1
|
Vargas JA, Sculaccio SA, Pinto APA, Pereira HD, Mendes LFS, Flores JF, Cobos M, Castro JC, Garratt RC, Leonardo DA. Structural insights into the Smirnoff-Wheeler pathway for vitamin C production in the Amazon fruit camu-camu. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2754-2771. [PMID: 38224521 DOI: 10.1093/jxb/erae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
l-Ascorbic acid (AsA, vitamin C) is a pivotal dietary nutrient with multifaceted importance in living organisms. In plants, the Smirnoff-Wheeler pathway is the primary route for AsA biosynthesis, and understanding the mechanistic details behind its component enzymes has implications for plant biology, nutritional science, and biotechnology. As part of an initiative to determine the structures of all six core enzymes of the pathway, the present study focuses on three of them in the model species Myrciaria dubia (camu-camu): GDP-d-mannose 3',5'-epimerase (GME), l-galactose dehydrogenase (l-GalDH), and l-galactono-1,4-lactone dehydrogenase (l-GalLDH). We provide insights into substrate and cofactor binding and the conformational changes they induce. The MdGME structure reveals a distorted substrate in the active site, pertinent to the catalytic mechanism. Mdl-GalDH shows that the way in which NAD+ association affects loop structure over the active site is not conserved when compared with its homologue in spinach. Finally, the structure of Mdl-GalLDH is described for the first time. This allows for the rationalization of previously identified residues which play important roles in the active site or in the formation of the covalent bond with FAD. In conclusion, this study enhances our understanding of AsA biosynthesis in plants, and the information provided should prove useful for biotechnological applications.
Collapse
Affiliation(s)
- Jhon A Vargas
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| | - Susana A Sculaccio
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| | - Andressa P A Pinto
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| | - Humberto D'Muniz Pereira
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| | - Luis F S Mendes
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| | - Jhoao F Flores
- Institute of Biology, State University of Campinas, Rua Monteiro Lobato 255, Campinas, SP 13083-862, Brazil
| | - Marianela Cobos
- Unidad Especializada del Laboratorio de Investigación en Biotecnología (UELIB), Centro de Investigaciones de Recursos Naturales de la UNAP (CIRNA), Universidad Nacional de la Amazonia Peruana (UNAP), Psje. Los Paujiles S/N, 1600, Iquitos, Peru
- Departamento de Ciencias Biomédicas y Biotecnología, Facultad de Ciencias Biológicas, Universidad Nacional de la Amazonia Peruana (UNAP), Zungarococha, Ciudad Universitaria. Iquitos, Perú
| | - Juan C Castro
- Unidad Especializada del Laboratorio de Investigación en Biotecnología (UELIB), Centro de Investigaciones de Recursos Naturales de la UNAP (CIRNA), Universidad Nacional de la Amazonia Peruana (UNAP), Psje. Los Paujiles S/N, 1600, Iquitos, Peru
- Departamento de Ciencias Biomédicas y Biotecnología, Facultad de Ciencias Biológicas, Universidad Nacional de la Amazonia Peruana (UNAP), Zungarococha, Ciudad Universitaria. Iquitos, Perú
| | - Richard C Garratt
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| | - Diego A Leonardo
- São Carlos Institute of Physics, University of São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-120, Brazil
| |
Collapse
|
2
|
Smirnoff N, Wheeler GL. The ascorbate biosynthesis pathway in plants is known, but there is a way to go with understanding control and functions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2604-2630. [PMID: 38300237 PMCID: PMC11066809 DOI: 10.1093/jxb/erad505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/29/2024] [Indexed: 02/02/2024]
Abstract
Ascorbate (vitamin C) is one of the most abundant primary metabolites in plants. Its complex chemistry enables it to function as an antioxidant, as a free radical scavenger, and as a reductant for iron and copper. Ascorbate biosynthesis occurs via the mannose/l-galactose pathway in green plants, and the evidence for this pathway being the major route is reviewed. Ascorbate accumulation is leaves is responsive to light, reflecting various roles in photoprotection. GDP-l-galactose phosphorylase (GGP) is the first dedicated step in the pathway and is important in controlling ascorbate synthesis. Its expression is determined by a combination of transcription and translation. Translation is controlled by an upstream open reading frame (uORF) which blocks translation of the main GGP-coding sequence, possibly in an ascorbate-dependent manner. GGP associates with a PAS-LOV protein, inhibiting its activity, and dissociation is induced by blue light. While low ascorbate mutants are susceptible to oxidative stress, they grow nearly normally. In contrast, mutants lacking ascorbate do not grow unless rescued by supplementation. Further research should investigate possible basal functions of ascorbate in severely deficient plants involving prevention of iron overoxidation in 2-oxoglutarate-dependent dioxygenases and iron mobilization during seed development and germination.
Collapse
Affiliation(s)
- Nicholas Smirnoff
- Biosciences, Faculty of Health and Life Sciences, Exeter EX4 4QD, UK
| | | |
Collapse
|
3
|
Liu Q, Liu M, Chen W, Yuan H, Jiang Y, Huang D, Liu H, Wang T. Recent Advances in 2-Keto-l-gulonic Acid Production Using Mixed-Culture Fermentation and Future Prospects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1419-1428. [PMID: 38206567 DOI: 10.1021/acs.jafc.3c08189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Vitamin C, also known as ascorbic acid, is an essential vitamin that cannot be synthesized by the human body and must be acquired through our diet. At present, the precursor of vitamin C, 2-keto-l-gulonic acid (2-KGA), is typically produced via a two-step fermentation process utilizing three bacterial strains. The second step of this traditional two-step fermentation method involves mixed-culture fermentation employing 2-KGA-producing bacteria (Ketogulonicigenium vulgare) along with associated bacteria. Because K. vulgare has defects in various metabolic pathways, associated bacteria are needed to provide key substances to promote K. vulgare growth and 2-KGA production. Unlike previous reviews where the main focus was the interaction between associated bacteria and K. vulgare, this Review presents the latest scientific research from the perspective of the metabolic pathways associated with 2-KGA production by K. vulgare and the mechanism underlying the interaction between K. vulgare and the associated bacteria. In addition, the dehydrogenases that are responsible for 2-KGA production, the 2-KGA synthesis pathway, strategies for simplifying 2-KGA production via a one-step fermentation route, and, finally, future prospects and research goals in vitamin C production are also presented.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
| | - Meng Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
| | - Wenhu Chen
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
| | - Haibo Yuan
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
| | - Yi Jiang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
| | - Di Huang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
| | - Hongling Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
| | - Tengfei Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
| |
Collapse
|
4
|
Wang T, You J, Gong X, Yang S, Wang L, Chang Z. Probabilistic Bayesian Deep Learning Approach for Online Forecasting of Fed-Batch Fermentation. ACS OMEGA 2023; 8:25272-25278. [PMID: 37483241 PMCID: PMC10357427 DOI: 10.1021/acsomega.3c02387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023]
Abstract
The microbial fermentation process often involves various biological metabolic reactions and chemical processes. The mixed bacterial culture process of 2-keto-l-gulonic acid has strong nonlinear and time-varying characteristics. In this study, a probabilistic Bayesian deep learning approach is proposed to obtain a highly accurate and robust prediction of product formation. The Bayesian optimized deep neural network (BODNN) is utilized as basic model for prediction, the structural parameters of which are optimized. Then, the training datasets are classified into different categories according to the prior evaluation of prediction error. The final forecasting is a weighted combination of BODNN models based on the Bayesian hybrid method. The weights can be interpreted as Bayesian posterior probabilities and are computed recursively. The validation of 95 industrial batches is carried out, and the average root mean square errors are 1.51 and 2.01% for 4 and 8 h ahead prediction, respectively. The results illustrate that the proposed approach can capture the dynamics of fermentation batches and is suitable for online process monitoring.
Collapse
Affiliation(s)
- Tao Wang
- School
of Computer Science and Technology, Shandong
University of Technology, Zibo 255000, China
| | - Jiebing You
- Department
of Neurology, Zibo Central Hospital, Zibo, Shandong 255036, China
| | - Xiugang Gong
- School
of Computer Science and Technology, Shandong
University of Technology, Zibo 255000, China
| | - Shanliang Yang
- School
of Computer Science and Technology, Shandong
University of Technology, Zibo 255000, China
| | - Lei Wang
- School
of Computer Science and Technology, Shandong
University of Technology, Zibo 255000, China
| | - Zheng Chang
- School
of Computer Science and Technology, Shandong
University of Technology, Zibo 255000, China
| |
Collapse
|
5
|
Leischner C, Marongiu L, Piotrowsky A, Niessner H, Venturelli S, Burkard M, Renner O. Relevant Membrane Transport Proteins as Possible Gatekeepers for Effective Pharmacological Ascorbate Treatment in Cancer. Antioxidants (Basel) 2023; 12:antiox12040916. [PMID: 37107291 PMCID: PMC10135768 DOI: 10.3390/antiox12040916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/23/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Despite the increasing number of newly diagnosed malignancies worldwide, therapeutic options for some tumor diseases are unfortunately still limited. Interestingly, preclinical but also some clinical data suggest that the administration of pharmacological ascorbate seems to respond well, especially in some aggressively growing tumor entities. The membrane transport and channel proteins are highly relevant for the use of pharmacological ascorbate in cancer therapy and are involved in the transfer of active substances such as ascorbate, hydrogen peroxide, and iron that predominantly must enter malignant cells to induce antiproliferative effects and especially ferroptosis. In this review, the relevant conveying proteins from cellular surfaces are presented as an integral part of the efficacy of pharmacological ascorbate, considering the already known genetic and functional features in tumor tissues. Accordingly, candidates for diagnostic markers and therapeutic targets are mentioned.
Collapse
Affiliation(s)
- Christian Leischner
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Luigi Marongiu
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
- Department of Internal Medicine VIII, University Hospital Tuebingen, Otfried-Mueller-Straße 10, 72076 Tuebingen, Germany
| | - Alban Piotrowsky
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Heike Niessner
- Department of Dermatology, Division of Dermatooncology, University of Tuebingen, Liebermeisterstraße 25, 72076 Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", 72076 Tuebingen, Germany
| | - Sascha Venturelli
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
- Institute of Physiology, Department of Vegetative and Clinical Physiology, University of Tuebingen, Wilhelmstraße 56, 72074 Tuebingen, Germany
| | - Markus Burkard
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Olga Renner
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| |
Collapse
|
6
|
Chaudhary V, Lakhera P, Kim KH, Deep A, Kumar P. Insights into the Eco-Friendly Recovery Process for Valuable Metals from Waste Lithium-ion Batteries by Organic Acids Leaching. SEPARATION & PURIFICATION REVIEWS 2023. [DOI: 10.1080/15422119.2022.2164650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Vikas Chaudhary
- Academy of Scientific & Innovative Research, 201002, Ghaziabad, India
- Materials Science & Sensor Applications (MSSA), Central Scientific Instruments Organization, Sector 30 C, 160030, Chandigarh, India
- Department of Research & development, Exigo Recycling Pvt. Ltd, 201301, Noida, India
| | - Praveen Lakhera
- Academy of Scientific & Innovative Research, 201002, Ghaziabad, India
- Materials Science & Sensor Applications (MSSA), Central Scientific Instruments Organization, Sector 30 C, 160030, Chandigarh, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 04763, Seoul, South Korea
| | - Akash Deep
- Academy of Scientific & Innovative Research, 201002, Ghaziabad, India
- Materials Science & Sensor Applications (MSSA), Central Scientific Instruments Organization, Sector 30 C, 160030, Chandigarh, India
| | - Parveen Kumar
- Academy of Scientific & Innovative Research, 201002, Ghaziabad, India
- Materials Science & Sensor Applications (MSSA), Central Scientific Instruments Organization, Sector 30 C, 160030, Chandigarh, India
- Department of Research & development, Exigo Recycling Pvt. Ltd, 201301, Noida, India
| |
Collapse
|
7
|
Wang B, Sun H, Yang W, Gao M, Zhong X, Zhang L, Chen Z, Xu H. Potential utilization of vitamin C industrial effluents in agriculture: Soil fertility and bacterial community composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158253. [PMID: 36037898 DOI: 10.1016/j.scitotenv.2022.158253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/05/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
The potential of industrial effluents from vitamin C (VC) production was assessed for agricultural applications by monitoring plant growth, soil properties, and microbial community structure. The results demonstrated that two types of effluents-residue after evaporation (RAE) and concentrated bacterial solution after ultrafiltration (CBS)-had positive effects on the yield and VC content of pak choi. The highest yield and VC content were achieved with a combined RAE-CBS treatment (55.82 % and 265.01 % increase, respectively). The soil fertility was also enhanced by the application of RAE and CBS. Nitrate nitrogen and organic carbon contents in the soil were positively correlated with the RAE addition, while ammonium nitrogen and available phosphorus were positively correlated with the CBS addition. The diversity of bulk and rhizosphere soil bacterial communities increased significantly after the addition of RAE-CBS. The abundance of Sphingomonas and Rhizobium significantly increased after the RAE-CBS treatment, which affected aromatic compound hydrolysis and nitrogen fixation positively. Changes in plant growth and soil fertility were closely related to the upregulation of functional gene expression related to C, N, and P cycling. RAE and CBS application exerted various positive synergistic effects on plant growth, soil fertility, and bacterial community structure. Consequently, the study results confirmed the potential of RAE and CBS application in agriculture. This study provides an innovative solution for utilizing VC industrial wastewater in agriculture in a resourceful and economically beneficial manner while alleviating the corresponding environmental burden.
Collapse
Affiliation(s)
- Bing Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Sun
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; CAS Engineering Laboratory for Green Fertilizers, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Weichao Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; CAS Engineering Laboratory for Green Fertilizers, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Mingfu Gao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; CAS Engineering Laboratory for Green Fertilizers, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xin Zhong
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Zhenyu Chen
- Affairs Service Center of Ecological Environment of Liaoning Province, Shenyang 110036, China
| | - Hui Xu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; CAS Engineering Laboratory for Green Fertilizers, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
8
|
Battling S, Pastoors J, Deitert A, Götzen T, Hartmann L, Schröder E, Yordanov S, Büchs J. Development of a novel defined minimal medium for Gluconobacter oxydans 621H by systematic investigation of metabolic demands. J Biol Eng 2022; 16:31. [DOI: 10.1186/s13036-022-00310-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
Abstract
Abstract
Background
Historically, complex media are used for the cultivation of Gluconobacter oxydans in industry and research. Using complex media has different drawbacks like higher costs for downstream processing and significant variations in fermentation performances. Synthetic media can overcome those drawbacks, lead to reproducible fermentation performances. However, the development of a synthetic medium is time and labour consuming. Detailed knowledge about auxotrophies and metabolic requirements of G. oxydans is necessary. In this work, we use a systematic approach applying the in-house developed μRAMOS technology to identify auxotrophies and develop a defined minimal medium for cultivation of G. oxydans fdh, improving the production process of the natural sweetener 5-ketofructose.
Results
A rich, defined synthetic medium, consisting of 48 components, including vitamins, amino acids and trace elements, was used as a basis for medium development. In a comprehensive series of experiments, component groups and single media components were individually omitted from or supplemented to the medium and analysed regarding their performance. Main components like salts and trace elements were necessary for the growth of G. oxydans fdh, whereas nucleotides were shown to be non-essential. Moreover, results indicated that the amino acids isoleucine, glutamate and glycine and the vitamins nicotinic acid, pantothenic acid and p-aminobenzoic acid are necessary for the growth of G. oxydans fdh. The glutamate concentration was increased three-fold, functioning as a precursor for amino acid synthesis. Finally, a defined minimal medium called ‘Gluconobacter minimal medium’ was developed. The performance of this medium was tested in comparison with commonly used media for Gluconobacter. Similar/competitive results regarding cultivation time, yield and productivity were obtained. Moreover, the application of the medium in a fed-batch fermentation process was successfully demonstrated.
Conclusion
The systematic investigation of a wide range of media components allowed the successful development of the Gluconobacter minimal medium. This chemically defined medium contains only 14 ingredients, customised for the cultivation of G. oxydans fdh and 5-ketofructose production. This enables a more straightforward process development regarding upstream and downstream processing. Moreover, metabolic demands of G. oxydans were identified, which further can be used in media or strain development for different processes.
Collapse
|
9
|
Hieu TV, Guntoro B, Qui NH, Quyen NTK, Al Hafiz FA. The application of ascorbic acid as a therapeutic feed additive to boost immunity and antioxidant activity of poultry in heat stress environment. Vet World 2022; 15:685-693. [PMID: 35497970 PMCID: PMC9047122 DOI: 10.14202/vetworld.2022.685-693] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/15/2022] [Indexed: 11/16/2022] Open
Abstract
Ascorbic acid, widely known as vtamin C, is an essential nutrient for animals such as poultry. Ascorbic acid in poultry feed improves animal health and thus increases the growth performance of birds. Ascorbic acid can be used in the form of synthetic products or can be naturally obtained from fruits and plants. It is soluble in water and can be easily administered in drinking water and the diet. Poultry can synthesize ascorbic acid in the body. However, the performance of the animals can be improved by adding ascorbic acid to their diet. In addition, ascorbic acid is called an antioxidant and an anti-inflammatory. This increases their resistance to disease during the transition season. Ascorbic acid supplementation positively affects the stress response, especially during the dry season in tropical countries. Furthermore, supplementing ascorbic acid in the poultry’s diet improves resistance to diseases, regulates stress, and helps in the body’s oxidation process. Ultimately, this enhances the laying rate, egg hatch performance, and higher poultry productivity. For layers at the end of the laying period, it helps increase the quality of the eggshell and reduces the proportion of broken eggs. Ascorbic acid has a strong relationship with other vitamins such as vitamin E and other substances such as zinc, safflower oil, folic acid, and a fibrous diet. This review aims to synthesize all the information of ascorbic acid in the poultry’s diet, thereby providing the general role of ascorbic acid for the poultry industry.
Collapse
Affiliation(s)
- Truong Van Hieu
- Department of Animal Science and Veterinary Medicine, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City, Vietnam
| | - Budi Guntoro
- Department of Livestock Social-Economics, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta City, Indonesia
| | - Nguyen Hoang Qui
- Department of Animal Science and Veterinary Medicine, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City, Vietnam
| | - Nguyen Thi Kim Quyen
- Department of Animal Science and Veterinary Medicine, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City, Vietnam
| | - Farid Akbar Al Hafiz
- Department of Livestock Social-Economics, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta City, Indonesia
| |
Collapse
|
10
|
Wang Y, Li H, Liu Y, Zhou M, Ding M, Yuan Y. Construction of synthetic microbial consortia for 2-keto-L-gulonic acid biosynthesis. Synth Syst Biotechnol 2022; 7:481-489. [PMID: 34977392 PMCID: PMC8671096 DOI: 10.1016/j.synbio.2021.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 12/14/2022] Open
Abstract
Currently, the establishment of synthetic microbial consortia with rational strategies has gained extensive attention, becoming one of the important frontiers of synthetic biology. Systems biology can offer insights into the design and construction of synthetic microbial consortia. Taking the high-efficiency production of 2-keto-l-gulonic acid (2-KLG) as an example, we constructed a synthetic microbial consortium “Saccharomyces cerevisiae-Ketogulonigenium vulgare” based on systems biology analysis. In the consortium, K. vulgare was the 2-KLG producing strain, and S. cerevisiae acted as the helper strain. Comparative transcriptomic analysis was performed on an engineered S. cerevisiae (VTC2) and a wild-type S. cerevisiae BY4741. The results showed that the up-regulated genes in VTC2, compared with BY4741, were mainly involved in glycolysis, TCA cycle, purine metabolism, and biosynthesis of amino acids, B vitamins, and antioxidant proteases, all of which play important roles in promoting the growth of K. vulgare. Furthermore, Vitamin C produced by VTC2 could further relieve the oxidative stress in the environment to increase the production of 2-KLG. Therefore, VTC2 would be of great advantage in working with K. vulgare. Thus, the synthetic microbial consortium "VTC2-K. vulgare" was constructed based on transcriptomics analyses, and the accumulation of 2-KLG was increased by 1.49-fold compared with that of mono-cultured K. vulgare, reaching 13.2 ± 0.52 g/L. In addition, the increased production of 2-KLG was accompanied by the up-regulated activities of superoxide dismutase and catalase in the medium and the up-regulated oxidative stress-related genes (sod, cat and gpd) in K. vulgare. The results indicated that the oxidative stress in the synthetic microbial consortium was efficiently reduced. Thus, systems analysis confirmed a favorable symbiotic relationship between microorganisms, providing guidance for further engineering synthetic consortia.
Collapse
Affiliation(s)
- Yan Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Hengchang Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Yu Liu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Mengyu Zhou
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Mingzhu Ding
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| |
Collapse
|
11
|
Abstract
Enzymatic methods for the oxidation of alcohols are critically reviewed. Dehydrogenases and oxidases are the most prominent biocatalysts, enabling the selective oxidation of primary alcohols into aldehydes or acids. In the case of secondary alcohols, region and/or enantioselective oxidation is possible. In this contribution, we outline the current state-of-the-art and discuss current limitations and promising solutions.
Collapse
|
12
|
Efficient Optimization of Gluconobacter oxydans Based on Protein Scaffold-Trimeric CutA to Enhance the Chemical Structure Stability of Enzymes for the Direct Production of 2-Keto-L-gulonic Acid. J CHEM-NY 2020. [DOI: 10.1155/2020/5429409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
2-Keto-L-gulonic acid (2-KLG), the direct precursor of vitamin C, is produced by a two-step fermentation route from D-sorbitol in industry. However, this route is a complicated mix-culture system which involves three bacteria. Thus, replacement of the conventional two-step fermentation process with a one-step process could be revolutionary in vitamin C industry. The one-step fermentation of 2-keto-L-gulonic acid (2-KLG) has been achieved in our previous study; 32.4 g/L of 2-KLG production was obtained by the one-step strain G. oxydans/pGUC-tufB-sdh-GGGGS-sndh after 168 h. In this study, L-sorbose dehydrogenase (SDH) and L-sorbosone dehydrogenase (SNDH) were expressed in G. oxydans after the codon optimization. Furthermore, the trimeric protein CutA was used to improve the chemical structure stability of SDH and SNDH. The recombinant strain G. oxydans/pGUC-tufB-SH3-sdh-GGGGS-sndh-tufB-SH3lig-(GGGGS)2-cutA produced 40.3 g/L of 2-KLG after 168 h. In addition, the expression levels of the cofactor PQQ were enhanced to further improve 2-KLG production. With the stepwise metabolic engineering of G. oxydans, the final 2-KLG production was improved to 42.6 g/L. The efficient one-step production of 2-KLG was achieved, and the final one-step industrial-scale production of 2-KLG is drawing near.
Collapse
|
13
|
Wu H, Huang J, Deng Y, Zhang W, Mu W. Production of l-ribose from l-arabinose by co-expression of l-arabinose isomerase and d-lyxose isomerase in Escherichia coli. Enzyme Microb Technol 2020; 132:109443. [DOI: 10.1016/j.enzmictec.2019.109443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 12/16/2022]
|
14
|
Jirasek F, Galeotti N, Burger J, Hasse H. Solid-Liquid Equilibrium in the System 2-Keto- L-Gulonic Acid + L-Ascorbic Acid + Water. Chem Eng Technol 2019; 41:2306-2311. [PMID: 31007397 PMCID: PMC6472595 DOI: 10.1002/ceat.201800240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/20/2018] [Accepted: 08/30/2018] [Indexed: 11/07/2022]
Abstract
The solid-liquid equilibrium (SLE) in the ternary system 2-keto-L-gulonic acid (HKGA) + L-ascorbic acid (vitamin C) + water was investigated experimentally at temperatures between 276 K and 308 K at ambient pressure, i.e., under conditions that are of particular interest for industrial applications. Phase diagrams with one eutonic point were obtained for all temperatures. The dissociation constant and the solubility constant of vitamin C were determined as a function of temperature. Based on an extended version of the Debye-Hückel theory, a physicochemical model was developed that describes the SLE in the ternary system. The agreement between experimental data and results from the model is excellent.
Collapse
Affiliation(s)
- Fabian Jirasek
- University of Kaiserslautern Laboratory of Engineering Thermodynamics (LTD) Erwin-Schrödinger-Strasse 44 67663 Kaiserslautern Germany
| | - Nadia Galeotti
- University of Kaiserslautern Laboratory of Engineering Thermodynamics (LTD) Erwin-Schrödinger-Strasse 44 67663 Kaiserslautern Germany
| | - Jakob Burger
- Technical University of Munich Chair of Chemical Process Engineering, Campus Straubing for Biotechnology and Sustainability Schulgasse 16 94315 Straubing Germany
| | - Hans Hasse
- University of Kaiserslautern Laboratory of Engineering Thermodynamics (LTD) Erwin-Schrödinger-Strasse 44 67663 Kaiserslautern Germany
| |
Collapse
|
15
|
Lynch KM, Zannini E, Wilkinson S, Daenen L, Arendt EK. Physiology of Acetic Acid Bacteria and Their Role in Vinegar and Fermented Beverages. Compr Rev Food Sci Food Saf 2019; 18:587-625. [DOI: 10.1111/1541-4337.12440] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 02/06/2019] [Accepted: 02/18/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Kieran M. Lynch
- School of Food and Nutritional SciencesUniv. College Cork Cork T12 K8AF Ireland
| | - Emanuele Zannini
- School of Food and Nutritional SciencesUniv. College Cork Cork T12 K8AF Ireland
| | - Stuart Wilkinson
- Global Innovation & Technology CentreAnheuser‐Busch InBev nv/sa Leuven 3000 Belgium
| | - Luk Daenen
- Global Innovation & Technology CentreAnheuser‐Busch InBev nv/sa Leuven 3000 Belgium
| | - Elke K. Arendt
- School of Food and Nutritional SciencesUniv. College Cork Cork T12 K8AF Ireland
- APC Microbiome IrelandUniv. College Cork Cork T12 K8AF Ireland
| |
Collapse
|
16
|
A screen of Crohn's disease-associated microbial metabolites identifies ascorbate as a novel metabolic inhibitor of activated human T cells. Mucosal Immunol 2019; 12:457-467. [PMID: 29695840 PMCID: PMC6202286 DOI: 10.1038/s41385-018-0022-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 01/17/2018] [Accepted: 02/27/2018] [Indexed: 02/06/2023]
Abstract
Microbial metabolites are an emerging class of mediators influencing CD4+ T-cell function. To advance the understanding of direct causal microbial factors contributing to Crohn's disease, we screened 139 predicted Crohn's disease-associated microbial metabolites for their bioactivity on human CD4+ T-cell functions induced by disease-associated T helper 17 (Th17) polarizing conditions. We observed 15 metabolites with CD4+ T-cell bioactivity, 3 previously reported, and 12 unprecedented. A deeper investigation of the microbe-derived metabolite, ascorbate, revealed its selective inhibition on activated human CD4+ effector T cells, including IL-17A-, IL-4-, and IFNγ-producing cells. Mechanistic assessment suggested the apoptosis of activated human CD4+ T cells associated with selective inhibition of energy metabolism. These findings suggest a substantial rate of relevant T-cell bioactivity among Crohn's disease-associated microbial metabolites, and evidence for novel modes of bioactivity, including targeting of T-cell energy metabolism.
Collapse
|
17
|
Takeda K, Umezawa K, Várnai A, Eijsink VG, Igarashi K, Yoshida M, Nakamura N. Fungal PQQ-dependent dehydrogenases and their potential in biocatalysis. Curr Opin Chem Biol 2018; 49:113-121. [PMID: 30580186 DOI: 10.1016/j.cbpa.2018.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/16/2018] [Accepted: 12/04/2018] [Indexed: 10/27/2022]
Abstract
In 2014, the first fungal pyrroloquinoline-quinone (PQQ)-dependent enzyme was discovered as a pyranose dehydrogenase from the basidiomycete Coprinopsis cinerea (CcPDH). This discovery laid the foundation for a new Auxiliary Activities (AA) family, AA12, in the Carbohydrate-Active enZymes (CAZy) database and revealed a novel enzymatic activity potentially involved in biomass conversion. This review summarizes recent progress made in research on this fungal oxidoreductase and related enzymes. CcPDH consists of the catalytic PQQ-binding AA12 domain, an N-terminal cytochrome b AA8 domain, and a C-terminal family 1 carbohydrate-binding module (CBM1). CcPDH oxidizes 2-keto-d-glucose (d-glucosone), l-fucose, and rare sugars such as d-arabinose and l-galactose, and can activate lytic polysaccharide monooxygenases (LPMOs). Bioinformatic studies suggest a widespread occurrence of quinoproteins in eukaryotes as well as prokaryotes.
Collapse
Affiliation(s)
- Kouta Takeda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Kiwamu Umezawa
- Department of Applied Biological Chemistry, Kindai University, Nara 631-8505, Japan
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| | - Vincent Gh Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| | - Kiyohiko Igarashi
- Department of Biomaterial Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Makoto Yoshida
- Department of Environmental and Natural Resource Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan.
| | - Nobuhumi Nakamura
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
18
|
Current challenges facing one-step production of l-ascorbic acid. Biotechnol Adv 2018; 36:1882-1899. [DOI: 10.1016/j.biotechadv.2018.07.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/20/2018] [Accepted: 07/17/2018] [Indexed: 12/16/2022]
|
19
|
He Q, Chen L, Liu Y, Wu Y, Ni D, Liu J, Hu Y, Gu Y, Xie Y, Zhou Q, Li Q. Gulo regulates the proliferation, apoptosis and mesenchymal-to-epithelial transformation of metanephric mesenchyme cells via inhibiting Six2. Biochem Biophys Res Commun 2018; 504:885-891. [PMID: 30219227 DOI: 10.1016/j.bbrc.2018.08.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/07/2018] [Indexed: 12/11/2022]
Abstract
During kidney development, the balance between self-renewal and differentiation of metanephric mesenchyme (MM) cells, mainly regulated by Sine oculis-related homeobox 2 (Six2), is critical for forming mature kidney. L-gulono-γ-lactone oxidase (Gulo), a crucial enzyme for vitamin C synthesis, reveals a different expression at various stages during kidney development, but its function in the early renal development remains unknown. In this work, we aim to study the role of Gulo in MM cells at two differentiation stages. We found that Gulo expression in undifferentiated MM (mK3) cells was lower than in differentiated MM (mK4) cells. Over-expression of Gulo can promote mesenchymal-to-epithelial transformation (MET) and apoptosis and inhibit the proliferation in mK3 cells. Knock-down of Gulo in mK4 cells made its epithelial character cells unstabilized, facilitated the proliferation and restrained the apoptosis. Furthermore, we found that Six2 was negatively regulated by Gulo, and over-expression or knock-down of Six2 was able to rescue partially the MET, proliferation and apoptosis of MM cells caused by Gulo. In conclusion, these findings reveal that Gulo promotes the MET and apoptosis, and inhibits proliferation in MM cells by down-regulating Six2.
Collapse
Affiliation(s)
- Qingling He
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| | - Lei Chen
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| | - Yamin Liu
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| | - Yafei Wu
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| | - Dongsheng Ni
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| | - Jianing Liu
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| | - Yanxia Hu
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| | - Yuping Gu
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| | - Yajun Xie
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| | - Qin Zhou
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| | - Qianyin Li
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
20
|
Barcelos MCS, Lupki FB, Campolina GA, Nelson DL, Molina G. The colors of biotechnology: general overview and developments of white, green and blue areas. FEMS Microbiol Lett 2018; 365:5106815. [DOI: 10.1093/femsle/fny239] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 09/22/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Mayara C S Barcelos
- Graduate program in Food Science and Technology (PPGCTA), Institute of Science and Technology, UFVJM, Diamantina, Minas Gerais, Brazil
| | - Fernanda B Lupki
- Graduate program in Food Science and Technology (PPGCTA), Institute of Science and Technology, UFVJM, Diamantina, Minas Gerais, Brazil
| | - Gabriela A Campolina
- Graduate program in Food Science and Technology (PPGCTA), Institute of Science and Technology, UFVJM, Diamantina, Minas Gerais, Brazil
| | - David Lee Nelson
- Graduate program in Food Science and Technology (PPGCTA), Institute of Science and Technology, UFVJM, Diamantina, Minas Gerais, Brazil
| | - Gustavo Molina
- Graduate program in Food Science and Technology (PPGCTA), Institute of Science and Technology, UFVJM, Diamantina, Minas Gerais, Brazil
| |
Collapse
|
21
|
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol 2018; 35:1547-1549. [PMID: 29722887 DOI: 10.1007/0-387-30745-1_9] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
The Molecular Evolutionary Genetics Analysis (Mega) software implements many analytical methods and tools for phylogenomics and phylomedicine. Here, we report a transformation of Mega to enable cross-platform use on Microsoft Windows and Linux operating systems. Mega X does not require virtualization or emulation software and provides a uniform user experience across platforms. Mega X has additionally been upgraded to use multiple computing cores for many molecular evolutionary analyses. Mega X is available in two interfaces (graphical and command line) and can be downloaded from www.megasoftware.net free of charge.
Collapse
Affiliation(s)
- Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA
- Department of Biology, Temple University, Philadelphia, PA
- Center for Excellence in Genome Medicine and Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Glen Stecher
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA
| | - Michael Li
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA
| | - Christina Knyaz
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA
| | - Koichiro Tamura
- Research Center for Genomics and Bioinformatics, Tokyo Metropolitan University, Hachioji, Japan
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| |
Collapse
|
22
|
Song Y, Li J, Shin HD, Liu L, Du G, Chen J. Biotechnological production of alpha-keto acids: Current status and perspectives. BIORESOURCE TECHNOLOGY 2016; 219:716-724. [PMID: 27575335 DOI: 10.1016/j.biortech.2016.08.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Abstract
Alpha-keto (α-keto) acids are used widely in feeds, food additives, pharmaceuticals, and in chemical synthesis processes. Although most α-keto acids are currently produced by chemical synthesis, their biotechnological production from renewable carbohydrates is a promising new approach. In this mini-review, we first present the different types of α-keto acids as well as their applications; next, we summarize the recent progresses in the biotechnological production of some important α-keto acids; namely, pyruvate, α-ketoglutarate, α-ketoisovalerate, α-ketoisocaproate, phenylpyruvate, α-keto-γ-methylthiobutyrate, and 2,5-diketo-d-gluconate. Finally, we discuss the future prospects as well as favorable directions for the biotechnological production of keto acids that ultimately would be more environment-friendly and simpler compared with the production by chemical synthesis.
Collapse
Affiliation(s)
- Yang Song
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Hyun-Dong Shin
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta 30332, USA
| | - Long Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
23
|
Selvaraj C, Krishnasamy G, Jagtap SS, Patel SK, Dhiman SS, Kim TS, Singh SK, Lee JK. Structural insights into the binding mode of d-sorbitol with sorbitol dehydrogenase using QM-polarized ligand docking and molecular dynamics simulations. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
|
25
|
Araki T, Nakatsuka T, Kobayashi F, Watanabe-Ishimaru E, Sanada H, Tamura T, Inagaki K. Reactivity of sorbose dehydrogenase from Sinorhizobium sp. 97507 for 1,5-anhydro-D-glucitol. Biosci Biotechnol Biochem 2015; 79:1130-2. [PMID: 25721692 DOI: 10.1080/09168451.2015.1012148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Purified recombinant sorbose dehydrogenase from Sinorhizobium sp. 97507 exhibited high reactivity for 1,5-anhydro-D-glucitol (1,5-AG) and L-sorbose, but little activity for the other sugars or sugar alcohols tested. Kinetic analysis revealed that its catalytic efficiency (k(cat)/Km) for L-sorbose and 1,5-AG is 1.8 × 10(2) and 1.5 × 10(2) s(-1)·M(-1), respectively.
Collapse
Affiliation(s)
- Toshio Araki
- a Ikeda Food Research Co., Ltd , Fukuyama , Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Takeda K, Matsumura H, Ishida T, Samejima M, Ohno H, Yoshida M, Igarashi K, Nakamura N. Characterization of a novel PQQ-dependent quinohemoprotein pyranose dehydrogenase from Coprinopsis cinerea classified into auxiliary activities family 12 in carbohydrate-active enzymes. PLoS One 2015; 10:e0115722. [PMID: 25679509 PMCID: PMC4332668 DOI: 10.1371/journal.pone.0115722] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/01/2014] [Indexed: 11/19/2022] Open
Abstract
The basidiomycete Coprinopsis cinerea contains a quinohemoprotein (CcPDH named as CcSDH in our previous paper), which is a new type of pyrroloquinoline-quinone (PQQ)-dependent pyranose dehydrogenase and is the first found among all eukaryotes. This enzyme has a three-domain structure consisting of an N-terminal heme b containing a cytochrome domain that is homologous to the cytochrome domain of cellobiose dehydrogenase (CDH; EC 1.1.99.18) from the wood-rotting basidiomycete Phanerochaete chrysosporium, a C-terminal family 1-type carbohydrate-binding module, and a novel central catalytic domain containing PQQ as a cofactor. Here, we describe the biochemical and electrochemical characterization of recombinant CcPDH. UV-vis and resonance Raman spectroscopic studies clearly reveal characteristics of a 6-coordinated low-spin heme b in both the ferric and ferrous states, as well as intramolecular electron transfer from the PQQ to heme b. Moreover, the formal potential of the heme was evaluated to be 130 mV vs. NHE by cyclic voltammetry. These results indicate that the cytochrome domain of CcPDH possesses similar biophysical properties to that in CDH. A comparison of the conformations of monosaccharides as substrates and the associated catalytic efficiency (kcat/Km) of CcPDH indicates that the enzyme prefers monosaccharides with equatorial C-2, C-3 hydroxyl groups and an axial C-4 hydroxyl group in the 1C4 chair conformation. Furthermore, a binding study shows a high binding affinity of CcPDH for cellulose, suggesting that CcPDH function is related to the enzymatic degradation of plant cell wall.
Collapse
Affiliation(s)
- Kouta Takeda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hirotoshi Matsumura
- Department of Biomaterials Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takuya Ishida
- Department of Biomaterials Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masahiro Samejima
- Department of Biomaterials Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Ohno
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Makoto Yoshida
- Department of Environmental and Natural Resource Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
- * E-mail: (MY); (KI); (NN)
| | - Kiyohiko Igarashi
- Department of Biomaterials Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
- * E-mail: (MY); (KI); (NN)
| | - Nobuhumi Nakamura
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
- * E-mail: (MY); (KI); (NN)
| |
Collapse
|
27
|
Xiong Y, Yan D, Wang JB, Xiao XH. Biopotency Assays: an Integrated Application to Quality Control of Chinese Materia Medica. CHINESE HERBAL MEDICINES 2014; 6:256-264. [PMID: 32288760 PMCID: PMC7128317 DOI: 10.1016/s1674-6384(14)60040-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/18/2014] [Accepted: 06/30/2014] [Indexed: 12/02/2022] Open
Abstract
The current quality control (QC) pattern for Chinese materia medica (CMM) lacks suitable methods and indicators to evaluate their safety and efficacy effectively, which impedes the smooth development of CMM. In this review, main problems of the current QC pattern for CMM, principally focused on the content determination of constituents, were summarized and the inspiration from the QC of biological products was introduced. With the aim at introducing a suitable tool to the QC of CMM, biopotency assay and its feasibility in the QC pattern for CMM were analyzed and confirmed by relevant researches with years of practice. From the applications of biopotency assays in the QC of CMM in the last 10 years, we propose that biopotency assays should be an integral part of the QC pattern for CMM, for these assays can make the QC indicators related to the clinical safety and efficacy, supplementing the existed QC system of CMM.
Collapse
Affiliation(s)
- Yin Xiong
- China Military Institute of Chinese Materia Medica, 302 Military Hospital of China, Beijing 100039, China.,School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Dan Yan
- China Military Institute of Chinese Materia Medica, 302 Military Hospital of China, Beijing 100039, China
| | - Jia-Bo Wang
- China Military Institute of Chinese Materia Medica, 302 Military Hospital of China, Beijing 100039, China
| | - Xiao-He Xiao
- China Military Institute of Chinese Materia Medica, 302 Military Hospital of China, Beijing 100039, China.,School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| |
Collapse
|
28
|
Gullo M, Verzelloni E, Canonico M. Aerobic submerged fermentation by acetic acid bacteria for vinegar production: Process and biotechnological aspects. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.07.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Aldonolactone oxidoreductases. Methods Mol Biol 2014; 1146:95-111. [PMID: 24764090 DOI: 10.1007/978-1-4939-0452-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Vitamin C is a widely used vitamin. Here we review the occurrence and properties of aldonolactone oxidoreductases, an important group of flavoenzymes responsible for the ultimate production of vitamin C and its analogs in animals, plants, and single-cell organisms.
Collapse
|
30
|
Fan S, Zhang Z, Zou W, Huang Z, Liu J, Liu L. Development of a minimal chemically defined medium for Ketogulonicigenium vulgare WSH001 based on its genome-scale metabolic model. J Biotechnol 2013; 169:15-22. [PMID: 24172253 DOI: 10.1016/j.jbiotec.2013.10.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 10/09/2013] [Accepted: 10/17/2013] [Indexed: 10/26/2022]
Abstract
Commercial production of 2-keto-l-gulonic acid (2-KLG), the immediate precursor of l-ascorbic acid, is by Ketogulonicigenium vulgare in co-culture with Bacillus megaterium. We used flux balance analysis (FBA) to study a genome-scale metabolic model (GSMM) of K. vulgare, iWZ663, and found that K. vulgare is deficient in nutrient biosynthetic pathways. Individually omitting l-glycine, l-cysteine, l-methionine, l-tryptophan, adenine, thymine, thiamine and pantothenate from complete chemically defined medium (CDM), caused biomass formation of K. vulgare to decrease to 1%, 21%, 16%, 1%, 26%, 57%, 73% and 24%, respectively. Based on these results and FBA, a minimal chemically defined medium (MCDM) was developed that supported monoculture of K. vulgare (0.28OD600) and 2-KLG production (3.59g/L), which were similar to those in complete CDM or corn steep liquor powder (CSLP) medium. This study demonstrated the potential of using GSMM and FBA to characterize nutrient requirements, optimize CDM, and study interactions in co-culture.
Collapse
Affiliation(s)
- Shicun Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Zhenyu Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Wei Zou
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Zheng Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jie Liu
- Jiangsu Jiangshan Pharmaceutical Co. Ltd., Jingjiang, Jiangsu 214500, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
31
|
Engineering of a bi-enzymatic reaction for efficient production of the ascorbic acid precursor 2-keto-l-gulonic acid. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Gao L, Du G, Zhou J, Chen J, Liu J. Characterization of a group of pyrroloquinoline quinone-dependent dehydrogenases that are involved in the conversion of L-sorbose to 2-Keto-L-gulonic acid in Ketogulonicigenium vulgare WSH-001. Biotechnol Prog 2013; 29:1398-404. [PMID: 23970495 DOI: 10.1002/btpr.1803] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/02/2013] [Indexed: 11/09/2022]
Abstract
Ketogulonicigenium vulgare WSH-001 is an industrial strain used for vitamin C production. Based on genome sequencing and pathway analysis of the bacterium, some of its potential pyrroloquinoline quinone (PQQ)-dependent dehydrogenases were predicted, including KVU_pmdA_0245, KVU_2142, KVU_2159, KVU_1366, KVU_0203, KVU_0095, and KVU_pmdB_0115. BLAST and function domain searches showed that enzymes encoded by these genes may act as putative PQQ-dependent L-sorbose dehydrogenases (SDH) or L-sorbosone dehydrogenases (SNDH). To validate whether these dehydrogenases are PQQ-dependent or not, these seven putative dehyrogenases were overexpressed in Escherichia coli BL21 (DE3) and purified for characterization. Biochemical and kinetic characterization of the purified proteins have led to the identification of seven enzymes that possess the ability to oxidize L-sorbose or L-sorbosone to varying degrees. In addition, the dehydrogenation of sorbose in K. vulgare is validated to be PQQ dependent, identification of these PQQ-dependent dehydrogenases expanded the PQQ-dependent dehydrogenase family. Besides, the optimal combination of enzymes that could more efficiently catalyze the conversion of sorbose to gulonic acid was proposed. These are important in supporting the development of metabolic engineering strategies and engineering of efficient strains for one-step production of vitamin C in the future.
Collapse
Affiliation(s)
- Lili Gao
- School of Biotechnology, Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | | | | | | | | |
Collapse
|
33
|
Straathof AJJ. Transformation of Biomass into Commodity Chemicals Using Enzymes or Cells. Chem Rev 2013; 114:1871-908. [DOI: 10.1021/cr400309c] [Citation(s) in RCA: 315] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Adrie J. J. Straathof
- Department of Biotechnology, Delft University of Technology, Julianalaan
67, 2628
BC Delft, The Netherlands
| |
Collapse
|
34
|
Rosa JCC, Colombo LT, Alvim MCT, Avonce N, Van Dijck P, Passos FML. Metabolic engineering of Kluyveromyces lactis for L-ascorbic acid (vitamin C) biosynthesis. Microb Cell Fact 2013; 12:59. [PMID: 23799937 PMCID: PMC3699391 DOI: 10.1186/1475-2859-12-59] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 05/20/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND L-ascorbic acid (L-AA) is naturally synthesized in plants from D-glucose by 10 steps pathway. The pathway branch to synthesize L-galactose, the key intermediate for L-ascorbic acid biosynthesis, has been recently elucidated. Budding yeast produces an 5-carbon ascorbic acid analogue Dehydro-D-arabinono 1,4-lactone (D-DAL), which is synthesized from D-arabinose. Yeast is able to synthesize L-ascorbic acid only if it is cultivated in the presence of one of its precursors: L-galactose, L-galactono 1,4-lactone, or L-gulono 1,4-lactone extracted from plants or animals. To avoid feeding the yeast culture with this "L" enantiomer, we engineered Kluyveromyces lactis with L-galactose biosynthesis pathway genes: GDP-mannose 3,5-epimerase (GME), GDP-L-galactose phosphorylase (VTC2) and L-galactose-1-phosphate phosphatase (VTC4) isolated from Arabidopsis thaliana. RESULTS Plasmids were constructed and modified such that the cloned plant genes were targeted to the K. lactis LAC4 Locus by homologous recombination and that the expression was associated to the growth on D-galactose or lactose. Upon K. lactis transformation, GME was under the control of the native LAC4 promoter whereas VTC2 and VTC4 were expressed from the S. cerevisiae promoters GPD1 and ADH1 respectively. The expression in K. lactis, of the L-galactose biosynthesis genes was determined by Reverse Transcriptase-PCR and western blotting. The recombinant yeasts were capable to produce about 30 mg.L(-1) of L-ascorbic acid in 48 hours of cultivation when cultured on rich medium with 2% (w/v) D-galactose. We also evaluated the L-AA production culturing recombinant recombinant strains in cheese whey, a waste product during cheese production, as an alternative source of lactose. CONCLUSIONS This work is the first attempt to engineer K. lactis cells for L-ascorbic acid biosynthesis by a fermentation process without any trace of "L" isomers precursors in the culture medium. We have engineered K. lactis strains capable of converting lactose and D-galactose into L-galactose, by the integration of the genes from the A. thaliana L-galactose pathway. L-galactose is a rare sugar, which is one of the main precursors for L-AA production.
Collapse
Affiliation(s)
- Júlio César Câmara Rosa
- Laboratório de Fisiologia de Microrganismos, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Brazil
- Departamento de Microbiologia, Universidade Federal de Viçosa, campus Viçosa, Minas Gerais, Brasil
| | - Lívia Tavares Colombo
- Laboratório de Fisiologia de Microrganismos, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Brazil
- Departamento de Microbiologia, Universidade Federal de Viçosa, campus Viçosa, Minas Gerais, Brasil
| | - Mariana Caroline Tocantins Alvim
- Laboratório de Fisiologia de Microrganismos, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Brazil
- Departamento de Microbiologia, Universidade Federal de Viçosa, campus Viçosa, Minas Gerais, Brasil
| | - Nelson Avonce
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU, Leuven
- Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU, Leuven
- Department of Molecular Microbiology, VIB, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Flávia Maria Lopes Passos
- Laboratório de Fisiologia de Microrganismos, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Brazil
- Departamento de Microbiologia, Universidade Federal de Viçosa, campus Viçosa, Minas Gerais, Brasil
- Av. P. H. Rolfs s/nº, 36571-000, Laboratório de Fisiologia de Microrganismos, BIOAGRO, Universidade Federal de Viçosa, Viçosa–MG, Brazil
| |
Collapse
|
35
|
Gounder R, Davis ME. Titanium-Beta Zeolites Catalyze the Stereospecific Isomerization of d-Glucose to l-Sorbose via Intramolecular C5–C1 Hydride Shift. ACS Catal 2013. [DOI: 10.1021/cs400273c] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rajamani Gounder
- Chemical Engineering, California Institute of Technology, Pasadena, California
91125, United States
| | - Mark E. Davis
- Chemical Engineering, California Institute of Technology, Pasadena, California
91125, United States
| |
Collapse
|
36
|
Kaswurm V, Nguyen TT, Maischberger T, Kulbe KD, Michlmayr H. Evaluation of the food grade expression systems NICE and pSIP for the production of 2,5-diketo-D-gluconic acid reductase from Corynebacterium glutamicum. AMB Express 2013; 3:7. [PMID: 23356419 PMCID: PMC3565945 DOI: 10.1186/2191-0855-3-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 01/21/2013] [Indexed: 11/10/2022] Open
Abstract
2,5-diketo-D-gluconic acid reductase (2,5-DKG reductase) catalyses the reduction of 2,5-diketo-D-gluconic acid (2,5-DKG) to 2-keto-L-gulonic acid (2-KLG), a direct precursor (lactone) of L-ascorbic acid (vitamin C). This reaction is an essential step in the biocatalytic production of the food supplement vitamin C from D-glucose or D-gluconic acid. As 2,5-DKG reductase is usually produced recombinantly, it is of interest to establish an efficient process for 2,5-DKG reductase production that also satisfies food safety requirements. In the present study, three recently described food grade variants of the Lactobacillales based expression systems pSIP (Lactobacillus plantarum) and NICE (Lactococcus lactis) were evaluated with regard to their effictiveness to produce 2,5-DKG reductase from Corynebacterium glutamicum. Our results indicate that both systems are suitable for 2,5-DKG reductase expression. Maximum production yields were obtained with Lb. plantarum/pSIP609 by pH control at 6.5. With 262 U per litre of broth, this represents the highest heterologous expression level so far reported for 2,5-DKG reductase from C. glutamicum. Accordingly, Lb. plantarum/pSIP609 might be an interesting alternative to Escherichia coli expression systems for industrial 2,5-DKG reductase production.
Collapse
|
37
|
2,5-Diketo-gluconic acid reductase from Corynebacterium glutamicum: Characterization of stability, catalytic properties and inhibition mechanism for use in vitamin C synthesis. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Zhang Z, Zhu X, Xie P, Sun J, Yuan J. Macrokinetic model for Gluconobacter oxydans in 2-keto-L-gulonic acid mixed culture. BIOTECHNOL BIOPROC E 2012. [DOI: 10.1007/s12257-011-0400-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Zou W, Liu L, Chen J. Structure, mechanism and regulation of an artificial microbial ecosystem for vitamin C production. Crit Rev Microbiol 2012; 39:247-55. [DOI: 10.3109/1040841x.2012.706250] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
40
|
Reconstruction and analysis of a genome-scale metabolic model of the vitamin C producing industrial strain Ketogulonicigenium vulgare WSH-001. J Biotechnol 2012; 161:42-8. [DOI: 10.1016/j.jbiotec.2012.05.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 05/12/2012] [Accepted: 05/18/2012] [Indexed: 11/18/2022]
|
41
|
Cui L, Xie P, Sun J, Yu T, Yuan J. Data-driven prediction of the product formation in industrial 2-keto-l-gulonic acid fermentation. Comput Chem Eng 2012. [DOI: 10.1016/j.compchemeng.2011.06.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Genetic engineering of Ketogulonigenium vulgare for enhanced production of 2-keto-L-gulonic acid. J Biotechnol 2011; 157:320-5. [PMID: 22192513 DOI: 10.1016/j.jbiotec.2011.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 12/03/2011] [Accepted: 12/06/2011] [Indexed: 11/24/2022]
Abstract
Folate derivatives are crucial growth factors for Ketogulonigenium vulgare which is used in mixed culture with Bacillus megaterium for the industrial production of 2-keto-L-gulonic acid (2-KGA), the precursor of L-ascorbic acid (L-AA) or vitamin C (Vc). To improve the growth and 2-KGA production, five genes involved in folate biosynthesis identified in a folate gene cluster from Lactococcus lactis MG1363, including folB, folKE, folP, folQ and folC, were over-expressed in K. vulgare. Intracellular folate concentration in the recombinant strain harboring folate biosynthesis genes cluster under the control of P(sdh) (sorbose dehydrogenase gene sdh promoter from K. vulgare) was 8 times higher than that of the wildtype K. vulgare DSM 4025 (P<0.001). In shake flask studies, the cell density and 2-KGA production of the recombinant K. vulgare Rif (pMCS2PsdhfolBC) were increased by 18% (P<0.001) and 14% (P<0.001), respectively, under a relatively stable pH 7 condition. In fermentor studies, enhancements around 25% cell density (P<0.001) and approximately 35% 2-KGA productivity (P<0.001) were observed in comparison with the controls without over-expressing the folate biosynthesis genes. This was the first successful study of metabolic engineering on K. vulgare for enhanced 2-KGA production.
Collapse
|
43
|
Liu L, Chen K, Zhang J, Liu J, Chen J. Gelatin enhances 2-keto-L-gulonic acid production based on Ketogulonigenium vulgare genome annotation. J Biotechnol 2011; 156:182-7. [PMID: 21924300 DOI: 10.1016/j.jbiotec.2011.08.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 08/01/2011] [Accepted: 08/08/2011] [Indexed: 11/28/2022]
Abstract
In the two-step fermentative production of vitamin C, its precursor 2-keto-L-gulonic acid (2-KLG) was synthesized by Ketogulonicigenium vulgare through co-culture with Bacillus megaterium. The reconstruction of the amino acid metabolic pathway through completed genome sequence annotation demonstrated that K. vulgare was deficient in one or more key enzymes in the de novo biosynthesis pathways of eight different amino acids (L-histidine, L-glycine, L-lysine, L-proline, L-threonine, L-methionine, L-leucine, and L-isoleucine). Among them, L-glycine, L-proline, L-threonine, and L-isoleucine play vital roles in K. vulgare growth and 2-KLG production. The addition of those amino acids increased the 2-KLG productivity by 20.4%, 17.2%, 17.2%, and 11.8%, respectively. Furthermore, food grade gelatin was developed as a substitute for the amino acids to increase the cell concentration, 2-KLG productivity, and L-sorbose consumption rate by 10.2%, 23.4%, and 20.9%, respectively. As a result, the fermentation period decreased to 43 h in a 7-L fermentor.
Collapse
Affiliation(s)
- Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | | | | | | | | |
Collapse
|
44
|
Kumar M, Saxena A, Shahi VK. Comparative Studies on Electro-Membrane Processes for Recovery of Ascorbic Acid from its Sodium Salt. SEP SCI TECHNOL 2011. [DOI: 10.1080/01496395.2010.529862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Hoefel T, Wittmann E, Reinecke L, Weuster-Botz D. Reaction engineering studies for the production of 2-hydroxyisobutyric acid with recombinant Cupriavidus necator H 16. Appl Microbiol Biotechnol 2010; 88:477-84. [PMID: 20625719 DOI: 10.1007/s00253-010-2739-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 06/16/2010] [Accepted: 06/16/2010] [Indexed: 11/26/2022]
Abstract
Recombinant Cupriavidus necator H 16 with a novel metabolic pathway using a cobalamin-dependent mutase was exploited to produce 2-hydroxyisobutyric acid (2-HIBA) from renewable resources through microbial fermentation. 2-HIBA production capacities of different strains of C. necator H 16 deficient in the PHB synthase gene and genetically engineered to enable the production of 2-HIBA from the intracellular PHB precursor (R)-3-hydroxybutyryl-CoA were evaluated in 48 parallel milliliter-scale stirred tank bioreactors (V = 11 mL). The effects of media composition, limitations, pH, and feed rate were studied with respect to the overall process performances of the different recombinant strains. 2-HIBA production was at a maximum at nitrogen limiting conditions and if the pH was controlled between 6.8 and 7.2 under fed-batch operating conditions (intermittent fructose addition). The final concentration of 2-HIBA was 7.4 g L(-1) on a milliliter scale. Best reaction conditions identified on the milliliter scale were transferred to a laboratory-scale fed-batch process in a stirred tank bioreactor (V = 2 L). Two different process modes for the production of 2-HIBA, a single-phase and a dual-phase fermentation procedure, were evaluated and compared on a liter scale. The final concentration of 2-HIBA was 6.4 g L(-1) on a liter scale after 2 days of cultivation.
Collapse
|
46
|
Zhang J, Liu J, Shi Z, Liu L, Chen J. Manipulation of B. megaterium growth for efficient 2-KLG production by K. vulgare. Process Biochem 2010. [DOI: 10.1016/j.procbio.2009.11.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Gullapalli P, Yoshihara A, Morimoto K, Rao D, Akimitsu K, Jenkinson SF, Fleet GW, Izumori K. Conversion of l-rhamnose into ten of the sixteen 1- and 6-deoxyketohexoses in water with three reagents: d-tagatose-3-epimerase equilibrates C3 epimers of deoxyketoses. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2009.12.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Purification and characterization of a novel glucansucrase from Leuconostoc lactis EG001. Microbiol Res 2009; 165:384-91. [PMID: 19853426 DOI: 10.1016/j.micres.2009.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 08/20/2009] [Accepted: 08/23/2009] [Indexed: 11/23/2022]
Abstract
A gene encoding glucansucrase was identified in Leuconostoc lactis EG001 isolated from lactic acid bacteria (LAB) in Kimchi, a traditional Korean fermented food. The L. lactis EG001 glucansucrase gene consists of 4503 bp open reading frame (ORF) and encodes an enzyme of 1500 amino acids with an apparent molecular mass of 165 kDa. The deduced amino-acid sequence showed the highest amino-acid sequence identity (75%) to that of dextransucrase of L. mesenteroides. The gene was cloned and over-expressed in Escherichia coli strain. The recombinant enzyme was purified via Ni-NTA affinity chromatography and its enzymatic properties were characterized. The enzyme exhibited optimum activity at 30 degrees C and pH 5.0. In addition, the enzyme was able to catalyze the glycosylation of l-ascorbic acid to l-ascorbic acid 2-glucoside. The glycosylated product via EG001 glucansucrase has the potential as an antioxidant in industrial applications.
Collapse
|
49
|
Martí N, Mena P, Cánovas JA, Micol V, Saura D. Vitamin C and the Role of Citrus Juices as Functional Food. Nat Prod Commun 2009. [DOI: 10.1177/1934578x0900400506] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The literature on the content and stability of vitamin C (ascorbic acid, AA) in citrus juices in relation to industrial practices is reviewed. The role of vitamin C from citrus juices in human diet is also reviewed. Citrus fruits and juices are rich in several types of bioactive compounds. Their antioxidant activity and related benefits derive not only from vitamin C but also from other phytochemicals, mainly flavonoids. During juice processing, temperature and oxygen are the main factors responsible for vitamin C losses. Nonthermal processed juices retain higher levels of vitamin C, but economic factors apparently delay the use of such methods in the citrus industry. Regarding packing material, vitamin C in fruit juice is quite stable when stored in metal or glass containers, whereas juice stored in plastic bottles has a much shorter shelf-life. The limiting step for vitamin C absorption in humans is transcellular active transport across the intestinal wall where AA may be oxidized to dehydroascorbic acid (DHAA), which is easily transported across the cell membrane and immediately reduced back to AA by two major pathways. AA bioavailability in the presence of flavonoids has yielded controversial results. Whereas flavonoids seem to inhibit intestinal absorption of AA, some studies have shown that AA in citrus extract was more available than synthetic ascorbic acid alone. DHAA is reported to possess equivalent biological activity to AA, so recent studies often consider the vitamin C activity in the diet as the sum of AA plus DHAA. However, this claimed equivalence should be carefully reexamined. Humans are one of the few species lacking the enzyme (L-gulonolactone oxidase, GLO) to convert glucose to vitamin C. It has been suggested that this is due to a mutation that provided a survival advantage to early primates, since GLO produces toxic H2O2. Furthermore, the high concentration of AA (and DHAA) in neural tissues could have been the key factor that caused primates (vertebrates with relative big brain) to lose the capacity to synthesize vitamin C. Oxidative damage has many pathological implications in human health, and AA may play a central role in maintaining the metabolic antioxidant response. The abundance of citrus juices in the Mediterranean diet may provide the main dietary source for natural vitamin C.
Collapse
Affiliation(s)
- Nuria Martí
- Unidad Mixta JBT Corp.-IBMC. Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Orihuela, Alicante. Spain
| | - Pedro Mena
- Unidad Mixta JBT Corp.-IBMC. Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Orihuela, Alicante. Spain
| | - Jose Antonio Cánovas
- Unidad Mixta JBT Corp.-IBMC. Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Orihuela, Alicante. Spain
| | - Vicente Micol
- Unidad Mixta JBT Corp.-IBMC. Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Orihuela, Alicante. Spain
| | - Domingo Saura
- Unidad Mixta JBT Corp.-IBMC. Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Orihuela, Alicante. Spain
| |
Collapse
|
50
|
Filamentous fungi for production of food additives and processing aids. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2008. [PMID: 18253709 DOI: 10.1007/10_2007_094] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Filamentous fungi are metabolically versatile organisms with a very wide distribution in nature. They exist in association with other species, e.g. as lichens or mycorrhiza, as pathogens of animals and plants or as free-living species. Many are regarded as nature's primary degraders because they secrete a wide variety of hydrolytic enzymes that degrade waste organic materials. Many species produce secondary metabolites such as polyketides or peptides and an increasing range of fungal species is exploited commercially as sources of enzymes and metabolites for food or pharmaceutical applications. The recent availability of fungal genome sequences has provided a major opportunity to explore and further exploit fungi as sources of enzymes and metabolites. In this review chapter we focus on the use of fungi in the production of food additives but take a largely pre-genomic, albeit a mainly molecular, view of the topic.
Collapse
|