1
|
Arango-Lievano M, Jeanneteau F. Timing and crosstalk of glucocorticoid signaling with cytokines, neurotransmitters and growth factors. Pharmacol Res 2016; 113:1-17. [DOI: 10.1016/j.phrs.2016.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/02/2016] [Accepted: 08/02/2016] [Indexed: 01/05/2023]
|
2
|
Zhuang C, Huo H, Fu W, Huang W, Han L, Song M, Li Y. Aluminum chloride induced splenic lymphocytes apoptosis through NF-κB inhibition. Chem Biol Interact 2016; 257:94-100. [PMID: 27476752 DOI: 10.1016/j.cbi.2016.07.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/09/2016] [Accepted: 07/28/2016] [Indexed: 11/18/2022]
Abstract
This research investigated the relationship between lymphocytes apoptosis, hypothalamic-pituitary-adrenal (HPA) axis and NF-κB in AlCl3-treated rats. Eighty Wistar rats were orally exposed to 0 (control group, CG), 0.4 mg/mL (low-dose group, LG), 0.8 mg/mL (mid-dose group, MG) and 1.6 mg/mL (high-dose group, HG) AlCl3 for 90 days, respectively. A variety of measurements were taken including lymphocyte apoptosis index, serum corticotropin-releasing hormone (CRH), adrenocorticotrophic hormone (ACTH) and glucocorticoids (GCs) contents, GC receptors (GCR) and NF-κB mRNA and nuclear protein expressions, caspase 3 and 9 mRNA expressions and activities. The results showed that in the AlCl3-treated rats serum CRH, ACTH and GCs contents, lymphocyte GC receptors (GCR) mRNA and nuclear protein expressions, caspase 3 and 9 mRNA expressions and activities increased, while Bcl-2/Bax ratio and NF-κB mRNA and nuclear protein expressions decreased compared with the CG. Furthermore GCR and NF-κB nuclear protein expressions were negatively correlated. And NF-κB mRNA expression was positively correlated with that of Bcl-2, but negatively correlated with that of Bax in AlCl3-treated rats. These findings indicated that AlCl3 activated HPA axis, then induced splenic lymphocytes apoptosis through NF-κB inhibition.
Collapse
Affiliation(s)
- Cuicui Zhuang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Hui Huo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Wanfa Fu
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
| | - Wanyue Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Lulu Han
- ICareVet Pet Hospital, Shenyang 110014, China
| | - Miao Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
3
|
Xu W, Xue L, Sun Y, Henry A, Battle JM, Micault M, Morris SW. Bcl10 is an essential regulator for A20 gene expression. J Physiol Biochem 2013; 69:821-34. [DOI: 10.1007/s13105-013-0259-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/29/2013] [Indexed: 01/22/2023]
|
4
|
Liberman AC, Refojo D, Antunica-Noguerol M, Holsboer F, Arzt E. Underlying mechanisms of cAMP- and glucocorticoid-mediated inhibition of FasL expression in activation-induced cell death. Mol Immunol 2012; 50:220-35. [PMID: 22341864 DOI: 10.1016/j.molimm.2012.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 01/04/2012] [Accepted: 01/21/2012] [Indexed: 11/19/2022]
Abstract
Glucocorticoids (GCs) and cAMP-dependent signaling pathways exert diverse and relevant immune regulatory functions, including a tight control of T cell death and homeostasis. Both of these signaling molecules inhibit TCR-induced cell death and FasL expression, but the underlying mechanisms are still poorly understood. Therefore, to address this question, we performed a comprehensive screening of signaling pathways downstream of the TCR, in order to define which of them are targets of cAMP- and GC-mediated inhibition. We found that cAMP inhibited NF-κB and ERK pathways through a PKA-dependent mechanism, while Dexamethasone blocked TCR-induced NF-κB signaling. Although GCs and cAMP inhibited the induction of endogenous FasL mRNA expression triggered by TCR activation, they potentiated TCR-mediated induction of FasL promoter activity in transient transfection assays. However, when the same FasL promoter was stably transfected, the facilitatory effect of GCs and cAMP became inhibitory, thus resembling the effects on endogenous FasL mRNA expression. Hence, the endogenous chromatinization status known to occur in integrated or genomic vs. episomic DNA might be critical for proper regulation of FasL expression by cAMP and GCs. Our results suggest that the chromatinization status of the FasL promoter may function as a molecular switch, controlling cAMP and GC responsiveness and explaining why these agents inhibit FasL expression in T cells but induce FasL in other cell types.
Collapse
Affiliation(s)
- Ana C Liberman
- Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología y Biología Molecular y Celular, Universidad de Buenos Aires and IBioBA-CONICET, 1428 Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
5
|
Lidocaine-induced apoptosis of gingival fibroblasts: participation of cAMP and PKC activity. Cell Biol Int 2011; 35:783-8. [PMID: 21047305 DOI: 10.1042/cbi20100200] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Local anaesthetics are drugs that prevent or relieve pain by interrupting nervous conduction and are the most commonly used drugs in dentistry. Their main targets of action are voltage-dependent Na+ channels. The Na+ channel is modulated by phosphorylation of two enzymes: PKA (protein kinase A) and PKC (protein kinase C). We studied the ability of lidocaine to modulate programmed cell death of human gingival fibroblasts and the mechanisms involved in this process. Lidocaine (10-5 to 10-7 M) stimulated apoptosis in primary cultures and the caspase-3 activity in a concentration-dependent manner. The stimulatory effect of lidocaine on apoptosis was attenuated in the presence of HA 1004 (PKA inhibitor) and stimulated by staurosporine and Go 6976 (PKC inhibitors). Lidocaine-induced apoptotic nuclei correlated positively with cAMP accumulation and negatively with PKC activity. These results show that lidocaine promotes apoptosis in human gingival fibroblasts at concentrations used for local anaesthesia. The mechanism involves PKA stimulation and PKC inhibition, which in turn stimulates caspase-3 and leads to programmed cell death.
Collapse
|
6
|
Zanotto-Filho A, Gelain DP, Schröder R, Souza LF, Pasquali MAB, Klamt F, Moreira JCF. The NF kappa B-mediated control of RS and JNK signaling in vitamin A-treated cells: duration of JNK-AP-1 pathway activation may determine cell death or proliferation. Biochem Pharmacol 2008; 77:1291-301. [PMID: 19161988 DOI: 10.1016/j.bcp.2008.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 12/22/2008] [Accepted: 12/22/2008] [Indexed: 12/13/2022]
Abstract
Nuclear factor kappa B (NFkappaB) has emerged as a crucial regulator of cell survival, playing important functions in cellular resistance to oxidants and chemotherapeutic agents. Recent studies showed that NFkappaB mediates cell survival through suppression of the accumulation of reactive species (RS) and a control of sustained activation of the Jun-N-terminal kinase (JNK) cascade. This work was undertaken in order to evaluate the role of NFkappaB in modulating the pro-oxidant effects of supplementation with vitamin A (retinol, ROH) in Sertoli cells, a major ROH physiological target. In this work, we reported that ROH treatment increases mitochondrial RS formation leading to a redox-dependent activation of NFkappaB. NFkappaB activation played a pivotal role in counteract RS accumulation in ROH-treated cells, since NFkappaB inhibition with DNA decoy oligonucleotides or pharmacological inhibitors (BAY-117082) potentiated ROH-induced RS accumulation and oxidative damage. In the presence of NFkappaB inhibition, ROH-induced oxidative stress promoted a prolonged activation of the JNK-activator protein 1 (AP-1) pathway and induced significant decreases in cell viability. Inhibition of JNK-AP-1 with decoy oligonucleotides to AP-1 or JNK inhibitor SP600125 prevented the decreases in cell viability. Antioxidants blocked the persistent JNK-AP-1 activation, cell oxidative damage, and the decreases in cell viability induced by NFkappaB inhibition. Finally, our data point superoxide dismutase (SOD)2 as a potential antioxidant factor involved in NFkappaB protective effects against ROH-induced oxidative stress. Taken together, data presented here show that NFkappaB mediates cellular resistance to the pro-oxidant effects of vitamin A by inhibiting RS accumulation and the persistent and redox-dependent activation of JNK-AP-1 cascade.
Collapse
Affiliation(s)
- Alfeu Zanotto-Filho
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | | | | | | | | | | | | |
Collapse
|
7
|
Zhang L, Zambon AC, Vranizan K, Pothula K, Conklin BR, Insel PA. Gene expression signatures of cAMP/protein kinase A (PKA)-promoted, mitochondrial-dependent apoptosis. Comparative analysis of wild-type and cAMP-deathless S49 lymphoma cells. J Biol Chem 2007; 283:4304-13. [PMID: 18048352 DOI: 10.1074/jbc.m708673200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The second messenger cAMP acts via protein kinase A (PKA) to induce apoptosis by mechanisms that are poorly understood. Here, we assessed a role for mitochondria and analyzed gene expression in cAMP/PKA-promoted apoptosis by comparing wild-type (WT) S49 lymphoma cells and the S49 variant, D(-) (cAMP-deathless), which lacks cAMP-promoted apoptosis but has wild-type levels of PKA activity and cAMP-promoted G(1) growth arrest. Treatment of WT, but not D(-), S49 cells with 8-CPT-cAMP (8-(4-chlorophenylthio)-adenosine-3':5'-cyclic monophosphate) for 24 h induced loss of mitochondrial membrane potential, mitochondrial release of cytochrome c and SMAC, and increase in caspase-3 activity. Gene expression analysis (using Affymetrix 430 2.0 arrays) revealed that WT and D(-) cells incubated with 8-CPT-cAMP have similar, but non-identical, extents of cAMP-regulated gene expression at 2 h (approximately 800 transcripts) and 6 h (approximately 1000 transcripts) (|Fold| > 2, p < 0.06); by contrast, at 24 h, approximately 2500 and approximately 1100 transcripts were changed in WT and D(-) cells, respectively. Using an approach that combined regression analysis, clustering, and functional annotation to identify transcripts that showed differential expression between WT and D(-) cells, we found differences in cAMP-mediated regulation of mRNAs involved in transcriptional repression, apoptosis, the cell cycle, RNA splicing, Golgi, and lysosomes. The two cell lines differed in cAMP-response element-binding protein (CREB) phosphorylation and expression of the transcriptional inhibitor ICER (inducible cAMP early repressor) and in cAMP-regulated expression of genes in the inhibitor of apoptosis (IAP) and Bcl families. The findings indicate that cAMP/PKA-promoted apoptosis of lymphoid cells occurs via mitochondrial-mediated events and imply that such apoptosis involves gene networks in multiple biochemical pathways.
Collapse
Affiliation(s)
- Lingzhi Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
8
|
Druker J, Liberman AC, Acuña M, Giacomini D, Refojo D, Silberstein S, Pereda MP, Stalla GK, Holsboer F, Arzt E. Molecular understanding of cytokine-steroid hormone dialogue: implications for human diseases. Ann N Y Acad Sci 2007; 1088:297-306. [PMID: 17192575 DOI: 10.1196/annals.1366.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Highly sophisticated mechanisms confer upon the immune system the capacity to respond with a certain degree of autonomy. However, the final outcome of an adaptative immune response depends on the interaction with other systems of the organism. The immune-neuroendocrine systems have an intimate cross-communication, making possible a satisfactory response to environmental changes. Part of this interaction occurs through cytokines and steroid hormones. The last step of this crosstalk is at the molecular level. In this article we will focus on the physical and functional interrelationship between cytokine signaling pathway-activated transcription factors (TFs) and steroid receptors in different cell models, where the signals triggered by cytokines and steroid hormones have major roles: (1) the ligand-dependent-activated glucocorticoid receptor (GR) influence the genetic program that specifies lineage commitment in T helper (Th) cell differentiation. How posttranslational modifications of several TFs as well as nuclear hormone receptors could be implicated in the molecular crosstalk between the immune-neuroendocrine messengers is discussed. (2) glucocorticoid (GC) antagonism on the TCR-induced T cell apoptosis. (3) estrogen receptor/TGF-beta family proteins molecular interaction implicated on pituitary prolactinomas pathogenesis. The functional crosstalk at the molecular level between immune and steroids signals is essential to determine an integrative response to both mediators (which in the last instance results in a new gene activation/repression profile) and constitutes the ultimate integrative level of interaction between the immune and neuroendocrine systems.
Collapse
Affiliation(s)
- Jimena Druker
- Laboratorio de Fisiología y Biología Molecular, Departmento de Fisiologiía y Biooogía Molecular y Celular, Universidad de Buenos Aires, Ciudad Universitaria, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Morjaria S, Deleuze-Masquefa C, Lafont V, Gayraud S, Bompart J, Bonnet PA, Dornand J. Impairment of TNF-alpha production and action by imidazo[1,2- alpha] quinoxalines, a derivative family which displays potential anti-inflammatory properties. Int J Immunopathol Pharmacol 2006; 19:525-38. [PMID: 17026837 DOI: 10.1177/039463200601900308] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In a previous study, we analysed the synthesis and properties of a series of imidazo[1,2-alpha]quinoxalines designed in our laboratory as possible imiquimod analogues. We found that these imidazo[1,2-alpha]quinoxalines were in fact potent inhibitors of phosphodiesterase 4 enzymes (PDE4). PDE4 inhibition normally results in an increase in intracellular cAMP which, in PBMC, induces the suppression of TNF-alpha mRNA transcription and thus cytokine synthesis. Such an effect is antagonistic to that of imiquimod. Furthermore, some TNF-alpha-induced activity, such as cell apoptosis which is dependent on the intracellular cAMP levels might also be affected. Therefore, by counteracting the properties of TNF-alpha and/or its production, the imidazo[1,2-alpha]quinoxalines could be considered as potential anti-inflammatory drugs. The present study was performed to confirm or refute this hypothesis. For this, we characterized the effects of imidazo[1,2-alpha]quinoxalines both on TNF-alpha activity and synthesis in regard to their ability to act as inhibitors of PDE4 (IPDE4). We found that the imidazo[1,2-alpha]quinoxalines dose-dependently prevented the TNF-alpha-triggered death of L929 cells, with the 8-series (-NHCH3 in R4) being the most potent. Moreover, when the effect of the 8-series on TNF-alpha production was investigated using gamma9delta2 T cells, it was observed that these compounds impaired the TCR:CD3-triggered TNF-alpha production. Structure-activity analysis revealed that these properties of the drugs did not coincide with their IPDE4 properties. This prompted further exploration into other signalling mechanisms possibly involved in TNF-alpha action and production, notably the p38 MAPK and the PI3K pathway. We demonstrate here that the imidazo[1,2-alpha]quinoxalines targeted these pathways in a different way: they activated the p38 MAPK pathway whilst inhibiting the PI3K pathway. Such effects on cell signalling could account for the imidazo[1,2-alpha]quinoxalines effects on 1) action and 2) production of TNF-alpha, which define these drugs as potential anti-inflammatory agents.
Collapse
Affiliation(s)
- S Morjaria
- INSERM U431, University of Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
10
|
Tiwari S, Dong H, Kim EJ, Weintraub L, Epstein PM, Lerner A. Type 4 cAMP phosphodiesterase (PDE4) inhibitors augment glucocorticoid-mediated apoptosis in B cell chronic lymphocytic leukemia (B-CLL) in the absence of exogenous adenylyl cyclase stimulation. Biochem Pharmacol 2005; 69:473-83. [PMID: 15652238 DOI: 10.1016/j.bcp.2004.10.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Accepted: 10/27/2004] [Indexed: 11/29/2022]
Abstract
cAMP-mediated signaling potentiates glucocorticoid-mediated apoptosis in lymphoid cells, but an effective means by which to take advantage of this observation in the treatment of lymphoid malignancies has not been identified. The primary objective of the current study was to determine whether PDE4 inhibitors, a class of compounds in late clinical development that raise intracellular cAMP levels by inhibiting type 4 cyclic nucleotide phosphodiesterases (PDE4), increase the efficacy of glucocorticoid-mediated apoptosis in leukemic cells from patients with B cell chronic lymphocytic leukemia (B-CLL). Rolipram, a prototypic PDE4 inhibitor, synergized with glucocorticoids in inducing B-CLL but not T cell apoptosis. Rolipram also augmented glucocorticoid receptor element (GRE) transactivation in B-CLL cells. In contrast, inhibition of protein kinase A (PKA) with the cAMP antagonist Rp-8Br-cAMPS reversed both glucocorticoid-induced apoptosis and GRE transactivation. CCRF-CEM cells, a well-studied model of glucocorticoid and cAMP-induced apoptosis, differed from B-CLL cells in that stimulation of adenylyl cyclase with the diterpene forskolin was required to increase both glucocorticoid-mediated apoptosis and GRE activation, while PDE4 inhibition had no effect. Consistent with these results, inhibition of PDE4 induced cAMP elevation in B-CLL but not CCRF-CEM cells, while forskolin augmented cAMP levels in CCRF-CEM but not B-CLL cells. While rolipram treatment up-regulated PDE4B in B-CLL, forskolin treatment up-regulated PDE4D in CCRF-CEM cells. These studies suggest that PKA is required for and enhances glucocorticoid-induced apoptosis in B-CLL by modulating glucocorticoid receptor signal transduction. Clinical trials that examine whether PDE4 inhibitors enhance the efficacy of glucocorticoid-containing chemotherapy regimens in B-CLL are indicated.
Collapse
MESH Headings
- 3',5'-Cyclic-AMP Phosphodiesterases/antagonists & inhibitors
- Adenylyl Cyclases/physiology
- Apoptosis/drug effects
- Cells, Cultured
- Colforsin/pharmacology
- Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors
- Cyclic Nucleotide Phosphodiesterases, Type 3
- Cyclic Nucleotide Phosphodiesterases, Type 4
- Drug Synergism
- Glucocorticoids/pharmacology
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Phosphodiesterase Inhibitors/pharmacology
- Response Elements
- Rolipram/pharmacology
- Transcriptional Activation/drug effects
Collapse
Affiliation(s)
- Sanjay Tiwari
- Evans Department of Medicine, Section of Hematology and Oncology, Boston Medical Center, 650 Albany Street, Boston, MA 02118, USA
| | | | | | | | | | | |
Collapse
|
11
|
Gross A, Bouaboula M, Casellas P, Liautard JP, Dornand J. Subversion and utilization of the host cell cyclic adenosine 5'-monophosphate/protein kinase A pathway by Brucella during macrophage infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:5607-14. [PMID: 12759440 DOI: 10.4049/jimmunol.170.11.5607] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Brucella spp. are intramacrophage pathogens that induce chronic infections in a wide range of mammals, including domestic animals and humans. Therefore, the macrophage response to infection has important consequences for both the survival of phagocytosed bacteria and the further development of host immunity. However, very little is known about the macrophage cell signaling pathways initiated upon infection and the virulence strategy that Brucella use to counteract these responses and secure their survival. In a previous study, we have shown that macrophages activated by SR141716A, a ligand of the cannabinoid receptor CB1, acquired the capacity to control Brucella and observed that the CB1 receptor-triggering engages the microbicidal activity of phagocytes. To analyze the perturbation of cell signaling pathway during macrophage infection by Brucella, we hypothesized that SR141716A provides cell signaling that interferes with the bacterial message leading to inhibition of macrophage functions. As CB1 receptor belongs to the family of G protein-linked receptors, we explored the cAMP signaling pathway. In this study, we show that the CB1 ligand inhibited the bacteria-induced cell signaling. Taking advantage of this result, we then demonstrated that Brucella infection elicited a rapid activation of the cAMP/protein kinase A pathway. This activation resulted in a prolonged phosphorylation of the transcription factor CREB. We finally demonstrate that the activation of the cAMP/protein kinase A pathway is crucial for the survival and establishment of Brucella within macrophages. For the first time in phagocytes, we thus characterized a primordial virulence strategy of Brucella involving the host signaling pathway, a novel point of immune intervention of this virulent pathogen.
Collapse
Affiliation(s)
- Antoine Gross
- Institut National de la Santé et de la Recherche Médicale Unité 431, IFR 56, University of Montpellier II, Montpellier, France.
| | | | | | | | | |
Collapse
|
12
|
Refojo D, Liberman AC, Giacomini D, Carbia Nagashima A, Graciarena M, Echenique C, Paez Pereda M, Stalla G, Holsboer F, Arzt E. Integrating systemic information at the molecular level: cross-talk between steroid receptors and cytokine signaling on different target cells. Ann N Y Acad Sci 2003; 992:196-204. [PMID: 12794059 DOI: 10.1111/j.1749-6632.2003.tb03150.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An essential event in immune activation is the increase of cytokines in both plasma and immune tissues. Steroid hormones influence several adaptive responses in both health and disease. Cytokines and steroids have an intimate cross-communication in many systems, making possible a satisfactory adaptive response to environmental changes. The ultimate level of integration of the cytokine-steroids cross-talk is the molecular level. We have demonstrated this in four types of cross-talk mechanisms on different cells in which steroids have major roles: (1) The tumor necrosis factor (TNF)-glucocorticoid receptor (GR) transcriptional interaction in cellular targets of TNF-induced cytotoxicity. TNF potentiates the transactivation activity of GR and the priming with TNF increases the protective action of GR on TNF-induced cytotoxicity. (2) The GR-T cell receptor (TCR) antagonism in GR-TCR-induced T cell apoptosis and its modulation by cAMP. cAMP inhibits the TCR-induced apoptosis through a PKA-CREB-dependent mechanism and potentiates glucocorticoid-induced apoptosis by means of a CREB-independent mechanism. (3) The GR influence on Th1-Th2 cytokine expression and differentiation. Glucocorticoids inhibit the induction of GATA-3 and T-bet transcription factors. (4) The influence of ER/Smad-4 signaling cross-communication on prolactinoma pathogenesis. Physical and functional interactions between Smad-4 and estrogen receptors take place in prolactinoma cells, providing a molecular explanation to link the tumorigenic action of these two important players of prolactinoma pathogenesis. The molecular cross-talk between steroids and transcription factors is the mechanism that provides the basis for the outcome of adaptive responses integrating the systemic information provided by hormones and cytokines.
Collapse
Affiliation(s)
- Damián Refojo
- Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, and the Argentine National Research Council, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Manna PP, Frazier WA. The mechanism of CD47-dependent killing of T cells: heterotrimeric Gi-dependent inhibition of protein kinase A. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:3544-53. [PMID: 12646616 DOI: 10.4049/jimmunol.170.7.3544] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD47 has been implicated in both positive and negative regulation of T cells as well as in T cell death. To clarify the role of CD47 in T cell function, we have studied the mechanism of T cell death in response to CD47 ligands, including mAb 1F7, thrombospondin-1, and a CD47 agonist peptide derived from it. CD47(-/-) Jurkat T cells (JINB8) were resistant to killing by all three ligands, indicating the essential role of CD47. Primary human T cells were also killed by CD47 ligands, but only after activation with anti-CD3. CD47-mediated cell death occurred without active caspases, DNA fragmentation, or Bcl-2 degradation. Pretreatment of Jurkat and primary T cells with pertussis toxin (PTX) prevented CD47-mediated death, indicating the involvement of G((i)alpha). Pretreatment of T cells with 8-bromo cAMP, forskolin, or 3-isobutyl-1-methylxanthine prevented the CD47-mediated apoptosis, and 1F7 dramatically reduced intracellular cAMP levels, an effect reversed with PTX. H89 and protein kinase A (PKA) inhibitor peptide, a specific PKA inhibitor, prevented rescue of T cells by PTX, 8-bromo cAMP, and forskolin, indicating a direct role for one or more PKA substrates. Thus, CD47-mediated killing of activated T cells occurs by a novel pathway involving regulation of cAMP levels by heterotrimeric G((i)alpha) with subsequent effects mediated by PKA.
Collapse
Affiliation(s)
- Partha Pratim Manna
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|