. During infection, the parasites sequentially secrete protein effectors from the microneme, rhoptry, and dense granule, three organelles exclusively found in apicomplexan parasites, to help establish their lytic cycle. Proteolytic cleavage of these secretory proteins is required for the parasite's optimal function. Previous work has revealed that two proteases residing within the parasite's secretory pathway cleave micronemal and rhoptry proteins, which mediate parasite invasion and egress. Here, we demonstrate that a cathepsin C-like protease (TgCPC1) is involved in processing several invasion and egress effectors. The genetic deletion of TgCPC1 prevented the complete maturation of some effectors in the parasites. Strikingly, the deletion led to a full inactivation of one surface-anchored protease, which globally impaired the trimming of some key micronemal proteins before secretion. Therefore, this finding represents a novel post-translational mechanism for the processing of virulence factors within microbial pathogens.
Collapse
Affiliation(s)
- L. Brock Thornton
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Melanie Key
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Chiara Micchelli
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Andrew J. Stasic
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Samuel Kwain
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| | - Katherine Floyd
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Silvia N.J. Moreno
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Brian N. Dominy
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| | - Daniel C. Whitehead
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, USA
| | - Zhicheng Dou
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
21
|
Wan Y, Piao L, Xu S, Inoue A, Meng X, Lei Y, Huang Z, Wang H, Yue X, Shi GP, Kuzuya M, Cheng XW. Cathepsin S deficiency improves muscle mass loss and dysfunction via the modulation of protein metabolism in mice under pathological stress conditions. FASEB J 2023; 37:e23086. [PMID: 37428652 DOI: 10.1096/fj.202300395rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/12/2023]
Abstract
Cathepsin S (CTSS) is a widely expressed cysteinyl protease that has garnered attention because of its enzymatic and non-enzymatic functions under inflammatory and metabolic pathological conditions. Here, we examined whether CTSS participates in stress-related skeletal muscle mass loss and dysfunction, focusing on protein metabolic imbalance. Eight-week-old male wildtype (CTSS+/+ ) and CTSS-knockout (CTSS-/- ) mice were randomly assigned to non-stress and variable-stress groups for 2 weeks, and then processed for morphological and biochemical studies. Compared with non-stressed mice, stressed CTSS+/+ mice showed significant losses of muscle mass, muscle function, and muscle fiber area. In this setting, the stress-induced harmful changes in the levels of oxidative stress-related (gp91phox and p22phox ,), inflammation-related (SDF-1, CXCR4, IL-1β, TNF-α, MCP-1, ICAM-1, and VCAM-1), mitochondrial biogenesis-related (PPAR-γ and PGC-1α) genes and/or proteins and protein metabolism-related (p-PI3K, p-Akt, p-FoxO3α, MuRF-1, and MAFbx1) proteins; and these alterations were rectified by CTSS deletion. Metabolomic analysis revealed that stressed CTSS-/- mice exhibited a significant improvement in the levels of glutamine metabolism pathway products. Thus, these findings indicated that CTSS can control chronic stress-related skeletal muscle atrophy and dysfunction by modulating protein metabolic imbalance, and thus CTSS was suggested to be a promising new therapeutic target for chronic stress-related muscular diseases.
Collapse
Affiliation(s)
- Ying Wan
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, P.R. China
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, P.R. China
| | - Limei Piao
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, P.R. China
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, P.R. China
| | - Shengnan Xu
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, P.R. China
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, P.R. China
| | - Aiko Inoue
- Institute of Nano-Life-Systems, Innovation for Future Society, Nagoya University Institutes of Innovation for Future Society, Nagoya, Japan
| | - Xiangkun Meng
- Department of Vascular Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanna Lei
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, P.R. China
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, P.R. China
| | - Zhe Huang
- Department of Neurology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hailong Wang
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, P.R. China
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, P.R. China
| | - Xueling Yue
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, P.R. China
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, P.R. China
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Masafumi Kuzuya
- Institute of Nano-Life-Systems, Innovation for Future Society, Nagoya University Institutes of Innovation for Future Society, Nagoya, Japan
- Meitetsu Hospital, Nagoya, Japan
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, P.R. China
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, P.R. China
| |
Collapse
|
22
|
Kordiš D, Turk V. Origin and Early Diversification of the Papain Family of Cysteine Peptidases. Int J Mol Sci 2023; 24:11761. [PMID: 37511529 PMCID: PMC10380794 DOI: 10.3390/ijms241411761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Peptidases of the papain family play a key role in protein degradation, regulated proteolysis, and the host-pathogen arms race. Although the papain family has been the subject of many studies, knowledge about its diversity, origin, and evolution in Eukaryota, Bacteria, and Archaea is limited; thus, we aimed to address these long-standing knowledge gaps. We traced the origin and expansion of the papain family with a phylogenomic analysis, using sequence data from numerous prokaryotic and eukaryotic proteomes, transcriptomes, and genomes. We identified the full complement of the papain family in all prokaryotic and eukaryotic lineages. Analysis of the papain family provided strong evidence for its early diversification in the ancestor of eukaryotes. We found that the papain family has undergone complex and dynamic evolution through numerous gene duplications, which produced eight eukaryotic ancestral paralogous C1A lineages during eukaryogenesis. Different evolutionary forces operated on C1A peptidases, including gene duplication, horizontal gene transfer, and gene loss. This study challenges the current understanding of the origin and evolution of the papain family and provides valuable insights into their early diversification. The findings of this comprehensive study provide guidelines for future structural and functional studies of the papain family.
Collapse
Affiliation(s)
- Dušan Kordiš
- Department of Molecular and Biomedical Sciences, J. Stefan Institute, 1000 Ljubljana, Slovenia
| | - Vito Turk
- Department of Biochemistry, Molecular and Structural Biology, J. Stefan Institute, 1000 Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
23
|
Gul I, Abbas MN, Kausar S, Luo J, Gao X, Mu Y, Fan W, Cui H. Insight into crustacean cathepsins: Structure-evolutionary relationships and functional roles in physiological processes. FISH & SHELLFISH IMMUNOLOGY 2023:108852. [PMID: 37295735 DOI: 10.1016/j.fsi.2023.108852] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
Cathepsins belong to a group of proteins that are present in both prokaryotic and eukaryotic organisms and have an extremely high degree of evolutionary conservation. These proteins are functionally active in extracellular environments as soluble enzymatic proteins or attached to plasma membrane receptors. In addition, they occur in cellular secretory vesicles, mitochondria, the cytosol, and within the nuclei of eukaryotic cells. Cathepsins are classified into various groups based on their sequence variations, leading to their structural and functional diversification. The molecular understanding of the physiology of crustaceans has shown that proteases, including cathepsins, are expressed ubiquitously. They also contain one of the central regulatory systems for crustacean reproduction, growth, and immune responses. This review focuses on various aspects of the crustaceans cathepsins and emphasizes their biological roles in different physiological processes such as reproduction, growth, development, and immune responses. We also describe the bioactivity of crustaceans cathepsins. Because of the vital biological roles that cathepsins play as cellular proteases in physiological processes, they have been proposed as potential novel targets for the development of management strategies for the aquaculture industries.
Collapse
Affiliation(s)
- Isma Gul
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Muhammad Nadeem Abbas
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Saima Kausar
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Jili Luo
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Xinyue Gao
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Yuhang Mu
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Wenhui Fan
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; Department of Neurology, Chongqing Ninth People's Hospital, Chongqing, 400700, China.
| | - Honghuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
24
|
Higgins Tejera C, Ware EB, Kobayashi LC, Fu M, Hicken M, Zawistowski M, Mukherjee B, Bakulski KM. Decomposing interaction and mediating effects of race/ethnicity and circulating blood levels of cystatin C on cognitive status in the United States health and retirement study. Front Hum Neurosci 2023; 17:1052435. [PMID: 37323925 PMCID: PMC10267311 DOI: 10.3389/fnhum.2023.1052435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Background and objectives Elevated circulating cystatin C is associated with cognitive impairment in non-Hispanic Whites, but its role in racial disparities in dementia is understudied. In a nationally representative sample of older non-Hispanic White, non-Hispanic Black, and Hispanic adults in the United States, we use mediation-interaction analysis to understand how racial disparities in the cystatin C physiological pathway may contribute to racial disparities in prevalent dementia. Methods In a pooled cross-sectional sample of the Health and Retirement Study (n = 9,923), we employed Poisson regression to estimate prevalence ratios and to test the relationship between elevated cystatin C (>1.24 vs. ≤1.24 mg/L) and impaired cognition, adjusted for demographics, behavioral risk factors, other biomarkers, and chronic conditions. Self-reported racialized social categories were a proxy measure for exposure to racism. We calculated additive interaction measures and conducted four-way mediation-interaction decomposition analysis to test the moderating effect of race/ethnicity and mediating effect of cystatin C on the racial disparity. Results Overall, elevated cystatin C was associated with dementia (prevalence ratio [PR] = 1.2; 95% CI: 1.0, 1.5). Among non-Hispanic Black relative to non-Hispanic White participants, the relative excess risk due to interaction was 0.7 (95% CI: -0.1, 2.4), the attributable proportion was 0.1 (95% CI: -0.2, 0.4), and the synergy index was 1.1 (95% CI: 0.8, 1.8) in a fully adjusted model. Elevated cystatin C was estimated to account for 2% (95% CI: -0, 4%) for the racial disparity in prevalent dementia, and the interaction accounted for 8% (95% CI: -5, 22%). Analyses for Hispanic relative to non-white participants suggested moderation by race/ethnicity, but not mediation. Discussion Elevated cystatin C was associated with dementia prevalence. Our mediation-interaction decomposition analysis suggested that the effect of elevated cystatin C on the racial disparity might be moderated by race/ethnicity, which indicates that the racialization process affects not only the distribution of circulating cystatin C across minoritized racial groups, but also the strength of association between the biomarker and dementia prevalence. These results provide evidence that cystatin C is associated with adverse brain health and this effect is larger than expected for individuals racialized as minorities had they been racialized and treated as non-Hispanic White.
Collapse
Affiliation(s)
- César Higgins Tejera
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Erin B. Ware
- Institute for Social Research, University of Michigan, Ann Arbor, MI, United States
| | - Lindsay C. Kobayashi
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Mingzhou Fu
- Institute for Social Research, University of Michigan, Ann Arbor, MI, United States
| | - Margaret Hicken
- Institute for Social Research, University of Michigan, Ann Arbor, MI, United States
| | - Matthew Zawistowski
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Bhramar Mukherjee
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Kelly M. Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
25
|
Yang N, Matthew MA, Yao C. Roles of Cysteine Proteases in Biology and Pathogenesis of Parasites. Microorganisms 2023; 11:1397. [PMID: 37374899 DOI: 10.3390/microorganisms11061397] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Cysteine proteases, also known as thiol proteases, are a class of nucleophilic proteolytic enzymes containing cysteine residues in the enzymatic domain. These proteases generally play a pivotal role in many biological reactions, such as catabolic functions and protein processing, in all living organisms. They specifically take part in many important biological processes, especially in the absorption of nutrients, invasion, virulence, and immune evasion of parasitic organisms from unicellular protozoa to multicellular helminths. They can also be used as parasite diagnostic antigens and targets for gene modification and chemotherapy, as well as vaccine candidates, due to their species and even life-cycle stage specificity. This article highlights current knowledge on parasitic cysteine protease types, biological functions, and their applications in immunodiagnosis and chemotherapy.
Collapse
Affiliation(s)
- Nawu Yang
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis
| | - Maurice A Matthew
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis
| | - Chaoqun Yao
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis
| |
Collapse
|
26
|
Cheng XW, Narisawa M, Wang H, Piao L. Overview of multifunctional cysteinyl cathepsins in atherosclerosis-based cardiovascular disease: from insights into molecular functions to clinical implications. Cell Biosci 2023; 13:91. [PMID: 37202785 DOI: 10.1186/s13578-023-01040-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/01/2023] [Indexed: 05/20/2023] Open
Abstract
Cysteinyl cathepsins (CTSs) are widely known to have a proteolysis function that mediates recycling of unwanted proteins in endosomes and lysosomes, and investigation of CTSs has greatly improved with advances in live-imaging techniques both in vivo and in vitro, leading to three key findings. (1) CTSs are relocated from the lysosomes to other cellular spaces (i.e., cytosol, nucleus, nuclear membrane, plasma membrane, and extracellular milieu). (2) In addition to acidic cellular compartments, CTSs also exert biological activity in neutral environments. (3) CTSs also exert multiple nontraditional functions in, for example, extracellular matrix metabolism, cell signaling transduction, protein processing/trafficking, and cellular events. Various stimuli regulate the expression and activities of CTSs in vivo and vitro-e.g., inflammatory cytokines, oxidative stress, neurohormones, and growth factors. Accumulating evidence has confirmed the participation of CTSs in vascular diseases characterized by atherosclerosis, plaque rupture, thrombosis, calcification, aneurysm, restenosis/in-stent-restenosis, and neovasel formation. Circulating and tissue CTSs are promising as biomarkers and as a diagnostic imaging tool in patients with atherosclerosis-based cardiovascular disease (ACVD), and pharmacological interventions with their specific and non-specific inhibitors, and cardiovascular drugs might have potential for the therapeutic targeting of CTSs in animals. This review focuses on the update findings on CTS biology and the involvement of CTSs in the initiation and progression of ACVD and discusses the potential use of CTSs as biomarkers and small-molecule targets to prevent deleterious nontraditional functions in ACVD.
Collapse
Affiliation(s)
- Xian Wu Cheng
- Department of Cardiology and Hypertension, Yanbian University Hospital, 1327 Juzijie, Yanjin, Jilin, 133000, People's Republic of China.
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanjin, 133000, Jilin, People's Republic of China.
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, 1327 Juzijie, Yanji, Jilin PR. 133000, China.
| | - Megumi Narisawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, 4668550, Japan
| | - Hailong Wang
- Department of Cardiology and Hypertension, Yanbian University Hospital, 1327 Juzijie, Yanjin, Jilin, 133000, People's Republic of China
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanjin, 133000, Jilin, People's Republic of China
| | - Limei Piao
- Department of Cardiology and Hypertension, Yanbian University Hospital, 1327 Juzijie, Yanjin, Jilin, 133000, People's Republic of China
- Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanjin, 133000, Jilin, People's Republic of China
| |
Collapse
|
27
|
Escobar-Correas S, Mendoza-Porras O, Castro-Vazquez A, Vega IA, Colgrave ML. Proteomic analysis of digestive tract peptidases and lipases from the invasive gastropod Pomacea canaliculata. PEST MANAGEMENT SCIENCE 2023; 79:1420-1430. [PMID: 36464640 DOI: 10.1002/ps.7311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The invasive gastropod Pomacea canaliculata has received great attention in the last decades as a result of its negative impact on crops agriculture, yet knowledge of their digestive physiology remains incomplete, particularly the enzymatic breakdown of macromolecules such as proteins and lipids. RESULTS Discovery proteomics revealed aspartic peptidases, cysteine peptidases, serine peptidases, metallopeptidases and threonine peptidases, as well as acid and neutral lipases and phospholipases along the digestive tract of P. canaliculata. Peptides specific to peptidases (139) and lipases (14) were quantified by targeted mass spectrometry. Digestion begins in the mouth via diverse salivary peptidases (nine serine peptidases; seven cysteine peptidases, one aspartic peptidase and 22 metallopeptidases) and then continues in the oesophagus (crop) via three luminal metallopeptidases (Family M12) and six serine peptidases (Family S1). Downstream, the digestive gland provides a battery of enzymes composed of aspartic peptidase (one), cysteine peptidases (nine), serine peptidases (12) and metallopeptidases (24), including aminopeptidases, carboxypeptidases and dipeptidases). The coiled gut has M1 metallopeptidases that complete the digestion of small peptides. Lipid extracellular digestion is completed by triglyceride lipases. CONCLUSION From an integrative physiological and anatomical perspective, P. canaliculata shows an unexpected abundance and diversity of peptidases, which participate mainly in extracellular digestion. Moreover, the previously unknown occurrence of luminal lipases from the digestive gland is reported for the first time. Salivary and digestive glands were the main tissues involved in the synthesis and secretion of these enzymes, but plausibly the few luminally exclusive peptidases are secreted by ventrolateral pouches or epithelial unicellular glands. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Sophia Escobar-Correas
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Instituto de Fisiología, Mendoza, Argentina
- CSIRO, Agriculture & Food, St. Lucia, Queensland, Australia
| | | | - Alfredo Castro-Vazquez
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Instituto de Fisiología, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Biología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Israel A Vega
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Instituto de Fisiología, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Biología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | | |
Collapse
|
28
|
Linders DGJ, Bijlstra OD, Fallert LC, Hilling DE, Walker E, Straight B, March TL, Valentijn ARPM, Pool M, Burggraaf J, Basilion JP, Vahrmeijer AL, Kuppen PJK. Cysteine Cathepsins in Breast Cancer: Promising Targets for Fluorescence-Guided Surgery. Mol Imaging Biol 2023; 25:58-73. [PMID: 36002710 PMCID: PMC9971096 DOI: 10.1007/s11307-022-01768-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 12/24/2022]
Abstract
The majority of breast cancer patients is treated with breast-conserving surgery (BCS) combined with adjuvant radiation therapy. Up to 40% of patients has a tumor-positive resection margin after BCS, which necessitates re-resection or additional boost radiation. Cathepsin-targeted near-infrared fluorescence imaging during BCS could be used to detect residual cancer in the surgical cavity and guide additional resection, thereby preventing tumor-positive resection margins and associated mutilating treatments. The cysteine cathepsins are a family of proteases that play a major role in normal cellular physiology and neoplastic transformation. In breast cancer, the increased enzymatic activity and aberrant localization of many of the cysteine cathepsins drive tumor progression, proliferation, invasion, and metastasis. The upregulation of cysteine cathepsins in breast cancer cells indicates their potential as a target for intraoperative fluorescence imaging. This review provides a summary of the current knowledge on the role and expression of the most important cysteine cathepsins in breast cancer to better understand their potential as a target for fluorescence-guided surgery (FGS). In addition, it gives an overview of the cathepsin-targeted fluorescent probes that have been investigated preclinically and in breast cancer patients. The current review underscores that cysteine cathepsins are highly suitable molecular targets for FGS because of favorable expression and activity patterns in virtually all breast cancer subtypes. This is confirmed by cathepsin-targeted fluorescent probes that have been shown to facilitate in vivo breast cancer visualization and tumor resection in mouse models and breast cancer patients. These findings indicate that cathepsin-targeted FGS has potential to improve treatment outcomes in breast cancer patients.
Collapse
Affiliation(s)
- Daan G. J. Linders
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Okker D. Bijlstra
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Laura C. Fallert
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Denise E. Hilling
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Ethan Walker
- Department of Biomedical Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
| | | | - Taryn L. March
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - A. Rob P. M. Valentijn
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Martin Pool
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Jacobus Burggraaf
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands
- Leiden Academic Center for Drug Research, 2333 AL Leiden, The Netherlands
| | - James P. Basilion
- Department of Biomedical Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
- Department of Radiology, Case School of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| | | | - Peter J. K. Kuppen
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
29
|
Rashid Khan M, Fayaz Ahmad S, Nadeem A, Imam F, Al-Harbi NO, Shahnawaz Khan M, Alsahli M, Alhosaini K. Cathepsin-B inhibitor CA-074 attenuates retinopathy and optic neuritis in experimental autoimmune encephalomyelitis induced in SJL/J mice. Saudi Pharm J 2023; 31:147-153. [PMID: 36685301 PMCID: PMC9845124 DOI: 10.1016/j.jsps.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
The complicated multiple sclerosis (MS) can exhibit subacute sight deterioration and can lead to total deprivation of vision. In the current work, we explored the therapeutic outcome of Cathepsin B inhibitor (CA-074) against retinopathy and optic neuritis (ON) caused by experimental autoimmune encephalomyelitis (EAE) induced by proteolipid protein peptide (PLP) in female SJL/J mice. A daily dose of 10 mg/kg CA-074 was administered to the EAE mice intraperitoneally for 14 days from day 14 post-immunization until day 28. The Western blot and immunofluorescence analyses show inflammation in the optic nerve through the elevation of iNOS and NFkB markers in EAE mice. Optic neuritis was reported which is a consequence of demyelination and axon injury, estimated with the reduction in myelin basic protein (MBP). The glial fibrillary acidic protein (GFAP) expression level was found to be elevated in the retina of EAE mice which confirmed the retinopathy. The administration of CA-074 ameliorated optic neuritis and retinopathy by reducing inflammation. The treatment with CA-074 also reduced the demyelination and axonal injuries in the EAE mice. The findings of this study have shown the protective effect of CA-074 in the case of retinopathy and ON inflicted by EAE in SJL/J mice.
Collapse
Affiliation(s)
- Mohammad Rashid Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Saudi Arabia
| | - Sheikh Fayaz Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Saudi Arabia
| | - Faisal Imam
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Saudi Arabia
| | - Naif O. Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Meshal Alsahli
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Saudi Arabia
| | - Khaled Alhosaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Saudi Arabia,Corresponding author at: College of Pharmacy, King Saud University, P.O. Box 2475, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
30
|
Santos Correa KC, Moreira AC, Abd El-Raheem Ibrahim AG, Ramos de Jesus HC, Micocci KC, Crizóstomo Kock FV, Bueno OC, Venâncio T, Henrique-Silva F, Souza DHF. Identification and characterization of a recombinant cysteine peptidase (AsCathL) from leaf-cutting ant Atta sexdens Linnaeus, 1758 (Hymenoptera, Formicidae). Protein Expr Purif 2023; 201:106174. [DOI: 10.1016/j.pep.2022.106174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
|
31
|
Smyth P, Sasiwachirangkul J, Williams R, Scott CJ. Cathepsin S (CTSS) activity in health and disease - A treasure trove of untapped clinical potential. Mol Aspects Med 2022; 88:101106. [PMID: 35868042 DOI: 10.1016/j.mam.2022.101106] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 12/14/2022]
Abstract
Amongst the lysosomal cysteine cathepsin family of proteases, cathepsin S (CTSS) holds particular interest due to distinctive properties including a normal restricted expression profile, inducible upregulation and activity at a broad pH range. Consequently, while CTSS is well-established as a member of the proteolytic cocktail within the lysosome, degrading unwanted and damaged proteins, it has increasingly been shown to mediate a number of distinct, more selective roles including antigen processing and antigen presentation, and cleavage of substrates both intra and extracellularly. Increasingly, aberrant CTSS expression has been demonstrated in a variety of conditions and disease states, marking it out as both a biomarker and potential therapeutic target. This review seeks to contextualise CTSS within the cysteine cathepsin family before providing an overview of the broad range of pathologies in which roles for CTSS have been identified. Additionally, current clinical progress towards specific inhibitors is detailed, updating the position of the field in exploiting this most unique of proteases.
Collapse
Affiliation(s)
- Peter Smyth
- The Patrick G Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Jutharat Sasiwachirangkul
- The Patrick G Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Rich Williams
- The Patrick G Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Christopher J Scott
- The Patrick G Johnston Centre for Cancer Research, Queen's University, 97 Lisburn Road, Belfast, BT9 7AE, UK.
| |
Collapse
|
32
|
Lecaille F, Chazeirat T, Saidi A, Lalmanach G. Cathepsin V: Molecular characteristics and significance in health and disease. Mol Aspects Med 2022; 88:101086. [PMID: 35305807 DOI: 10.1016/j.mam.2022.101086] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 12/31/2022]
Abstract
Human cysteine cathepsins form a family of eleven proteases (B, C, F, H, K, L, O, S, V, W, X/Z) that play important roles in a considerable number of biological and pathophysiological processes. Among them, cathepsin V, also known as cathepsin L2, is a lysosomal enzyme, which is mainly expressed in cornea, thymus, heart, brain, and skin. Cathepsin V is a multifunctional endopeptidase that is involved in both the release of antigenic peptides and the maturation of MHC class II molecules and participates in the turnover of elastin fibrils as well in the cleavage of intra- and extra-cellular substrates. Moreover, there is increasing evidence that cathepsin V may contribute to the progression of diverse diseases, due to the dysregulation of its expression and/or its activity. For instance, increased expression of cathepsin V is closely correlated with malignancies (breast cancer, squamous cell carcinoma, or colorectal cancer) as well vascular disorders (atherosclerosis, aortic aneurysm, hypertension) being the most prominent examples. This review aims to shed light on current knowledge on molecular aspects of cathepsin V (genomic organization, protein structure, substrate specificity), its regulation by protein and non-protein inhibitors as well to summarize its expression (tissue and cellular distribution). Then the core biological and pathophysiological roles of cathepsin V will be depicted, raising the question of its interest as a valuable target that can open up pioneering therapeutic avenues.
Collapse
Affiliation(s)
- Fabien Lecaille
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes protéolytiques dans l'inflammation", Tours, France.
| | - Thibault Chazeirat
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes protéolytiques dans l'inflammation", Tours, France
| | - Ahlame Saidi
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes protéolytiques dans l'inflammation", Tours, France
| | - Gilles Lalmanach
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes protéolytiques dans l'inflammation", Tours, France.
| |
Collapse
|
33
|
Lucchino V, Scaramuzzino L, Scalise S, Lo Conte M, Zannino C, Benedetto GL, Aguglia U, Ferlazzo E, Cuda G, Parrotta EI. Insights into the Genetic Profile of Two Siblings Affected by Unverricht-Lundborg Disease Using Patient-Derived hiPSCs. Cells 2022; 11:3491. [PMID: 36359887 PMCID: PMC9655992 DOI: 10.3390/cells11213491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/29/2023] Open
Abstract
Unverricht-Lundborg disease (ULD), also known as progressive myoclonic epilepsy 1 (EPM1), is a rare autosomal recessive neurodegenerative disorder characterized by a complex symptomatology that includes action- and stimulus-sensitive myoclonus and tonic-clonic seizures. The main cause of the onset and development of ULD is a repeat expansion of a dodecamer sequence localized in the promoter region of the gene encoding cystatin B (CSTB), an inhibitor of lysosomal proteases. Although this is the predominant mutation found in most patients, the physio-pathological mechanisms underlying the disease complexity remain largely unknown. In this work, we used patient-specific iPSCs and their neuronal derivatives to gain insight into the molecular and genetic machinery responsible for the disease in two Italian siblings affected by different phenotypes of ULD. Specifically, fragment length analysis on amplified CSTB promoters found homozygous status for dodecamer expansion in both patients and showed that the number of dodecamer repeats is the same in both. Furthermore, the luciferase reporter assay showed that the CSTB promoter activity was similarly reduced in both lines compared to the control. This information allowed us to draw important conclusions: (1) the phenotypic differences of the patients do not seem to be strictly dependent on the genetic mutation around the CSTB gene, and (2) that some other molecular mechanisms, not yet clearly identified, might be taken into account. In line with the inhibitory role of cystatin B on cathepsins, molecular investigations performed on iPSCs-derived neurons showed an increased expression of lysosomal cathepsins (B, D, and L) and a reduced expression of CSTB protein. Intriguingly, the increase in cathepsin expression does not appear to be correlated with the residual amount of CSTB, suggesting that other mechanisms, in addition to the regulation of cathepsins, could be involved in the pathological complexity of the disease.
Collapse
Affiliation(s)
- Valeria Lucchino
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Luana Scaramuzzino
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Stefania Scalise
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Michela Lo Conte
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Clara Zannino
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Giorgia Lucia Benedetto
- Department of Medical and Surgical Sciences, University Magna Graecia, 88100 Catanzaro, Italy
| | - Umberto Aguglia
- Department of Medical and Surgical Sciences, University Magna Graecia, 88100 Catanzaro, Italy
| | - Edoardo Ferlazzo
- Department of Medical and Surgical Sciences, University Magna Graecia, 88100 Catanzaro, Italy
| | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | | |
Collapse
|
34
|
Zamyatnin AA, Gregory LC, Townsend PA, Soond SM. Beyond basic research: the contribution of cathepsin B to cancer development, diagnosis and therapy. Expert Opin Ther Targets 2022; 26:963-977. [PMID: 36562407 DOI: 10.1080/14728222.2022.2161888] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION In view of other candidate proteins from the cathepsin family of proteases holding great potential in being targeted during cancer therapy, the importance of Cathepsin B (CtsB) stands out as being truly exceptional. Based on its contribution to oncogenesis, its intimate connection with regulating apoptosis and modulating extracellular and intracellular functions through its secretion or compartmentalized subcellular localization, collectively highlight its complex molecular involvement with a myriad of normal and pathological regulatory processes. Despite its complex functional nature, CtsB is emerging as one of the few cathepsin proteases that has been extensively researched to yield tangible outcomes for cancer therapy. AREAS COVERED In this article, we review the scientific literature that has justified or shaped the importance of CtsB expression in cancer progression, from the perspective of highlighting a paradigm that is rapidly changing from basic research toward a broader clinical and translational context. EXPERT OPINION In doing so, we detail its maturation as a diagnostic marker through describing the development of CtsB-specific Activity-Based Probes, the rapid evolution of these toward a new generation of Prodrugs, and the evaluation of these in model systems for their therapeutic potential as anti-cancer agents in the clinic.
Collapse
Affiliation(s)
- Andrey A Zamyatnin
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation.,Department of Biotechnology, Sirius University of Science and Technology, Sochi, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Levy C Gregory
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Paul A Townsend
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Surinder M Soond
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| |
Collapse
|
35
|
Pedram K, Laqtom NN, Shon DJ, Di Spiezio A, Riley NM, Saftig P, Abu-Remaileh M, Bertozzi CR. Lysosomal cathepsin D mediates endogenous mucin glycodomain catabolism in mammals. Proc Natl Acad Sci U S A 2022; 119:e2117105119. [PMID: 36122205 PMCID: PMC9522329 DOI: 10.1073/pnas.2117105119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/10/2022] [Indexed: 01/07/2023] Open
Abstract
Mucins are functionally implicated in a range of human pathologies, including cystic fibrosis, influenza, bacterial endocarditis, gut dysbiosis, and cancer. These observations have motivated the study of mucin biosynthesis as well as the development of strategies for inhibition of mucin glycosylation. Mammalian pathways for mucin catabolism, however, have remained underexplored. The canonical view, derived from analysis of N-glycoproteins in human lysosomal storage disorders, is that glycan degradation and proteolysis occur sequentially. Here, we challenge this view by providing genetic and biochemical evidence supporting mammalian proteolysis of heavily O-glycosylated mucin domains without prior deglycosylation. Using activity screening coupled with mass spectrometry, we ascribed mucin-degrading activity in murine liver to the lysosomal protease cathepsin D. Glycoproteomics of substrates digested with purified human liver lysosomal cathepsin D provided direct evidence for proteolysis within densely O-glycosylated domains. Finally, knockout of cathepsin D in a murine model of the human lysosomal storage disorder neuronal ceroid lipofuscinosis 10 resulted in accumulation of mucins in liver-resident macrophages. Our findings imply that mucin-degrading activity is a component of endogenous pathways for glycoprotein catabolism in mammalian tissues.
Collapse
Affiliation(s)
- Kayvon Pedram
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Stanford ChEM-H, Stanford University, Stanford, CA 94305
| | - Nouf N. Laqtom
- Stanford ChEM-H, Stanford University, Stanford, CA 94305
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| | - D. Judy Shon
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Stanford ChEM-H, Stanford University, Stanford, CA 94305
| | | | - Nicholas M. Riley
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Stanford ChEM-H, Stanford University, Stanford, CA 94305
| | - Paul Saftig
- Biochemisches Institut, Christian-Albrechts-Universität Kiel, Kiel, Germany D-24098
| | - Monther Abu-Remaileh
- Stanford ChEM-H, Stanford University, Stanford, CA 94305
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| | - Carolyn R. Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Stanford ChEM-H, Stanford University, Stanford, CA 94305
- HHMI, Stanford University, Stanford, CA 94305
| |
Collapse
|
36
|
All Roads Lead to Cathepsins: The Role of Cathepsins in Non-Alcoholic Steatohepatitis-Induced Hepatocellular Carcinoma. Biomedicines 2022; 10:biomedicines10102351. [PMID: 36289617 PMCID: PMC9598942 DOI: 10.3390/biomedicines10102351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Cathepsins are lysosomal proteases that are essential to maintain cellular physiological homeostasis and are involved in multiple processes, such as immune and energy regulation. Predominantly, cathepsins reside in the lysosomal compartment; however, they can also be secreted by cells and enter the extracellular space. Extracellular cathepsins have been linked to several pathologies, including non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC). NASH is an increasingly important risk factor for the development of HCC, which is the third leading cause of cancer-related deaths and poses a great medical and economic burden. While information regarding the involvement of cathepsins in NASH-induced HCC (NASH-HCC) is limited, data to support the role of cathepsins in either NASH or HCC is accumulating. Since cathepsins play a role in both NASH and HCC, it is likely that the role of cathepsins is more significant in NASH-HCC compared to HCC derived from other etiologies. In the current review, we provide an overview on the available data regarding cathepsins in NASH and HCC, argue that cathepsins play a key role in the transition from NASH to HCC, and shed light on therapeutic options in this context.
Collapse
|
37
|
Diao Q, Du H, Zhao N, Wu Y, Du X, Sun Y, Zhou Y, Cao Z. Cathepsin C (CTSC) contributes to the antibacterial immunity in golden pompano (Trachinotus ovatus). FISH & SHELLFISH IMMUNOLOGY 2022; 128:316-326. [PMID: 35952999 DOI: 10.1016/j.fsi.2022.07.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/12/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Cathepsins, as a class of protein hydrolases, are widely found in the lysosomes of many tissues and play an essential role in various physiological activities. Cathepsin C (CTSC), a lysosomal cysteine protease, is an essential component of the lysosomal hydrolase family. In this study, we identified a CTSC from Trachinotus ovatus (TroCTSC) and analyzed its function. TroCTSC contained an ORF of 1368 bp and encoded 455 amino acids, which included three conserved catalytically active sites (Cys251, His397, and Asn419). It shares high homology (69.47%-90.77%) with the other known CTSC sequences of teleosts, which was most closely related to Seriola dumerili. TroCTSC was most abundant in the muscle, liver, and head kidney. After Vibrio harveyi infection, the expression levels of TroCTSC in liver, spleen, and head kidney were significantly up-regulated. TroCTSC was found in the cytoplasm with some of which were co-located with the lysosome. After V. harveyi stimulation, TroCTSC was translocated to nucleus in golden pompano snout (GPS) cells. In vitro, results revealed that the optimal hydrolase activity of the recombinant protein, rTroCTSC, was at 40 °C and pH 5.5. The activity of rTroCTSC was promoted by Zn2+ and Ca2+ but inhibited by Fe2+ and Cu2+. However, three mutant proteins, rTroCTSC-C251A, rTroCTSC-H397A, rTroCTSC-N419A, were dramatically reduced the proteolytic activity. Furthermore, in vivo results showed that overexpression of TroCTSC could significantly enhance body's ability to resist V. harveyi and promote the expression of proinflammatory cytokines, including interleukin 1-beta (IL-1β), IL-6, IL-8, interferon-gamma (IFN-γ), and tumor necrosis factor-alpha (TNF-α). In contrast, the interference of TroCTSC expression induced a significant increase in the number of bacteria after V. harveyi infection. Our results suggested that TroCTSC was an essential effector of the innate immune system and played a pivotal role in antibacterial immunity.
Collapse
Affiliation(s)
- Qianying Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Hehe Du
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Na Zhao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Ying Wu
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Xiangyu Du
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China
| | - Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China.
| | - Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China.
| | - Zhenjie Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| |
Collapse
|
38
|
Guan Y, Yang X, Zhao R, Li B, Yang Z, Gao M, Cao X, Jiang C. Characteristics of cathepsin members and expression responses to poly I:C challenge in Pacific cod (Gadus macrocephalus). FISH & SHELLFISH IMMUNOLOGY 2022; 128:484-493. [PMID: 35985629 DOI: 10.1016/j.fsi.2022.08.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Cathepsins are major lysosomal enzymes that participate in necessary physiological processes, including protein degradation, tissue differentiation, and innate or adaptive immune responses. According to their proteolytic activity, vertebrate cathepsins are classified as cysteine proteases (cathepsins B, C, F, H, K, L, O, S, V, W, and X or Z), aspartic proteases (cathepsin D and E), and serine proteases (cathepsin A and G). Several cathepsins were reported in teleosts, however, no cathepsin gene has been identified from Pacific cod so far. In the present study, a total of 13 cathepsin genes were identified for Pacific cod. The evolutionary path of each cathepsin gene was demonstrated via analysis of phylogenetic trees, multiple alignments, conserved domains, motif compositions, and tertiary structures. Tissue distribution analysis showed that all cathepsin genes were ubiquitously expressed in eight healthy tissues but they exhibited diverse levels of expression. Several cathepsin genes were found to be highly expressed in the kidney, spleen, head kidney and liver, whereas low or modest levels were detected in the gills, skin, intestines, and heart. Temporal-specific expression of cathepsins in early developmental stages of Pacific cod were also conducted. CTSK, S, F, and Z were highly expressed at 1 dph and 5 dph and decreased later, while CTSL, L1, and L.1 transcript levels gradually increased in a time-dependent manner. Additionally, the expression profiles of cathepsin genes in Pacific cod were evaluated in the spleen and liver after poly I:C challenge. The results indicated that all cathepsin genes were significantly upregulated upon poly I:C stimulation, suggesting that they play key roles in antiviral immune responses in Pacific cod. Our findings establish a foundation for future exploration of the molecular mechanisms of cathepsins in modulating antiviral immunity in Pacific cod.
Collapse
Affiliation(s)
- Yude Guan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China; College of Life Sciences, Nankai University, Tianjin, 300000, China
| | - Xu Yang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Ruihu Zhao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Boyan Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Zhen Yang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Minghong Gao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Xinyu Cao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China
| | - Chen Jiang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
39
|
NO news: S-(de)nitrosylation of cathepsins and their relationship with cancer. Anal Biochem 2022; 655:114872. [PMID: 36027970 DOI: 10.1016/j.ab.2022.114872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
Abstract
Tumor formation and progression have been much of a study over the last two centuries. Recent studies have seen different developments for the early diagnosis and treatment of the disease; some of which even promise survival of the patient. Cysteine proteases, mainly cathepsins have been unequivocally identified as putative worthy players of redox imbalance that contribute to the premonition and further progression of cancer by interfering in the normal extracellular and intracellular proteolysis and initiating a proteolytic cascade. The present review article focuses on the study of cancer so far, while establishing facts on how future studies focused on the cellular interrelation between nitric oxide (NO) and cancer, can direct their focus on cathepsins. For a tumor cell to thrive and synergize a cancerous environment, different mutations in the proteolytic and signaling pathways and the proto-oncogenes, oncogenes, and the tumor suppressor genes are made possible through cellular biochemistry and some cancer-stimulating environmental factors. The accumulated findings show that S-nitrosylation of cathepsins under the influence of NO-donors can prevent the invasion of cancer and cause cancer cell death by blocking the activity of cathepsins as well as the major denitrosylase systems using a multi-way approach. Faced with a conundrum of how to fill the gap between the dodging of established cancer hallmarks with cathepsin activity and gaining appropriate research/clinical accreditation using our hypothesis, the scope of this review also explores the interplay and crosstalk between S-nitrosylation and S-(de)nitrosylation of this protease and highlights the utility of charging thioredoxin (Trx) reductase inhibitors, low-molecular-weight dithiols, and Trx mimetics using efficient drug delivery system to prevent the denitrosylation or regaining of cathepsin activity in vivo. In foresight, this raises the prospect that drugs or novel compounds that target cathepsins taking all these factors into consideration could be deployed as alternative or even better treatments for cancer, though further research is needed to ascertain the safety, efficiency and effectiveness of this approach.
Collapse
|
40
|
Kaupbayeva B, Murata H, Rule GS, Matyjaszewski K, Russell AJ. Rational Control of Protein-Protein Interactions with Protein-ATRP-Generated Protease-Sensitive Polymer Cages. Biomacromolecules 2022; 23:3831-3846. [PMID: 35984406 DOI: 10.1021/acs.biomac.2c00679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protease-protease interactions lie at the heart of the biological cascades that provide rapid molecular responses to living systems. Blood clotting cascades, apoptosis signaling networks, bacterial infection, and virus trafficking have all evolved to be activated and sustained by protease-protease interactions. Biomimetic strategies designed to target drugs to specific locations have generated proprotein drugs that can be activated by proteolytic cleavage to release native protein. We have previously demonstrated that the modification of enzymes with a custom-designed comb-shaped polymer nanoarmor can shield the enzyme surface and eliminate almost all protein-protein interactions. We now describe the synthesis and characterization of protease-sensitive comb-shaped nanoarmor cages using poly(ethylene glycol) [Sundy, J. S. Arthritis Rheum. 2008, 58(9), 2882-2891]methacrylate macromonomers where the PEG tines of the comb are connected to the backbone of the growing polymer chain by peptide linkers. Protease-induced cleavage of the tines of the comb releases a polymer-modified protein that can once again participate in protein-protein interactions. Atom transfer radical polymerization (ATRP) was used to copolymerize the macromonomer and carboxybetaine methacrylate from initiator-labeled chymotrypsin and trypsin enzymes, yielding proprotease conjugates that retained activity toward small peptide substrates but prevented activity against proteins. Native proteases triggered the release of the PEG side chains from the polymer backbone within 20 min, thereby increasing the activity of the conjugate toward larger protein substrates by 100%. Biomimetic cascade initiation of nanoarmored protease-sensitive protein-polymer conjugates may open the door to a new class of responsive targeted therapies.
Collapse
Affiliation(s)
- Bibifatima Kaupbayeva
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States.,National Laboratory Astana, Nazarbayev University, Nur-Sultan City 010000, Kazakhstan
| | - Hironobu Murata
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States.,Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Gordon S Rule
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States.,Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Alan J Russell
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States.,Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States.,Amgen, 1 Amgen Center Drive, Thousand Oaks, California 91320, United States
| |
Collapse
|
41
|
Berg AL, Rowson-Hodel A, Wheeler MR, Hu M, Free SR, Carraway KL. Engaging the Lysosome and Lysosome-Dependent Cell Death in Cancer. Breast Cancer 2022. [DOI: 10.36255/exon-publications-breast-cancer-lysosome] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Pol T, Hijazi Z, Lindbäck J, Oldgren J, Alexander JH, Connolly SJ, Eikelboom JW, Ezekowitz MD, Granger CB, Lopes RD, Yusuf S, Siegbahn A, Wallentin L. Using multimarker screening to identify biomarkers associated with cardiovascular death in patients with atrial fibrillation. Cardiovasc Res 2022; 118:2112-2123. [PMID: 34358298 PMCID: PMC9302885 DOI: 10.1093/cvr/cvab262] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
AIMS Atrial fibrillation (AF) is associated with higher mortality. Biomarkers may improve the understanding of key pathophysiologic processes in AF that lead to death. Using a new multiplex analytic technique, we explored the association between 268 biomarkers and cardiovascular (CV) death in anticoagulated patients with AF. METHODS AND RESULTS A case-cohort design with 1.8- to 1.9-year follow-up. The identification cohort included 517 cases and 4057 randomly selected patients from ARISTOTLE. The validation cohort included 277 cases and 1042 randomly selected controls from RE-LY. Plasma collected at randomization was analysed with conventional immunoassays and the OLINK proximity extension assay panels: CVDII, CVDIII, and Inflammation. Association between biomarkers and CV death was evaluated using Random Survival Forest, Boruta, and adjusted Cox-regression analyses. The biomarkers most strongly and consistently associated with CV death were as follows (hazard ratio for inter-quartile comparison [95% CI]): N-terminal pro-B-type natriuretic peptide [NT-proBNP; 1.63 (1.37-1.93)], cardiac troponin T [cTnT-hs; 1.60 (1.35-1.88)], interleukin-6 [IL-6; 1.29 (1.13-1.47)], growth differentiation factor-15 [GDF-15; 1.30 (1.10-1.53)], fibroblast growth factor 23 [FGF-23; 1.21 (1.10-1.33)], urokinase receptor [uPAR; 1.38 (1.16-1.64)], trefoil factor 3 [TFF3; 1.27 (1.10-1.46)], tumour necrosis factor receptor 1 [TNFR1; 1.21 (1.01-1.45)], TNF-related apoptosis-inducing ligand receptor 2 [TRAILR2; 1.18 (1.04-1.34)], and cathepsin L1 [CTSL1; 1.22 (1.07-1.39)]. CONCLUSION In this comprehensive screening of 268 biomarkers in anticoagulated patients with AF, the underlying mechanisms most strongly associated with CV death were cardiorenal dysfunction (NT-proBNP, cTnT-hs, CTSL1, TFF3), oxidative stress (GDF-15), inflammation (IL-6, GDF-15), calcium balance, vascular and renal dysfunction (FGF-23), fibrinolysis (suPAR), and apoptosis (TNFR1, TRAILR2). These findings provide novel insights into pathophysiologic aspects associated with CV death in AF. CLINICALTRIALS.GOV IDENTIFIER NCT00412984 and NCT00262600.
Collapse
Affiliation(s)
- Tymon Pol
- Corresponding author. Tel: +46 18 611 9507, fax: +46 18 51 5570, E-mail:
| | - Ziad Hijazi
- Department of Medical Sciences, Cardiology, Uppsala University, Uppsala Science Park, SE-752 37 Uppsala, Sweden
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Johan Lindbäck
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Jonas Oldgren
- Department of Medical Sciences, Cardiology, Uppsala University, Uppsala Science Park, SE-752 37 Uppsala, Sweden
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | | | | | | | - Michael D Ezekowitz
- Thomas Jefferson University, Philadelphia, PA, USA
- Cardiovascular Medicine, Lankenau Institute for Medical Research, Wynnewood, PA, USA
| | | | - Renato D Lopes
- Duke Clinical Research Institute, Duke Health, Durham, NC, USA
| | - Salim Yusuf
- Population Health Research Institute, Hamilton, Canada
| | - Agneta Siegbahn
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Lars Wallentin
- Department of Medical Sciences, Cardiology, Uppsala University, Uppsala Science Park, SE-752 37 Uppsala, Sweden
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
43
|
Liu J, Zhang W, Zhou C, Li M, Wang X, Zhang W, Liu Z, Wu L, James TD, Li P, Tang B. Precision Navigation of Hepatic Ischemia-Reperfusion Injury Guided by Lysosomal Viscosity-Activatable NIR-II Fluorescence. J Am Chem Soc 2022; 144:13586-13599. [PMID: 35793548 PMCID: PMC9354259 DOI: 10.1021/jacs.2c03832] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is responsible for postoperative liver dysfunction and liver failure. Precise and rapid navigation of HIRI lesions is critical for early warning and timely development of pretreatment plans. Available methods for assaying liver injury fail to provide the exact location of lesions in real time intraoperatively. HIRI is intimately associated with oxidative stress which impairs lysosomal degradative function, leading to significant changes in lysosomal viscosity. Therefore, lysosomal viscosity is a potential biomarker for the precise targeting of HIRI. Hence, we developed a viscosity-activatable second near-infrared window fluorescent probe (NP-V) for the detection of lysosomal viscosity in hepatocytes and mice during HIRI. A reactive oxygen species-malondialdehyde-cathepsin B signaling pathway during HIRI was established. We further conducted high signal-to-background ratio NIR-II fluorescence imaging of HIRI mice. The contour and boundary of liver lesions were delineated, and as such the precise intraoperative resection of the lesion area was implemented. This research demonstrates the potential of NP-V as a dual-functional probe for the elucidation of HIRI pathogenesis and the direct navigation of HIRI lesions in clinical applications.
Collapse
Affiliation(s)
- Jihong Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Chunmiao Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Mengmei Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Zhenzhen Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Luling Wu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.,Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| | - Tony D James
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.,Department of Chemistry, University of Bath, Bath BA2 7AY, U.K.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| |
Collapse
|
44
|
Recombinant Cathepsin L of Tribolium castaneum and Its Potential in the Hydrolysis of Immunogenic Gliadin Peptides. Int J Mol Sci 2022; 23:ijms23137001. [PMID: 35806001 PMCID: PMC9266932 DOI: 10.3390/ijms23137001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Wheat gliadins contain a large amount of glutamine- and proline-rich peptides which are not hydrolyzed by human digestive peptidases and can cause autoimmune celiac disease and other forms of gluten intolerance in predisposed people. Peptidases that efficiently cleave such immunogenic peptides can be used in enzyme therapy. The stored product insect pest Tribolium castaneum efficiently hydrolyzes gliadins. The main digestive peptidase of T. castaneum is cathepsin L, which is from the papain C1 family with post-glutamine cleavage activity. We describe the isolation and characterization of T. castaneum recombinant procathepsin L (rpTcCathL1, NP_001164001), which was expressed in Pichia pastoris cells. The activation of the proenzyme was conducted by autocatalytic processing. The effects of pH and proenzyme concentration in the reaction mixture on the processing were studied. The mature enzyme retained high activity in the pH range from 5.0 to 9.0 and displayed high pH-stability from 4.0 to 8.0 at 20 °C. The enzyme was characterized according to electrophoretic mobility under native conditions, activity and stability at various pH values, a sensitivity to various inhibitors, and substrate specificity, and its hydrolytic effect on 8-, 10-, 26-, and 33-mer immunogenic gliadins peptides was demonstrated. Our results show that rTcCathL1 is an effective peptidase that can be used to develop a drug for the enzyme therapy of various types of gluten intolerance.
Collapse
|
45
|
Costa AC, Santa-Cruz F, Araújo RLC, Leitão G, Figueiredo JL, Ferraz ÁAB. Analysis of cathepsin S expression in gastric adenocarcinoma and in Helicobacter pylori infection. PLoS One 2022; 17:e0268836. [PMID: 35617240 PMCID: PMC9135267 DOI: 10.1371/journal.pone.0268836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/10/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Recent experimental studies have suggested a potential link between cathepsin S (CTTS) and gastric adenocarcinoma progression. Herein, we aimed to evaluate the expression of CTTS in gastric adenocarcinoma in patients who underwent curative-intent surgical resection. METHODS This was a cross-sectional study that included two groups: gastric adenocarcinoma (n = 42) and gastritis (n = 50). The gastritis group was then subdivided into H. pylori-positive (n = 25) and H. pylori-negative (n = 25) groups. Gastric tissue samples were analysed to determine CTTS expression through immunohistochemistry. Samples were obtained by oesophagogastroduodenoscopy or surgical specimens. RESULTS In patients with gastritis, the age ranged from 18 to 78 years. Among them, 34% were male, and 66% were female. In patients with gastric adenocarcinoma, the age ranged from 37 to 85 years. Among them, 50% were male. When comparing the expression of CTTS between the two groups, only 16% of the gastritis samples had an expression higher than 25%. Alternatively, among patients with gastric adenocarcinoma, 19% had expression between 25-50%, 14.3% between 51-75%, and 26.2% had expression higher than 75% (p < 0.001). In the gastritis group, CTTS expression was significantly higher in patients with a positive test for H. pylori than negative test for H. pylori: 87.5% and 38.5%, respectively (p<0.001). There was no statistically significant association between CTTS positivity and clinicopathological variables, including tumour staging, histological type, angiolymphatic invasion, recurrence, current status and death. CONCLUSION CTTS expression is higher in gastric adenocarcinoma samples. Patients with gastritis due to H. pylori also show a higher expression of CTTS than patients with negative results for this bacterium.
Collapse
Affiliation(s)
- Adriano C. Costa
- Oncology Unit, Hospital das Clínicas, Federal University of Pernambuco (HC-UFPE), Recife, Pernambuco, Brazil
- Post-graduation in Surgery, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Fernando Santa-Cruz
- Post-graduation in Surgery, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Raphael L. C. Araújo
- Department of Digestive Surgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Glauber Leitão
- Oncology Unit, Hospital das Clínicas, Federal University of Pernambuco (HC-UFPE), Recife, Pernambuco, Brazil
| | - José-Luiz Figueiredo
- Department of Surgery, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Álvaro A. B. Ferraz
- Department of Surgery, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
46
|
Saudenova M, Promnitz J, Ohrenschall G, Himmerkus N, Böttner M, Kunke M, Bleich M, Theilig F. Behind every smile there's teeth: Cathepsin B's function in health and disease with a kidney view. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119190. [PMID: 34968578 DOI: 10.1016/j.bbamcr.2021.119190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Cathepsin B (CatB) is a very abundant lysosomal protease with endo- and carboxydipeptidase activities and even ligase features. In this review, we will provide a general characterization of CatB and describe structure, structure-derived properties and location-dependent proteolytic actions. We depict CatB action within lysosome and its important roles in lysosomal biogenesis, lysosomal homeostasis and autophagy rendering this protease a key player in orchestrating lysosomal functions. Lysosomal leakage and subsequent escape of CatB into the cytosol lead to harmful actions, e.g. the role in activating the NLPR3 inflammasome, affecting immune responses and cell death. The second focus of this review addresses CatB functions in the kidney, i.e. the glomerulus, the proximal tubule and collecting duct with strong emphasis of its role in pathology of the respective segment. Finally, observations regarding CatB functions that need to be considered in cell culture will be discussed. In conclusion, CatB a physiologically important molecule may, upon aberrant expression in different cellular context, become a harmful player effectively showing its teeth behind its smile.
Collapse
Affiliation(s)
- Makhabbat Saudenova
- Institute of Anatomy, Department of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Jessica Promnitz
- Institute of Anatomy, Department of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Gerrit Ohrenschall
- Institute of Anatomy, Department of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Nina Himmerkus
- Institute of Physiology, Department of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Martina Böttner
- Institute of Anatomy, Department of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Madlen Kunke
- Institute of Anatomy, Department of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Markus Bleich
- Institute of Physiology, Department of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Franziska Theilig
- Institute of Anatomy, Department of Medicine, Christian-Albrechts-University Kiel, Germany.
| |
Collapse
|
47
|
Jain V, Bose S, Arya AK, Arif T. Lysosomes in Stem Cell Quiescence: A Potential Therapeutic Target in Acute Myeloid Leukemia. Cancers (Basel) 2022; 14:1618. [PMID: 35406389 PMCID: PMC8996909 DOI: 10.3390/cancers14071618] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Lysosomes are cellular organelles that regulate essential biological processes such as cellular homeostasis, development, and aging. They are primarily connected to the degradation/recycling of cellular macromolecules and participate in cellular trafficking, nutritional signaling, energy metabolism, and immune regulation. Therefore, lysosomes connect cellular metabolism and signaling pathways. Lysosome's involvement in the critical biological processes has rekindled clinical interest towards this organelle for treating various diseases, including cancer. Recent research advancements have demonstrated that lysosomes also regulate the maintenance and hemostasis of hematopoietic stem cells (HSCs), which play a critical role in the progression of acute myeloid leukemia (AML) and other types of cancer. Lysosomes regulate both HSCs' metabolic networks and identity transition. AML is a lethal type of blood cancer with a poor prognosis that is particularly associated with aging. Although the genetic landscape of AML has been extensively described, only a few targeted therapies have been produced, warranting the need for further research. This review summarizes the functions and importance of targeting lysosomes in AML, while highlighting the significance of lysosomes in HSCs maintenance.
Collapse
Affiliation(s)
- Vaibhav Jain
- Abramson Cancer Center, Department of Medicine, 421 Curie Blvd., Philadelphia, PA 19104, USA;
| | - Swaroop Bose
- Department of Dermatology, Mount Sinai Icahn School of Medicine, New York, NY 10029, USA;
| | - Awadhesh K. Arya
- Department of Anesthesiology, Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Tasleem Arif
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai Icahn School of Medicine, New York, NY 10029, USA
| |
Collapse
|
48
|
Vecchio FL, Bisceglia P, Imbimbo BP, Lozupone M, Latino RR, Resta E, Leone M, Solfrizzi V, Greco A, Daniele A, Watling M, Panza F, Seripa D. Are apolipoprotein E fragments a promising new therapeutic target for Alzheimer’s disease? Ther Adv Chronic Dis 2022; 13:20406223221081605. [PMID: 35321401 PMCID: PMC8935560 DOI: 10.1177/20406223221081605] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
Human apolipoprotein E (ApoE) is a 299-amino acid secreted glycoprotein that binds cholesterol and phospholipids. ApoE exists as three common isoforms (ApoE2, ApoE3, and ApoE4) and heterozygous carriers of the ε4 allele of the gene encoding ApoE (APOE) have a fourfold greater risk of developing Alzheimer’s disease (AD). The enzymes thrombin, cathepsin D, α-chymotrypsin-like serine protease, and high-temperature requirement serine protease A1 are responsible for ApoE proteolytic processing resulting in bioactive C-terminal-truncated fragments that vary depending on ApoE isoforms, brain region, aging, and neural injury. The objectives of the present narrative review were to describe ApoE processing, discussing current hypotheses about the potential role of various ApoE fragments in AD pathophysiology, and reviewing the current development status of different anti-ApoE drugs. The exact mechanism by which APOE gene variants increase/decrease AD risk and the role of ApoE fragments in the deposition are not fully understood, but APOE is known to directly affect tau-mediated neurodegeneration. ApoE fragments co-localize with neurofibrillary tangles and amyloid β (Aβ) plaques, and may cause neurodegeneration. Among anti-ApoE approaches, a fascinating strategy may be to therapeutically overexpress ApoE2 in APOE ε4/ε4 carriers through vector administration or liposomal delivery systems. Another approach involves reducing ApoE4 expression by intracerebroventricular antisense oligonucleotides that significantly decreased Aβ pathology in transgenic mice. Differences in the proteolytic processing of distinct ApoE isoforms and the use of ApoE fragments as mimetic peptides in AD treatment are also under investigation. Treatment with peptides that mimic the structural and biological properties of native ApoE may reduce Aβ deposition, tau hyperphosphorylation, and glial activation in mouse models of Aβ pathology. Alternative strategies involve the use of ApoE4 structure correctors, passive immunization to target a certain form of ApoE, conversion of the ApoE4 aminoacid sequence into that of ApoE3 or ApoE2, and inhibition of the ApoE-Aβ interaction.
Collapse
Affiliation(s)
- Filomena Lo Vecchio
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia 71013, Italy
| | - Paola Bisceglia
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | | | - Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Raffaela Rita Latino
- Complex Structure of Neurology, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Emanuela Resta
- Translational Medicine and Management of Health Systems, University of Foggia, Foggia, Italy
| | - Maurizio Leone
- Complex Structure of Neurology, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Vincenzo Solfrizzi
- ‘Cesare Frugoni’ Internal and Geriatric Medicine and Memory Unit, University of Bari ‘Aldo Moro’, Bari, Italy
| | - Antonio Greco
- Department of Neuroscience, Catholic University of the Sacred Heart, Rome, Italy; Neurology Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | | | - Mark Watling
- CNS & Pain Department, TranScrip Ltd, Reading, UK
| | - Francesco Panza
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
- Population Health Unit, Healthy Aging Phenotypes Research Unit, ‘Salus in Apulia Study’, National Institute of Gastroenterology ‘Saverio de Bellis’, Research Hospital, Castellana Grotte, Bari 70013, Italy
| | - Davide Seripa
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Hematology and Stem Cell Transplant Unit, ‘Vito Fazzi’ Hospital, Lecce, Italy
| |
Collapse
|
49
|
Lysosomal ATP Transporter SLC17A9 Controls Cell Viability via Regulating Cathepsin D. Cells 2022; 11:cells11050887. [PMID: 35269509 PMCID: PMC8909234 DOI: 10.3390/cells11050887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 12/04/2022] Open
Abstract
SLC17A9 (solute carrier family 17 member 9) functions as an ATP transporter in lysosomes as well as other secretory vesicles. SLC17A9 inhibition or silence leads to cell death. However, the molecular mechanisms causing cell death are unclear. In this study, we report that cell death induced by SLC17A9 deficiency is rescued by the transcription factor EB (TFEB), a master gene for lysosomal protein expression, suggesting that SLC17A9 deficiency may be the main cause of lysosome dysfunction, subsequently leading to cell death. Interestingly, Cathepsin D, a lysosomal aspartic protease, is inhibited by SLC17A9 deficiency. Heterologous expression of Cathepsin D successfully rescues lysosomal dysfunction and cell death induced by SLC17A9 deficiency. On the other hand, the activity of Cathepsin B, a lysosomal cysteine protease, is not altered by SLC17A9 deficiency, and Cathepsin B overexpression does not rescue lysosomal dysfunction and cell death induced by SLC17A9 deficiency. Our data suggest that lysosomal ATP and SLC17A9 play critical roles in lysosomal function and cell viability by regulating Cathepsin D activity.
Collapse
|
50
|
Stahl-Meyer J, Holland LKK, Liu B, Maeda K, Jäättelä M. Lysosomal Changes in Mitosis. Cells 2022; 11:875. [PMID: 35269496 PMCID: PMC8909281 DOI: 10.3390/cells11050875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 01/27/2023] Open
Abstract
The recent discovery demonstrating that the leakage of cathepsin B from mitotic lysosomes assists mitotic chromosome segregation indicates that lysosomal membrane integrity can be spatiotemporally regulated. Unlike many other organelles, structural and functional alterations of lysosomes during mitosis remain, however, largely uncharted. Here, we demonstrate substantial differences in lysosomal proteome, lipidome, size, and pH between lysosomes that were isolated from human U2OS osteosarcoma cells either in mitosis or in interphase. The combination of pharmacological synchronization and mitotic shake-off yielded ~68% of cells in mitosis allowing us to investigate mitosis-specific lysosomal changes by comparing cell populations that were highly enriched in mitotic cells to those mainly in the G1 or G2 phases of the cell cycle. Mitotic cells had significantly reduced levels of lysosomal-associated membrane protein (LAMP) 1 and the active forms of lysosomal cathepsin B protease. Similar trends were observed in levels of acid sphingomyelinase and most other lysosomal proteins that were studied. The altered protein content was accompanied by increases in the size and pH of LAMP2-positive vesicles. Moreover, mass spectrometry-based shotgun lipidomics of purified lysosomes revealed elevated levels of sphingolipids, especially sphingomyelin and hexocylceramide, and lysoglyserophospholipids in mitotic lysosomes. Interestingly, LAMPs and acid sphingomyelinase have been reported to stabilize lysosomal membranes, whereas sphingomyelin and lysoglyserophospholipids have an opposite effect. Thus, the observed lysosomal changes during the cell cycle may partially explain the reduced lysosomal membrane integrity in mitotic cells.
Collapse
Affiliation(s)
- Jonathan Stahl-Meyer
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (L.K.K.H.); (B.L.); (K.M.)
| | - Lya Katrine Kauffeldt Holland
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (L.K.K.H.); (B.L.); (K.M.)
| | - Bin Liu
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (L.K.K.H.); (B.L.); (K.M.)
| | - Kenji Maeda
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (L.K.K.H.); (B.L.); (K.M.)
| | - Marja Jäättelä
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (L.K.K.H.); (B.L.); (K.M.)
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|