1
|
van Panhuys N. TCR Signal Strength Alters T-DC Activation and Interaction Times and Directs the Outcome of Differentiation. Front Immunol 2016; 7:6. [PMID: 26834747 PMCID: PMC4725058 DOI: 10.3389/fimmu.2016.00006] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/08/2016] [Indexed: 12/13/2022] Open
Abstract
The ability of CD4+ T cells to differentiate into effector subsets underpins their ability to shape the immune response and mediate host protection. During T cell receptor-induced activation of CD4+ T cells, both the quality and quantity of specific activatory peptide/MHC ligands have been shown to control the polarization of naive CD4+ T cells in addition to co-stimulatory and cytokine-based signals. Recently, advances in two--photon microscopy and tetramer-based cell tracking methods have allowed investigators to greatly extend the study of the role of TCR signaling in effector differentiation under in vivo conditions. In this review, we consider data from recent in vivo studies analyzing the role of TCR signal strength in controlling the outcome of CD4+ T cell differentiation and discuss the role of TCR in controlling the critical nature of CD4+ T cell interactions with dendritic cells during activation. We further propose a model whereby TCR signal strength controls the temporal aspects of T-DC interactions and the implications for this in mediating the downstream signaling events, which influence the transcriptional and epigenetic regulation of effector differentiation.
Collapse
Affiliation(s)
- Nicholas van Panhuys
- Division of Experimental Biology, Sidra Medical and Research Center , Doha , Qatar
| |
Collapse
|
2
|
Cruz-Orcutt N, Vacaflores A, Connolly SF, Bunnell SC, Houtman JCD. Activated PLC-γ1 is catalytically induced at LAT but activated PLC-γ1 is localized at both LAT- and TCR-containing complexes. Cell Signal 2014; 26:797-805. [PMID: 24412752 DOI: 10.1016/j.cellsig.2013.12.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 12/31/2013] [Indexed: 12/27/2022]
Abstract
Phospholipase C-γ1 (PLC-γ1) is a key regulator of T cell receptor (TCR)-induced signaling. Activation of the TCR enhances PLC-γ1 enzymatic function, resulting in calcium influx and the activation of PKC family members and RasGRP. The current model is that phosphorylation of LAT tyrosine 132 facilitates the recruitment of PLC-γ1, leading to its activation and function at the LAT complex. In this study, we examined the phosphorylation kinetics of LAT and PLC-γ1 and the cellular localization of activated PLC-γ1. We observed that commencement of the phosphorylation of LAT tyrosine 132 and PLC-γ1 tyrosine 783 occurred simultaneously, supporting the current model. However, once begun, PLC-γ1 activation occurred more rapidly than LAT tyrosine 132. The association of LAT and PLC-γ1 was more transient than the interaction of LAT and Grb2 and a pool of activated PLC-γ1 translocated away from LAT to cellular structures containing the TCR. These studies demonstrate that LAT and PLC-γ1 form transient interactions that catalyze the activation of PLC-γ1, but that activated PLC-γ1 resides in both LAT and TCR clusters. Together, this work highlights that our current model is incomplete and the activation and function of PLC-γ1 in T cells is highly complex.
Collapse
Affiliation(s)
- Noemi Cruz-Orcutt
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - Aldo Vacaflores
- Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - Sean F Connolly
- Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - Stephen C Bunnell
- Program in Immunology, Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, United States; Department of Pathology, Tufts University School of Medicine, Boston, MA 02111, United States
| | - Jon C D Houtman
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States; Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
3
|
El Hentati FZ, Gruy F, Iobagiu C, Lambert C. Variability of CD3 membrane expression and T cell activation capacity. CYTOMETRY PART B-CLINICAL CYTOMETRY 2010; 78:105-14. [PMID: 19834968 DOI: 10.1002/cyto.b.20496] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND AlphabetaT cells have a wide distribution of CD3 membrane density. The aim of this article was to evaluate the significance of the CD3 differential expression on T cell subsets. Analysis was performed on healthy donors and renal transplant patients by flow cytometry. The results obtained are: (1) CD3 expression was widely distributed (CV = 38.3 +/- 3.1 to 43 +/- 2.3%). (2) The CD4, CD8, CD45 and forward scatter were similarly distributed. (3) The diversity of CD3 expression was directly related to the clonotypes: gamma9, non gamma9 from gammadeltaT cells and Vbeta clonotype from alphabetaT cells (e.g., Vbeta3FITC 7,980 +/- 1,628 Vbeta8PE: Vbeta20-FITC 11,768 +/- 1,510). (4) Using a computer simulation, we could confirm differential kinetics of T cell activation according to the initial parameters. Finally, in vitro activation was significantly higher on Vbeta8 and Vbeta9 (high CD3) compared with Vbeta2 and Vbeta3 (low CD3, P = 0.040-0.0003). In conclusion, T cells have highly heterogeneous CD3 expression, possibly predetermined and with clear functional significance.
Collapse
|
4
|
Computational analysis of T cell receptor signaling and ligand discrimination--past, present, and future. FEBS Lett 2010; 584:4814-22. [PMID: 20965176 DOI: 10.1016/j.febslet.2010.10.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 10/12/2010] [Accepted: 10/13/2010] [Indexed: 11/23/2022]
Abstract
Signaling through the T cell receptor for antigen (TCR) has been studied for years by conventional biochemical means. More recently, attempts have been made to develop computational models of signaling through this receptor, with a specific focus on understanding how this recognition system discriminates between closely related (self and non-self) ligands. Here we discuss recent advances centered on the role of feedback regulation, especially the key finding that a combination of digital and analog control circuits is fundamental to the discrimination properties of the TCR. We end by pointing to future, more biologically accurate models that incorporate spatial aspects of molecular organization in antigen-engaged T lymphocytes with this underlying biochemistry.
Collapse
|
5
|
Palmer E, Naeher D. Affinity threshold for thymic selection through a T-cell receptor–co-receptor zipper. Nat Rev Immunol 2009; 9:207-13. [DOI: 10.1038/nri2469] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
|
7
|
Feinerman O, Germain RN, Altan-Bonnet G. Quantitative challenges in understanding ligand discrimination by alphabeta T cells. Mol Immunol 2007; 45:619-31. [PMID: 17825415 PMCID: PMC2131735 DOI: 10.1016/j.molimm.2007.03.028] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2007] [Accepted: 03/02/2007] [Indexed: 11/30/2022]
Affiliation(s)
- Ofer Feinerman
- ImmunoDynamics Group – Program in Computational Biology & Immunology – Memorial Sloan-Kettering Cancer Center – New York NY – USA
| | - Ronald N. Germain
- Lymphocyte Biology Section – Laboratory of Immunology – National Institute of Allergy and Infectious Disease – National Institute of Health – Bethesda MD - USA
| | - Grégoire Altan-Bonnet
- ImmunoDynamics Group – Program in Computational Biology & Immunology – Memorial Sloan-Kettering Cancer Center – New York NY – USA
- Corresponding author:
| |
Collapse
|
8
|
Altan-Bonnet G, Germain RN. Modeling T cell antigen discrimination based on feedback control of digital ERK responses. PLoS Biol 2005; 3:e356. [PMID: 16231973 PMCID: PMC1262625 DOI: 10.1371/journal.pbio.0030356] [Citation(s) in RCA: 340] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Accepted: 08/22/2005] [Indexed: 11/19/2022] Open
Abstract
T-lymphocyte activation displays a remarkable combination of speed, sensitivity, and discrimination in response to peptide-major histocompatibility complex (pMHC) ligand engagement of clonally distributed antigen receptors (T cell receptors or TCRs). Even a few foreign pMHCs on the surface of an antigen-presenting cell trigger effective signaling within seconds, whereas 1 x 10(5)-1 x 10(6) self-pMHC ligands that may differ from the foreign stimulus by only a single amino acid fail to elicit this response. No existing model accounts for this nearly absolute distinction between closely related TCR ligands while also preserving the other canonical features of T-cell responses. Here we document the unexpected highly amplified and digital nature of extracellular signal-regulated kinase (ERK) activation in T cells. Based on this observation and evidence that competing positive- and negative-feedback loops contribute to TCR ligand discrimination, we constructed a new mathematical model of proximal TCR-dependent signaling. The model made clear that competition between a digital positive feedback based on ERK activity and an analog negative feedback involving SH2 domain-containing tyrosine phosphatase (SHP-1) was critical for defining a sharp ligand-discrimination threshold while preserving a rapid and sensitive response. Several nontrivial predictions of this model, including the notion that this threshold is highly sensitive to small changes in SHP-1 expression levels during cellular differentiation, were confirmed by experiment. These results combining computation and experiment reveal that ligand discrimination by T cells is controlled by the dynamics of competing feedback loops that regulate a high-gain digital amplifier, which is itself modulated during differentiation by alterations in the intracellular concentrations of key enzymes. The organization of the signaling network that we model here may be a prototypic solution to the problem of achieving ligand selectivity, low noise, and high sensitivity in biological responses.
Collapse
Affiliation(s)
- Grégoire Altan-Bonnet
- 1Lymphocyte Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ronald N Germain
- 1Lymphocyte Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
9
|
George AJT, Stark J, Chan C. Understanding specificity and sensitivity of T-cell recognition. Trends Immunol 2005; 26:653-9. [PMID: 16236548 DOI: 10.1016/j.it.2005.09.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 09/12/2005] [Accepted: 09/29/2005] [Indexed: 10/25/2022]
Abstract
The response of T cells to antigen shows an amazing degree of both sensitivity and specificity, with a cell responding to 1-10 peptide-MHC complexes and being sensitive to single amino acid substitutions. Kinetic proofreading or feedback pathways achieve specificity at the level of the receptor, whereas serial engagement of receptors by ligand molecules enhances sensitivity. Crosstalk between receptors, integration of signals and/or tuning of responses is important at the level of the cell. Induction of anergic or regulatory cells by suboptimal stimuli prevents cell activation by multiple encounters with weak ligands. Thus, for optimal sensitivity and specificity, it is necessary to have mechanisms that operate at the level of the receptor, the cell and finally, the population of responding cells.
Collapse
Affiliation(s)
- Andrew J T George
- Department of Immunology, Division of Medicine, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, UK W12 0NN.
| | | | | |
Collapse
|
10
|
Abstract
'It's high time molecular biology became quantitative, it cries out to a physicist ... for modeling. Modeling isn't a crutch, it's the opposite; it's a way of suggesting experiments to do, to fill gaps in your understanding.' John Maddox, Editor of Nature 1966-73, and 1980-95.
Collapse
Affiliation(s)
- Robin E Callard
- Immunobiology Unit, Institute of Child Health and CoMPLEX, University College London, London UK.
| | | |
Collapse
|
11
|
Conti BJ, Davis BK, Zhang J, O'connor W, Williams KL, Ting JPY. CATERPILLER 16.2 (CLR16.2), a novel NBD/LRR family member that negatively regulates T cell function. J Biol Chem 2005; 280:18375-85. [PMID: 15705585 DOI: 10.1074/jbc.m413169200] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The newly discovered mammalian CATERPILLER (NOD, NALP, PAN) family of proteins share similarities with the NBD-LRR superfamily of plant disease resistance (R) proteins and are predicted to mediate important immune regulatory function. This report describes the first cloning and characterization of a novel CATERPILLER gene, CLR16.2 that is located on human chromosome 16. The protein encoded by this gene has a typical NBD-LRR configuration. Analysis of CLR16.2 suggests the highest expression among T lymphocytes. Cellular localization studies of CLR16.2 revealed that it is a cytoplasmic protein. Querying microarray studies in the public data base showed that CLR16.2 was significantly (>90%) down-regulated 6 h after anti-CD3 and anti-CD28 stimulation of primary T lymphocytes. Its reduction upon T cell stimulation is consistent with a potential negative regulatory role. Indeed CLR16.2 decreased NF-kappaB, NFAT, and AP-1 induction of reporter gene constructs in response to T cell activation by anti-CD3 and anti-CD28 antibodies or PMA and ionomycin. Following T cell stimulation, the presence of CLR16.2 reduced the levels of the endogenous transcripts for the IL-2 and CD25 proteins that are central in maintaining T cell activation and preventing T cell anergy. This reduction was accompanied by a delay of IkappaBalpha degradation. We propose that CLR16.2 serves to attenuate T cell activation via TCR and co-stimulatory molecules, and its reduction during T cell stimulation allows the ensuing cellular activation.
Collapse
Affiliation(s)
- Brian J Conti
- Department of Biochemistry and Biophysics and Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
12
|
Goldstein B, Faeder JR, Hlavacek WS. Mathematical and computational models of immune-receptor signalling. Nat Rev Immunol 2004; 4:445-56. [PMID: 15173833 DOI: 10.1038/nri1374] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Byron Goldstein
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | | | | |
Collapse
|
13
|
Zhang T, He X, Tsang TC, Harris DT. SING: a novel strategy for identifying tumor-specific, CTL-recognized tumor antigens. FASEB J 2004; 18:600-2. [PMID: 14734636 DOI: 10.1096/fj.03-0881fje] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Traditional methods for identifying T cell-recognized tumor antigens (Ags) are laborious and time-consuming. In an attempt to simplify the procedure, a novel strategy, SING (SIgnal transduction molecule-mediated, NFAT-controlled, GFP expression) was established as a direct approach for cloning T cell-recognized tumor Ags. In the SING system, a mouse T cell line (BW5147) was transduced with a chimeric H-2Kb construct containing T cell-signaling domains and a green fluorescent protein (GFP) reporter gene under the transcriptional control of nuclear factor of activated T cells (NFAT). The resultant BW5147 cells were named BS cells. This cell line could "sense" TCR stimulation through the T cell-signaling domains after coculture with Ag-specific T cells and then become fluorescent (expressing green fluorescence protein, GFP+) in the presence of Ag peptides. The interaction between BS cells and Ag-specific T cells could be enhanced by addition of costimulatory signals. Currently, BS cells have been optimized to "sense" TCR stimulation after being pulsed with the relevant peptides at concentrations as low as 10(-9) M. Endogenous Ag-expressing BS cells could also become fluorescent after coculture with Ag-specific T cells. Our results provide a proof of principle for using the SING system to directly isolate Ag-expressing BS cells from BS cell repertoires, which are retrovirally transduced with tumor-derived cDNA libraries. Once tumor Ag-marked BS cells are identified, the sequences encoding tumor Ags could be easily retrieved by PCR amplification of the genomic DNA using vector-specific primers.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Antigen Presentation/drug effects
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/isolation & purification
- Cell Line, Tumor
- Cloning, Molecular/methods
- Coculture Techniques
- DNA-Binding Proteins/metabolism
- Egg Proteins/immunology
- Exocytosis/drug effects
- Genes, Reporter
- Genetic Vectors/genetics
- Green Fluorescent Proteins
- H-2 Antigens/immunology
- Hybridomas/pathology
- Ionomycin/pharmacology
- Luminescent Proteins/biosynthesis
- Luminescent Proteins/genetics
- Lymphoma, T-Cell/pathology
- Macrolides/pharmacology
- Mice
- NFATC Transcription Factors
- Nuclear Proteins
- Ovalbumin/immunology
- Peptide Fragments
- Receptors, Antigen, T-Cell/immunology
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/genetics
- Signal Transduction
- T-Lymphocytes, Cytotoxic/immunology
- Tetradecanoylphorbol Acetate/pharmacology
- Transcription Factors/metabolism
- Transcription, Genetic
- Transduction, Genetic
Collapse
Affiliation(s)
- Tong Zhang
- Gene Therapy Group, Department of Microbiology and Immunology, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | |
Collapse
|
14
|
Rudolph MG, Luz JG, Wilson IA. Structural and thermodynamic correlates of T cell signaling. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2002; 31:121-49. [PMID: 11988465 DOI: 10.1146/annurev.biophys.31.082901.134423] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The first crystal structures of intact T cell receptors (TCRs) bound to class I peptide-MHC (pMHCs) antigens were determined in 1996. Since then, further structures of class I TCR/pMHC complexes have explored the degree of structural variability in the TCR-pMHC system and the structural basis for positive and negative selection. The recent determination of class II and allogeneic class I TCR/pMHC structures, as well as those of accessory molecules (e.g., CD3), has pushed our knowledge of TCR/pMHC interactions into new realms, shedding light on clinical pathologies, such as graft rejection and graft-versus-host disease. Furthermore, the determination of coreceptor structures lays the foundation for a more comprehensive structural description of the supramolecular TCR signaling events and those assemblies that arise in the immunological synapse. While these telling photodocumentaries of the TCR/pMHC interaction are composed mainly from static crystal structures, a full description of the biological snapshots in T cell signaling requires additional analytical methods that record the dynamics of the process. To this end, surface plasmon resonance (SPR), isothermal titration calorimetry (ITC), and ultracentrifugation (UC) have furnished both affinities and kinetics of the TCR/pMHC association. In the past year, structural, biochemical, and molecular biological data describing TCR/pMHC interactions have sublimely coalesced into a burgeoning well of understanding that promises to deliver further insights into T cell recognition. The coming years will, through a more intimate union of structural and kinetic data, allow many pressing questions to be addressed, such as how TCR/pMHC ligation is affected by coreceptor binding and what is the mechanism of TCR signaling in both early and late stages of T cell engagement with antigen-presenting cells.
Collapse
Affiliation(s)
- Markus G Rudolph
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
15
|
Lechler R, Chai JG, Marelli-Berg F, Lombardi G. T-cell anergy and peripheral T-cell tolerance. Philos Trans R Soc Lond B Biol Sci 2001; 356:625-37. [PMID: 11375066 PMCID: PMC1088450 DOI: 10.1098/rstb.2001.0844] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The discovery that T-cell recognition of antigen can have distinct outcomes has advanced understanding of peripheral T-cell tolerance, and opened up new possibilities in immunotherapy. Anergy is one such outcome, and results from partial T-cell activation. This can arise either due to subtle alteration of the antigen, leading to a lower-affinity cognate interaction, or due to a lack of adequate co-stimulation. The signalling defects in anergic T cells are partially defined, and suggest that T-cell receptor (TCR) proximal, as well as downstream defects negatively regulate the anergic T cell's ability to be activated. Most importantly, the use of TCR-transgenic mice has provided compelling evidence that anergy is an in vivo phenomenon, and not merely an in vitro artefact. These findings raise the question as to whether anergic T cells have any biological function. Studies in rodents and in man suggest that anergic T cells acquire regulatory properties; the regulatory effects of anergic T cells require cell to cell contact, and appear to be mediated by inhibition of antigen-presenting cell immunogenicity. Close similarities exist between anergic T cells, and the recently defined CD4+ CD25+ population of spontaneously arising regulatory cells that serve to inhibit autoimmunity in mice. Taken together, these findings suggest that a spectrum of regulatory T cells exists. At one end of the spectrum are cells, such as anergic and CD4+ CD25+ T cells, which regulate via cell-to-cell contact. At the other end of the spectrum are cells which secrete antiinflammatory cytokines such as interleukin 10 and transforming growth factor-beta. The challenge is to devise strategies that reliably induce T-cell anergy in vivo, as a means of inhibiting immunity to allo- and autoantigens.
Collapse
Affiliation(s)
- R Lechler
- Department of Immunology, Imperial College School of Medicine, Hammersmith Campus, Du Cane Road, London W12 0NN,UK.
| | | | | | | |
Collapse
|
16
|
Chan C, George AJ, Stark J. Cooperative enhancement of specificity in a lattice of T cell receptors. Proc Natl Acad Sci U S A 2001; 98:5758-63. [PMID: 11344310 PMCID: PMC33286 DOI: 10.1073/pnas.101113698] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2000] [Accepted: 03/07/2001] [Indexed: 11/18/2022] Open
Abstract
Two of the most important models to account for the specificity and sensitivity of the T cell receptor (TCR) are the kinetic proofreading and serial ligation models. However, although kinetic proofreading provides a means for individual TCRs to measure accurately the length of time they are engaged and signal appropriately, the stochastic nature of ligand dissociation means the kinetic proofreading model implies that at high concentrations the response of the cell will be relatively nonspecific. Recent ligand experiments have revealed the phenomenon of both negative and positive crosstalk among neighboring TCRs. By using a Monte Carlo simulation of a lattice of TCRs, we integrate receptor crosstalk with the kinetic proofreading and serial ligation models and discover that receptor cooperativity can enhance T cell specificity significantly at a very modest cost to the sensitivity of the response.
Collapse
Affiliation(s)
- C Chan
- Centre for Nonlinear Dynamics and Its Applications, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | | | |
Collapse
|
17
|
Abstract
The molecular interactions between the T-cell receptor (TCR) and peptide-MHC (pMHC) have been elucidated in recent years. Nevertheless, the fact that binding of only slightly different ligands by a TCR, or ligation of the same pMHC at different developmental stages of the T cell, can have opposing consequences, continues to pose intellectual challenges. Kinetic proofreading models, which have at their core the dissociation rates of pMHC from the TCR, are best suited to account for these observations. However, T cells can be triggered by peptides with often minimal homology to the primary immunogenic peptide. This cross-reactivity of the TCR is manifest at several levels, from positive selection of immature thymocytes to homeostasis and antigen-cross- reactive immune responses of mature peripheral T cells. The implications of the high cross-reactivity of T-cell antigen recognition for self-tolerance and T-cell memory are discussed.
Collapse
Affiliation(s)
- M Regner
- Division of Immunology and Cell Biology, John Curtin School of Medical Research, The Australian National University, Canberra.
| |
Collapse
|
18
|
Auphan N, Ghosh S, Flavell RA, Schmitt-Verhulst AM. Differential Requirements for NF-κB and AP-1 trans-Activation in Response to Minimal TCR Engagement by a Partial Agonist in Naive CD8 T Cells. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.10.5219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
We investigated the basis for partial reactivity of naive CD8 T cells expressing an alloreactive transgenic TCR in response to a mutant alloantigen. When unstimulated APCs were used, IFN-γ as well as IL-2 and cell proliferation were observed in response to wild-type Ag, whereas mutant Ag induced only IFN-γ. DNA binding and reporter gene assays showed that the response to mutant Ag involved NF-κB, but not AP-1 activation, whereas wild-type Ag activated both transcription factors. Increasing the contribution of costimulatory signals by using LPS-activated APCs partially corrected the activation by mutant Ag, because proliferation and weak IL-2 production could be measured. This also led to AP-1 activation, albeit with delayed kinetics, in response to mutant Ag. To explain how engagement of the same TCR by distinct ligands results in different T cell responses, it may be proposed, in line with models stressing the importance of the kinetics of Ag/TCR interaction, that two types of signals be distinguished: a “fast” short-lived signal is sufficient to activate NF-κB; whereas a “slow” signal obtained after prolonged TCR engagement is required for AP-1 activation. Failure to activate AP-1 in limiting conditions (unstimulated mutant APC) was partially corrected by increasing costimulation.
Collapse
Affiliation(s)
- Nathalie Auphan
- *Centre d’Immunologie, Institut National de la Santé et de la Recherche Médicale- Centre National de la Recherche Scientifique (INSERM-CNRS) de Marseille-Luminy, Marseille, France; and
| | - Sankar Ghosh
- †Section of Immunobiology and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06517
| | - Richard A. Flavell
- †Section of Immunobiology and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06517
| | - Anne-Marie Schmitt-Verhulst
- *Centre d’Immunologie, Institut National de la Santé et de la Recherche Médicale- Centre National de la Recherche Scientifique (INSERM-CNRS) de Marseille-Luminy, Marseille, France; and
| |
Collapse
|