1
|
Bohnert S, Antelo L, Grünewald C, Yemelin A, Andresen K, Jacob S. Rapid adaptation of signaling networks in the fungal pathogen Magnaporthe oryzae. BMC Genomics 2019; 20:763. [PMID: 31640564 PMCID: PMC6805500 DOI: 10.1186/s12864-019-6113-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 09/20/2019] [Indexed: 11/10/2022] Open
Abstract
Background One fundamental question in biology is how the evolution of eukaryotic signaling networks has taken place. “Loss of function” (lof) mutants from components of the high osmolarity glycerol (HOG) signaling pathway in the filamentous fungus Magnaporthe oryzae are viable, but impaired in osmoregulation. Results After long-term cultivation upon high osmolarity, stable individuals with reestablished osmoregulation capacity arise independently from each of the mutants with inactivated HOG pathway. This phenomenon is extremely reproducible and occurs only in osmosensitive mutants related to the HOG pathway – not in other osmosensitive Magnaporthe mutants. The major compatible solute produced by these adapted strains to cope with high osmolarity is glycerol, whereas it is arabitol in the wildtype strain. Genome and transcriptome analysis resulted in candidate genes related to glycerol metabolism, perhaps responsible for an epigenetic induced reestablishment of osmoregulation, since these genes do not show structural variations within the coding or promotor sequences. Conclusion This is the first report of a stable adaptation in eukaryotes by producing different metabolites and opens a door for the scientific community since the HOG pathway is worked on intensively in many eukaryotic model organisms.
Collapse
Affiliation(s)
- Stefan Bohnert
- Institut für Biotechnologie und Wirkstoff-Forschung gGmbH (IBWF), Erwin-Schrödinger-Str. 56, D-67663, Kaiserslautern, Germany
| | - Luis Antelo
- Institut für Biotechnologie und Wirkstoff-Forschung gGmbH (IBWF), Erwin-Schrödinger-Str. 56, D-67663, Kaiserslautern, Germany
| | - Christiane Grünewald
- Johannes Gutenberg-University Mainz, Mikrobiologie und Weinforschung am Institut für Molekulare Physiologie, Johann-Joachim-Becherweg 15, D-55128, Mainz, Germany
| | - Alexander Yemelin
- Institut für Biotechnologie und Wirkstoff-Forschung gGmbH (IBWF), Erwin-Schrödinger-Str. 56, D-67663, Kaiserslautern, Germany
| | - Karsten Andresen
- Johannes Gutenberg-University Mainz, Mikrobiologie und Weinforschung am Institut für Molekulare Physiologie, Johann-Joachim-Becherweg 15, D-55128, Mainz, Germany
| | - Stefan Jacob
- Institut für Biotechnologie und Wirkstoff-Forschung gGmbH (IBWF), Erwin-Schrödinger-Str. 56, D-67663, Kaiserslautern, Germany. .,Johannes Gutenberg-University Mainz, Mikrobiologie und Weinforschung am Institut für Molekulare Physiologie, Johann-Joachim-Becherweg 15, D-55128, Mainz, Germany.
| |
Collapse
|
2
|
Davidson R, Pontasch JA, Wu JQ. Sbg1 Is a Novel Regulator for the Localization of the β-Glucan Synthase Bgs1 in Fission Yeast. PLoS One 2016; 11:e0167043. [PMID: 27898700 PMCID: PMC5127554 DOI: 10.1371/journal.pone.0167043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 11/08/2016] [Indexed: 02/03/2023] Open
Abstract
Glucan synthases synthesize glucans, complex polysaccharides that are the major components in fungal cell walls and division septa. Studying regulation of glucan synthases is important as they are essential for fungal cell survival and thus popular targets for anti-fungal drugs. Linear 1,3-β-glucan is the main component of primary septum and is synthesized by the conserved β-glucan synthase Bgs1 in fission yeast cytokinesis. It is known that Rho1 GTPase regulates Bgs1 catalytic activity and the F-BAR protein Cdc15 plays a role in Bgs1 delivery to the plasma membrane. Here we characterize a novel protein Sbg1 that is present in a complex with Bgs1 and regulates its protein levels and localization. Sbg1 is essential for contractile-ring constriction and septum formation during cytokinesis. Sbg1 and Bgs1 physically interact and are interdependent for localization to the plasma membrane. Bgs1 is less stable and/or mis-targeted to vacuoles in sbg1 mutants. Moreover, Sbg1 plays an earlier and more important role in Bgs1 trafficking and localization than Cdc15. Together, our data reveal a new mode of regulation for the essential β-glucan synthase Bgs1 by the novel protein Sbg1.
Collapse
Affiliation(s)
- Reshma Davidson
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Josef A. Pontasch
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Jian-Qiu Wu
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
3
|
Kang EH, Song EJ, Kook JH, Lee HH, Jeong BR, Park HM. Depletion of ε-COP in the COPI Vesicular Coat Reduces Cleistothecium Production in Aspergillus nidulans. MYCOBIOLOGY 2015; 43:31-36. [PMID: 25892912 PMCID: PMC4397377 DOI: 10.5941/myco.2015.43.1.31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/01/2014] [Accepted: 01/05/2015] [Indexed: 06/04/2023]
Abstract
We have previously isolated ε-COP, the α-COP interactor in COPI of Aspergillus nidulans, by yeast two-hybrid screening. To understand the function of ε-COP, the aneA (+) gene for ε-COP/AneA was deleted by homologous recombination using a gene-specific disruption cassette. Deletion of the ε-COP gene showed no detectable changes in vegetative growth or asexual development, but resulted in decrease in the production of the fruiting body, cleistothecium, under conditions favorable for sexual development. Unlike in the budding yeast Saccharomyces cerevisiae, in A. nidulans, over-expression of ε-COP did not rescue the thermo-sensitive growth defect of the α-COP mutant at 42℃. Together, these data show that ε-COP is not essential for viability, but it plays a role in fruiting body formation in A. nidulans.
Collapse
Affiliation(s)
- Eun-Hye Kang
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea
| | - Eun-Jung Song
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea
| | - Jun Ho Kook
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea
| | - Hwan-Hee Lee
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea
| | - Bo-Ri Jeong
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea
| | - Hee-Moon Park
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea
| |
Collapse
|
4
|
Kim KH, Kim EK, Jeong KY, Park YH, Park HM. Effects of mutations in the WD40 domain of α-COP on its interaction with the COPI coatomer in Saccharomyces cerevisiae. J Microbiol 2012; 50:256-62. [PMID: 22538654 DOI: 10.1007/s12275-012-1326-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 11/14/2011] [Indexed: 10/28/2022]
Abstract
Replacement of glycine 227 in the fifth WD40 motif of α-COP/Ret1p/Soo1p by charged or aromatic amino acids is responsible for the temperature-dependent osmo-sensitivity of Saccharomyces cerevisiae, while truncations of WD40 motifs exerted a reduction in cell growth rate and impairment in assembly of cell-wall associated proteins such as enolase and Gas1p. Yeast two-hybrid analysis revealed that the ret1-1/soo1-1 mutation of α-COP abolished the interaction with β- and ɛ-COP, respectively, and that the interaction between α-COP and β-COP relied on the WD40 domain of α-COP. Furthermore, although the WD40 domain is dispensable for interaction of α-COP with ɛ-COP, structural alterations in the WD40 domain could impair the interaction.
Collapse
Affiliation(s)
- Ki-Hyun Kim
- Department of Microbiology & Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | | | | | | | | |
Collapse
|
5
|
Kim KH, Kim EK, Kim SJ, Park YH, Park HM. Effect of Saccharomyces cerevisiae ret1-1 mutation on glycosylation and localization of the secretome. Mol Cells 2011; 31:151-8. [PMID: 21120625 PMCID: PMC3932681 DOI: 10.1007/s10059-011-0012-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 10/30/2010] [Accepted: 11/01/2010] [Indexed: 01/28/2023] Open
Abstract
To study the effect of the ret1-1 mutation on the secretome, the glycosylation patterns and locations of the secretory proteins and glycosyltransferases responsible for glycosylation were investigated. Analyses of secretory proteins and cell wall-associated glycoproteins showed severe impairment of glycosylation in this mutant. Results from 2D-polyacrylamide gel electrophoresis (PAGE) indicated defects in the glycosylation and cellular localization of SDS-soluble cell wall proteins. Localization of RFP-tagged glycosyltransferase proteins in ret1-1 indicated an impairment of Golgi-to retrograde transport at a non-permissive temperature. Thus, impaired glycosylation caused by the mislocalization of ER resident proteins appears to be responsible for the alterations in the secretome and the increased sensitivity to ER stress in ret1-1 mutant cells.
Collapse
Affiliation(s)
| | | | | | | | - Hee-Moon Park
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea
| |
Collapse
|
6
|
Ahn KW, Kim SW, Kang HG, Kim KH, Park YH, Choi WJ, Park HM. Deletion of GBG1/AYR1 Alters Cell Wall Biogenesis in Saccharomyces cerevisiae. MYCOBIOLOGY 2010; 38:102-107. [PMID: 23956635 PMCID: PMC3741558 DOI: 10.4489/myco.2010.38.2.0102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Accepted: 02/23/2010] [Indexed: 06/02/2023]
Abstract
We identified a gene for β-1,3-glucan synthesis (GBG1), a nonessential gene whose disruption alters cell wall synthesis enzyme activities and cell wall composition. This gene was cloned by functional complementation of defects in β-1,3-glucan synthase activity of the the previously isolated Saccharomyces cerevisiae mutant LP0353, which displays a number of cell wall defects at restrictive temperature. Disruption of the GBG1 gene did not affect cell viability or growth rate, but did cause alterations in cell wall synthesis enzyme activities: reduction of β-1,3-glucan synthase and chitin synthase III activities as well as increased chitin synthase I and II activities. GBG1 disruption also showed altered cell wall composition as well as susceptibility toward cell wall inhibitors such as Zymolyase, Calcofluor white, and Nikkomycin Z. These results indicate that GBG1 plays a role in cell wall biogenesis in S. cerevisiae.
Collapse
Affiliation(s)
- Ki-Woong Ahn
- Department of Microbiology & Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea
| | | | | | | | | | | | | |
Collapse
|
7
|
Dijkgraaf GJP, Abe M, Ohya Y, Bussey H. Mutations in Fks1p affect the cell wall content of beta-1,3- and beta-1,6-glucan in Saccharomyces cerevisiae. Yeast 2002; 19:671-90. [PMID: 12185837 DOI: 10.1002/yea.866] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Fks1p and Fks2p are related proteins thought to be catalytic subunits of the beta-1,3-glucan synthase. Analysis of fks1 delta mutants showed a partial K1 killer toxin-resistant phenotype and a 30% reduction in alkali-soluble beta-1,3-glucan that was accompanied by a modest reduction in beta-1,6-glucan. The gas1 delta mutant lacking a 1,3-beta-glucanosyltransferase displayed a similar reduction in alkali-soluble beta-1,3-glucan but did not share the beta-1,6-glucan defect, indicating that beta-1,6-glucan reduction is not a general phenotype among beta-1,3-glucan biosynthetic mutants. Overexpression of FKS2 suppressed the killer toxin phenotype of fks1 delta mutants, implicating Fks2p in the biosynthesis of the residual beta-1,6-glucan present in fks1 delta cells. In addition, eight out of 12 fks1ts fks2 delta mutants had altered beta-glucan levels at the permissive temperature: the partial killer resistant FKS1F1258Y N1520D allele was severely affected in both polymers and displayed a 55% reduction in beta-1,6-glucan, while the in vitro hyperactive allele FKS1T605I M761T increased both beta-glucan levels. These beta-1,6-glucan phenotypes may be due to altered availability of, and structural changes in, the beta-1,3-glucan polymer, which might serve as a beta-1,6-glucan acceptor at the cell surface. Alternatively, Fks1p and Fks2p could actively participate in the biosynthesis of both polymers as beta-glucan transporters. We analysed Fks1p and Fks2p in beta-1,6-glucan deficient mutants and found that they were mislocalized and that the mutants had reduced in vitro glucan synthase activity, possibly contributing to the observed beta-1,6-glucan defects.
Collapse
Affiliation(s)
- Gerrit J P Dijkgraaf
- Department of Biology, McGill University, 1205 Dr. Penfield Ave., Montreal, Quebec, Canada H3A 1B1
| | | | | | | |
Collapse
|
8
|
Lee HH, Park JS, Chae SK, Maeng PJ, Park HM. Aspergillus nidulans sod(VI)C1 mutation causes defects in cell wall biogenesis and protein secretion. FEMS Microbiol Lett 2002; 208:253-7. [PMID: 11959445 DOI: 10.1111/j.1574-6968.2002.tb11090.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Growth at the restrictive temperature (42 degrees C) of Aspergillus nidulans B120, carrying the conditional-lethal mutation sod(VI)C1, was partially improved by the addition of 1.0 M sorbitol to the medium. The mutant grown at 42 degrees C, with osmotic stabilizer, showed abnormal hyphal morphology, a decrease in beta-1,3-glucan synthase activity as well as cell wall sugar content, but an increase in chitin synthase activity and N-acetyl-glucosamine content. The mutation also affected the secretion of extracellular protease. The temperature-dependent osmo-sensitive phenotype of a Saccharomyces cerevisiae alpha-COP mutation can be rescued by the A. nidulans sod(VI)C(+) gene. These results indicate that the sod(VI)C1 mutation affects proper processing of secretory proteins destined for the surface of cells or beyond.
Collapse
Affiliation(s)
- Hwan Hee Lee
- Department of Microbiology, College of Natural Sciences, Chungnam National University, Daejeon 305-764, South Korea
| | | | | | | | | |
Collapse
|