1
|
Fradette MS, Culley AI, Charette SJ. Detection of Cryptosporidium spp. and Giardia spp. in Environmental Water Samples: A Journey into the Past and New Perspectives. Microorganisms 2022; 10:microorganisms10061175. [PMID: 35744692 PMCID: PMC9228427 DOI: 10.3390/microorganisms10061175] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 01/27/2023] Open
Abstract
Among the major issues linked with producing safe water for consumption is the presence of the parasitic protozoa Cryptosporidium spp. and Giardia spp. Since they are both responsible for gastrointestinal illnesses that can be waterborne, their monitoring is crucial, especially in water sources feeding treatment plants. Although their discovery was made in the early 1900s and even before, it was only in 1999 that the U.S. Environmental Protection Agency (EPA) published a standardized protocol for the detection of these parasites, modified and named today the U.S. EPA 1623.1 Method. It involves the flow-through filtration of a large volume of the water of interest, the elution of the biological material retained on the filter, the purification of the (oo)cysts, and the detection by immunofluorescence of the target parasites. Since the 1990s, several molecular-biology-based techniques were also developed to detect Cryptosporidium and Giardia cells from environmental or clinical samples. The application of U.S. EPA 1623.1 as well as numerous biomolecular methods are reviewed in this article, and their advantages and disadvantages are discussed guiding the readers, such as graduate students, researchers, drinking water managers, epidemiologists, and public health specialists, through the ever-expanding number of techniques available in the literature for the detection of Cryptosporidium spp. and Giardia spp. in water.
Collapse
Affiliation(s)
- Marie-Stéphanie Fradette
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada; (A.I.C.); (S.J.C.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et Génie, Université Laval, Québec City, QC G1V 0A6, Canada
- Centre de Recherche en Aménagement et Développement du Territoire (CRAD), Université Laval, Québec City, QC G1V 0A6, Canada
- Correspondence:
| | - Alexander I. Culley
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada; (A.I.C.); (S.J.C.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et Génie, Université Laval, Québec City, QC G1V 0A6, Canada
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Steve J. Charette
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada; (A.I.C.); (S.J.C.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et Génie, Université Laval, Québec City, QC G1V 0A6, Canada
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, QC G1V 0A6, Canada
| |
Collapse
|
2
|
Angus SV, Kwon HJ, Yoon JY. Field-deployable and near-real-time optical microfluidic biosensors for single-oocyst-level detection of Cryptosporidium parvum from field water samples. ACTA ACUST UNITED AC 2012; 14:3295-304. [DOI: 10.1039/c2em30700f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Lee DY, Seto P, Korczak R. DNA microarray-based detection and identification of waterborne protozoan pathogens. J Microbiol Methods 2010; 80:129-33. [DOI: 10.1016/j.mimet.2009.11.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 11/16/2009] [Accepted: 11/20/2009] [Indexed: 11/27/2022]
|
4
|
Yu X, Van Dyke MI, Portt A, Huck PM. Development of a direct DNA extraction protocol for real-time PCR detection of Giardia lamblia from surface water. ECOTOXICOLOGY (LONDON, ENGLAND) 2009; 18:661-668. [PMID: 19499328 DOI: 10.1007/s10646-009-0347-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 05/18/2009] [Indexed: 05/27/2023]
Abstract
Giardia lamblia is one of the most recognized waterborne protozoan parasites causing gastrointestinal disease. A simple but effective DNA extraction protocol for real-time PCR detection from surface water samples was developed in this study. Eleven protocols were compared, which consisted of freeze-thaw treatments (liquid N(2) and boiling water) and purification using the Qiagen DNeasy kit, together with different combinations of proteinase K, PVP360, GITC and Chelex 100 incubation. Using concentrated surface water samples spiked with G. lamblia cysts, the necessary steps for high DNA recovery were shown to be freeze-thaw, DNeasy purification and Chelex 100 incubation. Multiple rounds of freeze-thaw treatment (five cycles per round) were reported for the first time in this study to significantly increase the DNA yield from G. lamblia cysts, from ~20% after one round of freeze-thaw to 40 and 70% after two and three-rounds of freeze-thaw, respectively. More than three rounds of freeze-thaw treatment did not promote additional DNA recovery. The final protocol included three-three-rounds of freeze-thaw treatment, DNeasy purification and Chelex 100 incubation. This method was simpler, more cost-effective, and had a comparable DNA recovery to methods involving immunomagnetic separation.
Collapse
Affiliation(s)
- Xin Yu
- Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Avenue, 361021 Xiamen, China
| | | | | | | |
Collapse
|
5
|
Detection of Toxoplasma gondii oocysts in environmental soil samples using molecular methods. Eur J Clin Microbiol Infect Dis 2008; 28:599-605. [DOI: 10.1007/s10096-008-0681-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 11/29/2008] [Indexed: 10/21/2022]
|
6
|
Carey CM, Lee H, Trevors JT. Comparison of most probable number-PCR and most probable number-foci detection method for quantifying infectious Cryptosporidium parvum oocysts in environmental samples. J Microbiol Methods 2006; 67:363-72. [PMID: 16730821 DOI: 10.1016/j.mimet.2006.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 03/31/2006] [Accepted: 04/18/2006] [Indexed: 10/24/2022]
Abstract
Microbial contamination of public water supplies is of significant concern, as numerous outbreaks, including Cryptosporidium, have been reported worldwide. Detection and enumeration of Cryptosporidium parvum oocysts in water supplies is important for the prevention of future cryptosporidiosis outbreaks. In addition to not identifying the oocyst species, the U.S. EPA Method 1622 does not provide information on oocyst viability or infectivity. As such, current detection strategies have been coupled with in vitro culture methods to assess oocyst infectivity. In this study, a most probable number (MPN) method was coupled with PCR (MPN-PCR) to quantify the number of infectious oocysts recovered from seeded raw water concentrates. The frequency of positive MPN-PCR results decreased as the oocyst numbers decreased. Similar results were observed when MPN was coupled to the foci detection method (MPN-FDM), which was done for comparison. For both methods, infectious oocysts were not detected below 10(3) seeded oocysts and the MPN-PCR and MPN-FDM estimates for each seed dose were generally within one-log unit of directly enumerated foci of infection. MPN-PCR estimates were 0.25, 0.54, 0 and 0.66 log(10) units higher than MPN-FDM estimates for the positive control, 10(5), 10(4) and 10(3) seed doses, respectively. The results show the MPN-PCR was the better method for the detection of infectious C. parvum oocysts in environmental water samples.
Collapse
Affiliation(s)
- Christine M Carey
- University of Guelph, Department of Environmental Biology, Guelph, Ontario, Canada N1G 2W1
| | | | | |
Collapse
|
7
|
Nichols RAB, Smith HV. Optimization of DNA extraction and molecular detection of Cryptosporidium oocysts in natural mineral water sources. J Food Prot 2004; 67:524-32. [PMID: 15035368 DOI: 10.4315/0362-028x-67.3.524] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The numerous published methods for extracting DNA from Cryptosporidium oocysts for PCR identify the lack of an optimized standard method for clinical, environmental, and public health investigations of cryptosporidiosis. A method that maximizes DNA extraction reliably, particularly from small numbers of partially purified or purified oocysts present in mineral waters and environmental samples, is required. We describe a maximized method for liberating DNA from Cryptosporidium parvum oocysts by 15 cycles of freezing (liquid nitrogen) and thawing (65 degrees C) in lysis buffer containing sodium dodecyl sulfate. The inhibitory effects of sodium dodecyl sulfate are abrogated by the addition of Tween 20 to the PCR reaction. We tested seven different C. parvum oocyst isolates, consistently detecting fewer than five oocysts following direct PCR amplification of a segment of the 18S rRNA gene. Older oocysts, which were more refractory to freeze-thawing, were disrupted effectively. A single oocyst in each of two mineral water concentrates was detected by both microscopy and PCR/Southern blotting. We recommend 15 cycles of freeze-thawing, with thawing at 65 degrees C in lysis buffer, to maximize oocyst disruption and DNA extraction, particularly when isolate history and oocyst age are unknown. Both the DNA extraction method and the PCR described can be used for clinical, environmental, and public health investigations of cryptosporidiosis.
Collapse
Affiliation(s)
- Rosely A B Nichols
- Scottish Parasite Diagnostic Laboratory, Stobhill Hospital, Glasgow G21 3UW, Scotland, UK
| | | |
Collapse
|
8
|
Carey CM, Lee H, Trevors JT. Biology, persistence and detection of Cryptosporidium parvum and Cryptosporidium hominis oocyst. WATER RESEARCH 2004; 38:818-862. [PMID: 14769405 DOI: 10.1016/j.watres.2003.10.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2003] [Revised: 10/06/2003] [Accepted: 10/22/2003] [Indexed: 05/24/2023]
Abstract
Cryptosporidium parvum and Cryptosporidium hominis are obligate enteric protozoan parasites which infect the gastrointestinal tract of animals and humans. The mechanism(s) by which these parasites cause gastrointestinal distress in their hosts is not well understood. The risk of waterborne transmission of Cryptosporidium is a serious global issue in drinking water safety. Oocysts from these organisms are extremely robust, prevalent in source water supplies and capable of surviving in the environment for extended periods of time. Resistance to conventional water treatment by chlorination, lack of correlation with biological indicator microorganisms and the absence of adequate methods to detect the presence of infectious oocysts necessitates the development of consistent and effective means of parasite removal from the water supply. Additional research into improving water treatment and sewage treatment practices is needed, particularly in testing the efficiency of ozone in oocyst inactivation. Timely and efficient detection of infectious C. parvum and C. hominis oocysts in environmental samples requires the development of rapid and sensitive techniques for the concentration, purification and detection of these parasites. A major factor confounding proper detection remains the inability to adequately and efficiently concentrate oocysts from environmental samples, while limiting the presence of extraneous materials. Molecular-based techniques are the most promising methods for the sensitive and accurate detection of C. parvum and C. hominis. With the availability of numerous target sequences, RT-PCR will likely emerge as an important method to assess oocyst viability. In addition, a multiplex PCR for the simultaneous detection of C. parvum, C. hominis and other waterborne pathogens such as Giardia lamblia would greatly benefit the water industry and protect human health.
Collapse
Affiliation(s)
- C M Carey
- Department of Environmental Biology, University of Guelph, Guelph, Ont, Canada N1G 2W1
| | | | | |
Collapse
|
9
|
Abstract
Detection of Toxoplasma gondii oocysts in environmental samples is a great challenge for researchers as this coccidian parasite can be responsible for severe infections in humans and in animals via ingestion of a single oocyst from contaminated water, soil, fruits or vegetables. Despite field investigations, oocysts have been rarely recovered from the environment due to the lack of sensitive methods. Immunomagnetic separation, fluorescence-activated cell sorting, and polymerase chain reaction have recently shown promising use in detection of protozoa from complex matrices. Such procedures could be applied to T. gondii detection, if studies on the antigenic and biochemical composition of the oocyst wall are completed. Using such methods, it will be possible to assess the occurrence, prevalence, viability and virulence of T. gondii oocysts in environmental matrices and specify sources of human and animal contamination.
Collapse
Affiliation(s)
- Aurélien Dumètre
- UPRES EA 3174, Neuroparasitologie et Neuroépidémiologie Tropicale, Faculté de Médecine, 2 Rue du Dr Marcland, F-87025 Limoges, France
| | | |
Collapse
|
10
|
Hallier-Soulier S, Guillot E. An immunomagnetic separation-reverse transcription polymerase chain reaction (IMS-RT-PCR) test for sensitive and rapid detection of viable waterborne Cryptosporidium parvum. Environ Microbiol 2003; 5:592-8. [PMID: 12823191 DOI: 10.1046/j.1462-2920.2003.00442.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The public health problem posed by the waterborne parasite Cryptosporidium parvum incited the water supply industry to develop very accurate analytical tools able to assess the presence of viable oocysts in drinking water. In this study, we report the development of a viability assay for C. parvum oocysts based on immunomagnetic separation and reverse transcription polymerase chain reaction (IMS-RT-PCR). The detection limit of the IMS-RT-PCR assay, which targets the hsp70 heat shock-induced mRNA, was in the range of ten viable oocysts per 100-l tap water samples. Purified Cryptosporidium parvum oocysts were exposed to heating, freezing and three chemical disinfection treatments namely, chlorination, chlorine dioxide treatment and ozonation under conventional doses used in water treatment plants, then detected by IMS-PCR and IMS-RT-PCR. The results obtained by IMS-PCR showed that none of the treatments had an effect on oocyst detection. The inactivation of oocysts by boiling resulted in no RT-PCR signal. Chlorine as well as chlorine dioxide did not influence oocyst viability as determined by IMS-RT-PCR. Ozone more effectively inactivated oocysts. The IMS-RT-PCR assay in conjunction with IMS-PCR marks the development of a combined detection and viability test which can be used for drinking water quality control as well as for reliable evaluation of treatment efficiency.
Collapse
Affiliation(s)
- Sylvie Hallier-Soulier
- ONDEO Services, CIRSEE, Technology and Research Centre, 38 Avenue du Président Wilson, 78230 Le Pecq, France
| | | |
Collapse
|
11
|
Fontaine M, Guillot E. An immunomagnetic separation-real-time PCR method for quantification of Cryptosporidium parvum in water samples. J Microbiol Methods 2003; 54:29-36. [PMID: 12732419 DOI: 10.1016/s0167-7012(03)00005-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The protozoan parasite Cryptosporidium parvum is known to occur widely in both raw and drinking water and is the cause of waterborne outbreaks of gastroenteritis throughout the world. The routinely used method for the detection of Cryptosporidium oocysts in water is based on an immunofluorescence assay (IFA). It is both time-consuming and nonspecific for the human pathogenic species C. parvum. We have developed a TaqMan polymerase chain reaction (PCR) test that accurately quantifies C. parvum oocysts in treated and untreated water samples. The protocol consisted of the following successive steps: Envirochek capsule filtration, immunomagnetic separation (IMS), thermal lysis followed by DNA purification using Nanosep centrifugal devices and, finally, real-time PCR using fluorescent TaqMan technology. Quantification was accomplished by comparing the fluorescence signals obtained from test samples with those from standard dilutions of C. parvum oocysts. This IMS-real-time PCR assay permits rapid and reliable quantification over six orders of magnitude, with a detection limit of five oocysts for purified oocyst solutions and eight oocysts for spiked water samples. Replicate samples of spiked tap water and Seine River water samples (with approximately 78 and 775 oocysts) were tested. C. parvum oocyst recoveries, which ranged from 47.4% to 99% and from 39.1% to 68.3%, respectively, were significantly higher and less variable than those reported using the traditional US Environmental Protection Agency (USEPA) method 1622. This new molecular method offers a rapid, sensitive and specific alternative for C. parvum oocyst quantification in water.
Collapse
Affiliation(s)
- Melanie Fontaine
- ONDEO Services, CIRSEE, 38 Avenue du President Wilson, 78230 Le Pecq, France
| | | |
Collapse
|
12
|
Xiao L, Singh A, Limor J, Graczyk TK, Gradus S, Lal A. Molecular characterization of cryptosporidium oocysts in samples of raw surface water and wastewater. Appl Environ Microbiol 2001; 67:1097-101. [PMID: 11229897 PMCID: PMC92700 DOI: 10.1128/aem.67.3.1097-1101.2001] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent molecular characterizations of Cryptosporidium parasites make it possible to differentiate the human-pathogenic Cryptosporidium parasites from those that do not infect humans and to track the source of Cryptosporidium oocyst contamination in the environment. In this study, we used a small-subunit rRNA-based PCR-restriction fragment length polymorphism (RFLP) technique to detect and characterize Cryptosporidium oocysts in 55 samples of raw surface water collected from several areas in the United States and 49 samples of raw wastewater collected from Milwaukee, Wis. Cryptosporidium parasites were detected in 25 surface water samples and 12 raw wastewater samples. C. parvum human and bovine genotypes were the dominant Cryptosporidium parasites in the surface water samples from sites where there was potential contamination by humans and cattle, whereas C. andersoni was the most common parasite in wastewater. There may be geographic differences in the distribution of Cryptosporidium genotypes in surface water. The PCR-RFLP technique can be a useful alternative method for detection and differentiation of Cryptosporidium parasites in water.
Collapse
Affiliation(s)
- L Xiao
- Division of Parasitic Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Emerging pathogens in drinking water have become increasingly important during the decade. These include newly-recognized pathogens from fecal sources such as Cryptosporidium parvum, Campylobacter spp., and rotavirus, as well as pathogens that are able to grow in water distribution systems, like Legionella spp., mycobacteria, and aeromonads. To perform a risk analysis for the pathogens in drinking water, it is necessary to understand the ecology of these organisms. The ecology of the drinking-water distribution system has to be evaluated in detail, especially the diversity and physiological properties of water bacteria. The interactions between water bacteria and (potential) pathogens in such diverse habitats as free water and biofilms are essential for the survival or growth of hygienically relevant organisms in drinking water. Results of epidemiological studies together with ecological data are the basis for effective resource protection, water treatment, and risk assessment.
Collapse
Affiliation(s)
- U Szewzyk
- Technical University Berlin, Microbial Ecology Group, Secr. OE 5, Berlin, 10587 Germany.
| | | | | | | |
Collapse
|
14
|
Jenkins MC, Trout J, Abrahamsen MS, Lancto CA, Higgins J, Fayer R. Estimating viability of Cryptosporidium parvum oocysts using reverse transcriptase-polymerase chain reaction (RT-PCR) directed at mRNA encoding amyloglucosidase. J Microbiol Methods 2000; 43:97-106. [PMID: 11121608 DOI: 10.1016/s0167-7012(00)00198-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The purpose of the present study was to determine if reverse transcriptase-polymerase chain reaction (RT-PCR) directed at mRNA encoding the enzyme amyloglucosidase (CPAG) could serve as a indicator for C. parvum oocyst viability. Oocysts were stored for 1-11 months in the refrigerator and at monthly intervals extracted for total RNA for RT-PCR analysis. An aliquot of these C. parvum oocysts was inoculated into neonatal mice which were necropsied 4 days later for ileal tissue that was analyzed by semi-quantitative PCR to determine the level of parasite replication. The CPAG RT-PCR assay detected RNA from as few as 10(3) C. parvum oocysts. An effect of storage time on both RT-PCR signal and mouse infectivity was observed. RNA from oocysts stored for 1-7 months, unlike oocysts stored for 9 or 11 months, contained CPAG mRNA that was detectable by RT-PCR. A gradual decrease in the RT-PCR signal intensity was observed between 5 and 7 months storage. The intensity of RT-PCR product from oocysts and the signal from semi-quantitative PCR of ileal tissue DNA from mice infected with these same aged oocysts were comparable. The RT-PCR assay of CPAG mRNA in cultured cells infected with viable C. parvum oocysts first detected expression at 12 h with highest expression levels observed at 48 h post-infection. These results indicate that CPAG RT-PCR may be useful for differentiating viable from non-viable C. parvum oocysts and for studying the expression of the gene for amyloglucosidase in vitro.
Collapse
Affiliation(s)
- M C Jenkins
- Immunology and Disease Resistance Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | | | | | | | | | | |
Collapse
|
15
|
Xiao L, Alderisio K, Limor J, Royer M, Lal AA. Identification of species and sources of Cryptosporidium oocysts in storm waters with a small-subunit rRNA-based diagnostic and genotyping tool. Appl Environ Microbiol 2000; 66:5492-8. [PMID: 11097935 PMCID: PMC92489 DOI: 10.1128/aem.66.12.5492-5498.2000] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The identification of Cryptosporidium oocysts in environmental samples is largely made by the use of an immunofluorescent assay. In this study, we have used a small-subunit rRNA-based PCR-restriction fragment length polymorphism technique to identify species and sources of Cryptosporidium oocysts present in 29 storm water samples collected from a stream in New York. A total of 12 genotypes were found in 27 positive samples; for 4 the species and probable origins were identified by sequence analysis, whereas the rest represent new genotypes from wildlife. Thus, this technique provides an alternative method for the detection and differentiation of Cryptosporidium parasites in environmental samples.
Collapse
Affiliation(s)
- L Xiao
- Division of Parasitic Diseases, Centers for Disease Control and Prevention, Chamblee, Georgia 30341, USA.
| | | | | | | | | |
Collapse
|
16
|
Fayer R, Morgan U, Upton SJ. Epidemiology of Cryptosporidium: transmission, detection and identification. Int J Parasitol 2000; 30:1305-22. [PMID: 11113257 DOI: 10.1016/s0020-7519(00)00135-1] [Citation(s) in RCA: 469] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
There are 10 valid species of Cryptosporidium and perhaps other cryptic species hidden under the umbrella of Cryptosporidium parvum. The oocyst stage is of primary importance for the dispersal, survival, and infectivity of the parasite and is of major importance for detection and identification. Because most oocysts measure 4-6 microm, appear nearly spherical, and have obscure internal structures, there are few or no morphometric features to differentiate species and in vitro cultivation does not provide differential data as for bacteria. Consequently, we rely on a combination of data from three tools: morphometrics, molecular techniques, and host specificity. Of 152 species of mammals reported to be infected with C. parvum or an indistinguishable organism, very few oocysts have ever been examined using more than one of these tools. This paper reviews the valid species of Cryptosporidium, their hosts and morphometrics; the reported hosts for the human pathogen, C. parvum; the mechanisms of transmission; the drinking water, recreational water, and food-borne outbreaks resulting from infection with C. parvum; and the microscopic, immunological, and molecular methods used to detect and identify species and genotypes.
Collapse
Affiliation(s)
- R Fayer
- United States Department of Agriculture, Agricultural Research Institute, LPSI, 10300 Baltimore Avenue, Beltsville, MD 20705, USA.
| | | | | |
Collapse
|
17
|
Hallier-Soulier S, Guillot E. Detection of cryptosporidia and Cryptosporidium parvum oocysts in environmental water samples by immunomagnetic separation-polymerase chain reaction. J Appl Microbiol 2000; 89:5-10. [PMID: 10945772 DOI: 10.1046/j.1365-2672.2000.01029.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cryptosporidium parvum has emerged as one of the most important new contaminants found in drinking water. Current protocols for the detection of cryptosporidia are time-consuming and rather inefficient. We recently described an immunomagnetic separation-polymerase chain reaction (IMS-PCR) assay permitting highly sensitive detection of C. parvum oocysts in drinking water samples. In this study, a second IMS-PCR assay to detect all cryptosporidial oocysts was developed, and both IMS-PCR assays were optimized on river water samples. A comparative study of the two IMS-PCR assays and the classical detection method based on an immunofluorescence assay (IFA) was carried out on 50 environmental samples. Whatever the type of water sample, the discrepancy in C. parvum detection between the IFA and IMS-PCR took the form of IFA-negative/IMS-PCR-positive results, and was caused mainly by the greater sensitivity of IMS-PCR as compared with IFA. Of the 50 water samples, only five tested positive for C. parvum using IMS-PCR, and could constitute a threat to human health. These results show that both IMS-PCR assays provide a rapid (1 d) and sensitive means of screening environmental water samples for the presence of cryptosporidia and C. parvum oocysts.
Collapse
|
18
|
Chung E, Aldom JE, Carreno RA, Chagla AH, Kostrzynska M, Lee H, Palmateer G, Trevors JT, Unger S, Xu R, De Grandis SA. PCR-based quantitation of Cryptosporidium parvum in municipal water samples. J Microbiol Methods 1999; 38:119-30. [PMID: 10520592 DOI: 10.1016/s0167-7012(99)00087-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A PCR method for the quantitation of Cryptosporidium parvum oocysts in municipal drinking water samples was investigated. Quantitative PCR uses an internal standard (IS) template with unknown target numbers to compare to standards of known concentrations in a standard curve. The IS template was amplified using the same primers used to amplify a portion of a 358 bp gene fragment that encodes a repetitive oocyst wall protein in C. parvum. Municipal water samples spiked with known numbers of C. parvum oocysts were tested by quantitative PCR using the IS and the Digene SHARP Signal System Assay for PCR product detection. The absorbance readings for target DNA and IS templates versus the number of molecules of the target DNA were plotted to generate standard curves for estimating oocyst numbers. The method allowed the quantitation of oocysts from log 3 to log 5 spiked into municipal water samples.
Collapse
Affiliation(s)
- E Chung
- Department of Environmental Biology, University of Guelph, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kostrzynska M, Sankey M, Haack E, Power C, Aldom JE, Chagla AH, Unger S, Palmateer G, Lee H, Trevors JT, De Grandis SA. Three sample preparation protocols for polymerase chain reaction based detection of Cryptosporidium parvum in environmental samples. J Microbiol Methods 1999; 35:65-71. [PMID: 10076632 DOI: 10.1016/s0167-7012(98)00106-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Cryptosporidium parvum is a protozoan parasite responsible for an increasing number of outbreaks of gastrointestinal illness worldwide. In this report, we describe development of sample preparation protocols for polymerase chain reaction (PCR)-based detection of C. parvum in fecal material and environmental water samples. Two of these methods were found adequate for isolation of Cryptosporidium DNA from filtered water pellet suspensions. The first involved several filtration steps, immunomagnetic separation and freeze-thaw cycles. The second method involved filtration, addition of EnviroAmp lysis reagent, freeze-thaw cycles and precipitation of the DNA with isopropanol. Using nested PCR, we detected 100 oocysts/ml of filtered water pellet suspension, with either of the above sample preparation procedures. Nested PCR increased sensitivity of the assay by two to three orders of magnitude as compared to the primary PCR. The detection limit for seeded fecal samples was 10-fold higher than for filtered environmental water pellet suspension. Nested PCR results showed 62.4 and 91.1% correlation with immunofluorescence assay (IFA) for fecal samples and filtered environmental water pellet suspensions, respectively. This correlation decreased to 47.2% and 44.4%, respectively, when only IFA positive samples were analyzed. However, in fecal samples contaminated with a high number (> 10(5)/g) of C. parvum oocysts, this correlation was 100%.
Collapse
Affiliation(s)
- M Kostrzynska
- Laboratory Services Division, University of Guelph, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|