1
|
Pham TT, Le LH, Andersen J, Lou EH. Optimal configurations of an electromagnetic tracking system for 3D ultrasound imaging of pediatric hips - A phantom study. Med Eng Phys 2024; 131:104221. [PMID: 39284650 DOI: 10.1016/j.medengphy.2024.104221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 09/19/2024]
Abstract
Tracking the position and orientation of a two-dimensional (2D) ultrasound scanner to reconstruct a 3D volume is common, and its accuracy is important. In this study, a specific miniaturized electromagnetic (EM) tracking system was selected and integrated with a 2D ultrasound scanner, which was aimed to capture hip displacement in children with cerebral palsy. The objective of this study was to determine the optimum configuration, including the distance between the EM source and sensor, to provide maximum accuracy. The scanning volume was aimed to be 320 mm × 320 mm × 76 mm. The accuracy of the EM tracking was evaluated by comparing its tracking with those from a motion capture camera system. A static experiment showed that a warm-up time of 20 min was needed. The EM system provided the highest precision of 0.07 mm and 0.01° when the distance between the EM source and sensor was 0.65 m. Within the testing volume, the maximum position and rotational errors were 2.31 mm and 1.48°, respectively. The maximum error of measuring hip displacement on the 3D hip phantom study was 4 %. Based on the test results, the tested EM system was suitable for 3D ultrasound imaging of pediatric hips to assess hip displacement when optimal configuration was used.
Collapse
Affiliation(s)
- Thanh-Tu Pham
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, T6G 2B7, Canada; Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, T6G 2V2, Canada
| | - Lawrence H Le
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, T6G 2B7, Canada; Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, T6G 2V2, Canada
| | - John Andersen
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, T6G 1C9, Canada
| | - Edmond H Lou
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, T6G 2B7, Canada; Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, T6G 2V2, Canada; Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|
2
|
He W, Zhao B, Zhou Y, Wu R, Wu G, Li Y, Lu M, Zhu L, Gao Y. Freehand 3D Ultrasound Imaging Based on Probe-mounted Vision and IMU System. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1143-1154. [PMID: 38702284 DOI: 10.1016/j.ultrasmedbio.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/24/2024] [Accepted: 03/31/2024] [Indexed: 05/06/2024]
Abstract
OBJECTIVES Freehand three-dimensional (3D) ultrasound (US) is of great significance for clinical diagnosis and treatment, it is often achieved with the aid of external devices (optical and/or electromagnetic, etc.) that monitor the location and orientation of the US probe. However, this external monitoring is often impacted by imaging environment such as optical occlusions and/or electromagnetic (EM) interference. METHODS To address the above issues, we integrated a binocular camera and an inertial measurement unit (IMU) on a US probe. Subsequently, we built a tight coupling model utilizing the unscented Kalman algorithm based on Lie groups (UKF-LG), combining vision and inertial information to infer the probe's movement, through which the position and orientation of the US image frame are calculated. Finally, the volume data was reconstructed with the voxel-based hole-filling method. RESULTS The experiments including calibration experiments, tracking performance evaluation, phantom scans, and real scenarios scans have been conducted. The results show that the proposed system achieved the accumulated frame position error of 3.78 mm and the orientation error of 0.36° and reconstructed 3D US images with high quality in both phantom and real scenarios. CONCLUSIONS The proposed method has been demonstrated to enhance the robustness and effectiveness of freehand 3D US. Follow-up research will focus on improving the accuracy and stability of multi-sensor fusion to make the system more practical in clinical environments.
Collapse
Affiliation(s)
- Weizhen He
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Bingshuai Zhao
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Yongjin Zhou
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Ruodai Wu
- Department of Radiology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Guangyao Wu
- Department of Radiology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Ye Li
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen. China
| | - Minhua Lu
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China; National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | | | - Yi Gao
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China; Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China; Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen, China; Marshall Laboratory of Biomedical Engineering, Shenzhen, China.
| |
Collapse
|
3
|
De Sanctis L, Carnevale A, Antonacci C, Faiella E, Schena E, Longo UG. Six-Degree-of-Freedom Freehand 3D Ultrasound: A Low-Cost Computer Vision-Based Approach for Orthopedic Applications. Diagnostics (Basel) 2024; 14:1501. [PMID: 39061637 PMCID: PMC11275361 DOI: 10.3390/diagnostics14141501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/30/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
In orthopedics, X-rays and computed tomography (CT) scans play pivotal roles in diagnosing and treating bone pathologies. Machine bulkiness and the emission of ionizing radiation remain the main problems associated with these techniques. The accessibility and low risks related to ultrasound handling make it a popular 2D imaging method. Indeed, 3D ultrasound assembles 2D slices into a 3D volume. This study aimed to implement a probe-tracking method for 6 DoF 3D ultrasound. The proposed method involves a dodecahedron with ArUco markers attached, enabling computer vision tracking of the ultrasound probe's position and orientation. The algorithm focuses on the data acquisition phase but covers the basic reconstruction required for data generation and analysis. In the best case, the analysis revealed an average error norm of 2.858 mm with a standard deviation norm of 5.534 mm compared to an infrared optical tracking system used as a reference. This study demonstrates the feasibility of performing volumetric imaging without ionizing radiation or bulky systems. This marker-based approach shows promise for enhancing orthopedic imaging, providing a more accessible imaging modality for helping clinicians to diagnose pathologies regarding complex joints, such as the shoulder, replacing standard infrared tracking systems known to suffer from marker occlusion problems.
Collapse
Affiliation(s)
- Lorenzo De Sanctis
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Álvaro del Portillo, 200, 00128 Rome, Italy; (L.D.S.); (A.C.); (C.A.); (E.F.); (E.S.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Arianna Carnevale
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Álvaro del Portillo, 200, 00128 Rome, Italy; (L.D.S.); (A.C.); (C.A.); (E.F.); (E.S.)
| | - Carla Antonacci
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Álvaro del Portillo, 200, 00128 Rome, Italy; (L.D.S.); (A.C.); (C.A.); (E.F.); (E.S.)
- Laboratory of Measurement and Biomedical Instrumentation, Department of Engineering, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Eliodoro Faiella
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Álvaro del Portillo, 200, 00128 Rome, Italy; (L.D.S.); (A.C.); (C.A.); (E.F.); (E.S.)
| | - Emiliano Schena
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Álvaro del Portillo, 200, 00128 Rome, Italy; (L.D.S.); (A.C.); (C.A.); (E.F.); (E.S.)
- Laboratory of Measurement and Biomedical Instrumentation, Department of Engineering, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Umile Giuseppe Longo
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Álvaro del Portillo, 200, 00128 Rome, Italy; (L.D.S.); (A.C.); (C.A.); (E.F.); (E.S.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| |
Collapse
|
4
|
Budzikowski JD, Murray WM. Multi-sweep 3-dimensional ultrasound is accurate for in vivo muscle volume quantification, expanding use to larger muscles. J Biomech 2023; 151:111501. [PMID: 36905729 PMCID: PMC10081694 DOI: 10.1016/j.jbiomech.2023.111501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/21/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
Muscle volume is an important parameter in analyzing three-dimensional structure of muscle-tendon units. Three-dimensional ultrasound (3DUS) enables excellent quantification of muscle volume in small muscles; however, when a muscle's cross sectional area is larger than the field of view of the ultrasound transducer at any point along its length, more than one sweep is necessary to reconstruct muscle anatomy. Confounding image registration errors have been reported between multiple sweeps. Here, we detail imaging phantom studies used to (1) define an acquisition protocol that reduces misalignment in 3D reconstruction caused by muscle deformation, and (2) quantify accuracy of 3DUS for measures of volume when phantoms are too large to be fully imaged via a single transducer sweep. Finally, we (3) establish the feasibility of our protocol for in vivo measures by comparing biceps brachii muscle volumes using 3DUS and magnetic resonance imaging (MRI). Phantom studies indicate operator intent to use constant pressure across multiple sweeps effectively mitigates image misalignment, yielding minimal volume error (1.70 ± 1.30%). Intentional application of different pressure between sweeps replicated discontinuity observed previously, leading to larger errors (5.30 ± 0.94%). Based on these findings, we adopted a gel bag standoff and acquired in vivo images of biceps brachii muscles using 3DUS and compared this volume to MRI. We did not observe misalignment errors and there were no significant differences between imaging modalities (-0.71 ± 5.03 %), indicating 3DUS can reliably be used to quantify muscle volume in larger muscles requiring multiple transducer sweeps.
Collapse
Affiliation(s)
- Jorie D Budzikowski
- Northwestern University, United States; Shirley Ryan AbilityLab, United States; Edward Hines, Jr. Veterans Affairs Hospital, United States
| | - Wendy M Murray
- Northwestern University, United States; Shirley Ryan AbilityLab, United States; Edward Hines, Jr. Veterans Affairs Hospital, United States.
| |
Collapse
|
5
|
Peng C, Cai Q, Chen M, Jiang X. Recent Advances in Tracking Devices for Biomedical Ultrasound Imaging Applications. MICROMACHINES 2022; 13:mi13111855. [PMID: 36363876 PMCID: PMC9695235 DOI: 10.3390/mi13111855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 05/27/2023]
Abstract
With the rapid advancement of tracking technologies, the applications of tracking systems in ultrasound imaging have expanded across a wide range of fields. In this review article, we discuss the basic tracking principles, system components, performance analyses, as well as the main sources of error for popular tracking technologies that are utilized in ultrasound imaging. In light of the growing demand for object tracking, this article explores both the potential and challenges associated with different tracking technologies applied to various ultrasound imaging applications, including freehand 3D ultrasound imaging, ultrasound image fusion, ultrasound-guided intervention and treatment. Recent development in tracking technology has led to increased accuracy and intuitiveness of ultrasound imaging and navigation with less reliance on operator skills, thereby benefiting the medical diagnosis and treatment. Although commercially available tracking systems are capable of achieving sub-millimeter resolution for positional tracking and sub-degree resolution for orientational tracking, such systems are subject to a number of disadvantages, including high costs and time-consuming calibration procedures. While some emerging tracking technologies are still in the research stage, their potentials have been demonstrated in terms of the compactness, light weight, and easy integration with existing standard or portable ultrasound machines.
Collapse
Affiliation(s)
- Chang Peng
- School of Biomedical Engineering, ShanghaiTech University, Shanghai 201210, China
| | - Qianqian Cai
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Mengyue Chen
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
6
|
Jiang W, Mei F, Xie Q. Novel automated spinal ultrasound segmentation approach for scoliosis visualization. Front Physiol 2022; 13:1051808. [PMID: 36353372 PMCID: PMC9637973 DOI: 10.3389/fphys.2022.1051808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/10/2022] [Indexed: 12/02/2022] Open
Abstract
Scoliosis is a 3D deformity of the spine in which one or more segments of the spine curve laterally, usually with rotation of the vertebral body. Generally, having a Cobb angle (Cobb) greater than 10° can be considered scoliosis. In spine imaging, reliable and accurate identification and segmentation of bony features are crucial for scoliosis assessment, disease diagnosis, and treatment planning. Compared with commonly used X-ray detection methods, ultrasound has received extensive attention from researchers in the past years because of its lack of radiation, high real-time performance, and low price. On the basis of our previous research on spinal ultrasound imaging, this work combines artificial intelligence methods to create a new spine ultrasound image segmentation model called ultrasound global guidance block network (UGBNet), which provides a completely automatic and reliable spine segmentation and scoliosis visualization approach. Our network incorporates a global guidance block module that integrates spatial and channel attention, through which long-range feature dependencies and contextual scale information are learned. We evaluate the performance of the proposed model in semantic segmentation on spinal ultrasound datasets through extensive experiments with several classical learning segmentation methods, such as UNet. Results show that our method performs better than other approaches. Our UGBNet significantly improves segmentation precision, which can reach 74.2% on the evaluation metric of the Dice score.
Collapse
|
7
|
Mazierli D, Ramalli A, Boni E, Guidi F. Architecture for an Ultrasound Advanced Open Platform With an Arbitrary Number of Independent Channels. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:486-496. [PMID: 33956633 DOI: 10.1109/tbcas.2021.3077664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ultrasound open platforms are programmable and flexible tools for the development and test of novel methods. In most cases, they embed the electronics for the independent control of (maximum) 256 probe elements. However, a higher number of channels is needed for the control of 2-D array probes. This paper presents a system architecture that, through the hardware and software synchronization of multiple ULA-OP 256 scanners, may implement advanced open platforms with an arbitrary number of channels. The proposed solution needs a single personal computer, maintains real-time features, and preserves portability. A prototype demonstrator, composed of two ULA-OP 256 scanners connected to 512 elements of a matrix array, was implemented and tested according to different channel configurations. Experiments performed under MATLAB control confirmed that by doubling the number of elements (from 256 to 512) the signal-to-noise and contrast ratios improve by 9 dB and 3 dB, respectively. Furthermore, as a full 512-channel scanner, the demonstrator can produce real-time B-mode images at 18 Hz, high enough for probe positioning during acquisitions. Also, the demonstrator permitted the implementation of a new high frame rate, bi-plane, triplex modality. All probe elements are excited to simultaneously produce two planar, perpendicular diverging waves. Each scanner independently processes the echoes received by the 256 connected elements to beamform 1300 frames per second. For each insonified plane, good quality morphological (B-mode), qualitative (color flow-), and quantitative (spectral-) Doppler images are finally shown in real-time by a dedicated interface.
Collapse
|
8
|
Chen X, Chen H, Peng Y, Tao D. Probe Sector Matching for Freehand 3D Ultrasound Reconstruction. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3146. [PMID: 32498321 PMCID: PMC7308927 DOI: 10.3390/s20113146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 11/16/2022]
Abstract
A 3D ultrasound image reconstruction technique, named probe sector matching (PSM), is proposed in this paper for a freehand linear array ultrasound probe equipped with multiple sensors, providing the position and attitude of the transducer and the pressure between the transducer and the target surface. The proposed PSM method includes three main steps. First, the imaging target and the working range of the probe are set to be the center and the radius of the imaging field of view, respectively. To reconstruct a 3D volume, the positions of all necessary probe sectors are pre-calculated inversely to form a sector database. Second, 2D cross-section probe sectors with the corresponding optical positioning, attitude and pressure information are collected when the ultrasound probe is moving around the imaging target. Last, an improved 3D Hough transform is used to match the plane of the current probe sector to the existing sector images in the sector database. After all pre-calculated probe sectors are acquired and matched into the 3D space defined by the sector database, a 3D ultrasound reconstruction is completed. The PSM is validated through two experiments: a virtual simulation using a numerical model and a lab experiment using a real physical model. The experimental results show that the PSM effectively reduces the errors caused by changes in the target position due to the uneven surface pressure or the inhomogeneity of the transmission media. We conclude that the PSM proposed in this study may help to design a lightweight, inexpensive and flexible ultrasound device with accurate 3D imaging capacity.
Collapse
Affiliation(s)
- Xin Chen
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China; (H.C.); (Y.P.); (D.T.)
| | | | | | | |
Collapse
|
9
|
Iommi D, Hummel J, Figl ML. Evaluation of 3D ultrasound for image guidance. PLoS One 2020; 15:e0229441. [PMID: 32214326 PMCID: PMC7098612 DOI: 10.1371/journal.pone.0229441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/06/2020] [Indexed: 12/30/2022] Open
Abstract
PURPOSE In this paper we compared two different 3D ultrasound (US) modes (3D free-hand mode and 3D wobbler mode) to see which is more suitable to perform the 3D-US/3D-US registration for clinical guidance applications. The typical errors with respect to their impact on the final localization error were evaluated step by step. METHODS Multi-point target and Hand-eye calibration methods were used for 3D US calibration together with a newly designed multi-cone phantom. Pointer based and image based methods were used for 2D US calibration. The calibration target error was computed by using a different multi-cone phantom. An egg-shaped phantom was used as ground truth to compare distortions for both 3D modes along with the measurements of the volume. Finally, we compared 3D ultrasound images acquired by 3D wobbler mode and 3D free-hand mode with respect to their 3D-US/3D-US registration accuracy using both, phantom and patient data. A theoretical step by step error analysis was performed and compared to empirical data. RESULTS Target registration errors based on the calibration with the 3D Multi-point and 2D pointer/image method have been found to be comparable (∼1mm). They both outperformed the 3D Hand-eye method (error >2mm). Volume measurements with the 3D free-hand mode were closest to the ground truth (around 6% error compared to 9% with the 3D wobbler mode). Additional scans on phantoms showed a 3D-US/3D-US registration error below 1 mm for both, the 3D free-hand mode and the 3D wobbler mode, respectively. Results with patient data showed greater error with the 3D free-hand mode (6.50mm - 13.37mm) than with the 3D wobbler mode (2.99 ± 1.54 mm). All the measured errors were found to be in accordance to their theoretical upper bounds. CONCLUSION While both 3D volume methods showed comparable results with respect to 3D-US/3D-US registration for phantom images, for patient data registrations the 3D wobbler mode is superior to the 3D free-hand mode. The effect of all error sources could be estimated by theoretical derivations.
Collapse
Affiliation(s)
- David Iommi
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Johann Hummel
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- * E-mail:
| | - Michael Lutz Figl
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Using game controller as position tracking sensor for 3D freehand ultrasound imaging. Med Biol Eng Comput 2019; 58:889-902. [DOI: 10.1007/s11517-019-02044-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/26/2019] [Indexed: 11/28/2022]
|
11
|
Ranger BJ, Feigin M, Zhang X, Moerman KM, Herr H, Anthony BW. 3D Ultrasound Imaging of Residual Limbs With Camera-Based Motion Compensation. IEEE Trans Neural Syst Rehabil Eng 2019; 27:207-217. [PMID: 30676967 DOI: 10.1109/tnsre.2019.2894159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Ultrasound is a cost-effective, readily available, and non-ionizing modality for musculoskeletal imaging. Though some research groups have pursued methods that involve submerging the transducer and imaged body segment into a water bath, many limitations remain in regards to acquiring an unloaded volumetric image of an entire human limb in a fast, safe, and adequately accurate manner. A 3D dataset of a limb is useful in several rehabilitative applications including biomechanical modeling of soft tissue, prosthetic socket design, monitoring muscle condition and disease progression, bone health, and orthopedic surgery. This paper builds on previous work from our group and presents the design, prototyping, and preliminary testing of a novel multi-modal imaging system for rapidly acquiring volumetric ultrasound imagery of human limbs, with a particular focus on residual limbs for improved prosthesis design. Our system employs a mechanized water tank setup to scan a limb with a clinical ultrasound transducer and 3D optical imagery to track motion during a scan. The iterative closest point algorithm is utilized to compensate for motion and stitch the images into a final dataset. The results show preliminary 2D and 3D imaging of both a tissue-mimicking phantom and residual limbs. A volumetric error compares the ultrasound image data obtained to a previous MRI method. The results indicate potential for future clinical implementation. Concepts presented in this paper could reasonably transfer to other imaging applications such as acoustic tomography, where motion artifact may distort image reconstruction.
Collapse
|
12
|
Shen J, Zemiti N, Dillenseger JL, Poignet P. Fast And Simple Automatic 3D Ultrasound Probe Calibration Based On 3D Printed Phantom And An Untracked Marker. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:878-882. [PMID: 30440531 DOI: 10.1109/embc.2018.8512406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Tracking the pose of an ultrasound (US) probe is essential for an intraoperative US-based navigation system. The tracking requires mounting a marker on the US probe and calibrating the probe. The goal of the US probe calibration is to determine the rigid transformation between the coordinate system (CS) of the image and the CS of the marker mounted on the probe. We present a fast and automatic calibration method based on a 3D printed phantom and an untracked marker for three-dimensional (3D) US probe calibration. To simplify the conventional calibration procedures using and tracking at least two markers, we used only one marker and did not track it in the whole calibration process. Our automatic calibration method is fast, simple and does not require any experience from the user. The performance of our calibration method was evaluated by point reconstruction tests. The root mean square (RMS) of the point reconstruction errors was 1.39 mm.
Collapse
|
13
|
Morgan MR, Broder JS, Dahl JJ, Herickhoff CD. Versatile Low-Cost Volumetric 3-D Ultrasound Platform for Existing Clinical 2-D Systems. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:2248-2256. [PMID: 29993653 DOI: 10.1109/tmi.2018.2821901] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ultrasound imaging has indications across many areas of medicine, but the need for training and the variability in skill and acquired image quality among 2-D ultrasound users have limited its wider adoption and utilization. Low-cost volumetric ultrasound with a known frame of reference has the potential to lower these operator-dependent barriers and enhance the clinical utility of ultrasound imaging. In this paper, we improve upon our previous research-scanner-based prototype to implement a versatile volumetric imaging platform for existing clinical 2-D ultrasound systems. We present improved data acquisition and image reconstruction schemes to increase quality, streamline workflow, and provide real-time visual feedback. We present initial results using the platform on a Vimedix simulator, as well as on phantom and in vivo targets using a variety of clinical ultrasound systems and probes.
Collapse
|
14
|
Herickhoff CD, Morgan MR, Broder JS, Dahl JJ. Low-cost Volumetric Ultrasound by Augmentation of 2D Systems: Design and Prototype. ULTRASONIC IMAGING 2018; 40:35-48. [PMID: 28691586 DOI: 10.1177/0161734617718528] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Conventional two-dimensional (2D) ultrasound imaging is a powerful diagnostic tool in the hands of an experienced user, yet 2D ultrasound remains clinically underutilized and inherently incomplete, with output being very operator dependent. Volumetric ultrasound systems can more fully capture a three-dimensional (3D) region of interest, but current 3D systems require specialized transducers, are prohibitively expensive for many clinical departments, and do not register image orientation with respect to the patient; these systems are designed to provide improved workflow rather than operator independence. This work investigates whether it is possible to add volumetric 3D imaging capability to existing 2D ultrasound systems at minimal cost, providing a practical means of reducing operator dependence in ultrasound. In this paper, we present a low-cost method to make 2D ultrasound systems capable of quality volumetric image acquisition: we present the general system design and image acquisition method, including the use of a probe-mounted orientation sensor, a simple probe fixture prototype, and an offline volume reconstruction technique. We demonstrate initial results of the method, implemented using a Verasonics Vantage research scanner.
Collapse
Affiliation(s)
| | | | | | - Jeremy J Dahl
- 1 Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
15
|
Wang Y, Nasief HG, Kohn S, Milkowski A, Clary T, Barnes S, Barbone PE, Hall TJ. Three-dimensional Ultrasound Elasticity Imaging on an Automated Breast Volume Scanning System. ULTRASONIC IMAGING 2017; 39:369-392. [PMID: 28585511 PMCID: PMC5643218 DOI: 10.1177/0161734617712238] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ultrasound elasticity imaging has demonstrated utility in breast imaging, but it is typically performed with handheld transducers and two-dimensional imaging. Two-dimensional (2D) elastography images tissue stiffness of only a plane and hence suffers from errors due to out-of-plane motion, whereas three-dimensional (3D) data acquisition and motion tracking can be used to track out-of-plane motion that is lost in 2D elastography systems. A commercially available automated breast volume scanning system that acquires 3D ultrasound data with precisely controlled elevational movement of the 1D array ultrasound transducer was employed in this study. A hybrid guided 3D motion-tracking algorithm was developed that first estimated the displacements in one plane using a modified quality-guided search method, and then performed an elevational guided-search for displacement estimation in adjacent planes. To assess the performance of the method, 3D radiofrequency echo data were acquired with this system from a phantom and from an in vivo human breast. For both experiments, the axial displacement fields were smooth and high cross-correlation coefficients were obtained in most of the tracking region. The motion-tracking performance of the new method was compared with a correlation-based exhaustive-search method. For all motion-tracking volume pairs, the average motion-compensated cross-correlation values obtained by the guided-search motion-tracking method were equivalent to those by the exhaustive-search method, and the computation time was about a factor of 10 lesser. Therefore, the proposed 3D ultrasound elasticity imaging method was a more efficient approach to produce a high quality of 3D ultrasound strain image.
Collapse
Affiliation(s)
- Yuqi Wang
- Department of Medical Physics, University of Wisconsin, Madison, WI 53705, USA
| | - Haidy G Nasief
- Department of Medical Physics, University of Wisconsin, Madison, WI 53705, USA
| | - Sarah Kohn
- Department of Medical Physics, University of Wisconsin, Madison, WI 53705, USA
| | - Andy Milkowski
- Siemens Healthcare USA, Ultrasound Division, Issaquah, WA 98029, USA
| | - Tom Clary
- The Inception Group, LLC, Sammamish, WA 98075, USA
| | - Stephen Barnes
- Siemens Healthcare USA, Ultrasound Division, Issaquah, WA 98029, USA
| | - Paul E Barbone
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
| | - Timothy J Hall
- Department of Medical Physics, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
16
|
Cong W, Yang J, Ai D, Song H, Chen G, Liang X, Liang P, Wang Y. Global Patch Matching (GPM) for freehand 3D ultrasound reconstruction. Biomed Eng Online 2017; 16:124. [PMID: 29084564 PMCID: PMC5661982 DOI: 10.1186/s12938-017-0411-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 10/11/2017] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND 3D ultrasound volume reconstruction from B-model ultrasound slices can provide more clearly and intuitive structure of tissue and lesion for the clinician. METHODS This paper proposes a novel Global Path Matching method for the 3D reconstruction of freehand ultrasound images. The proposed method composes of two main steps: bin-filling scheme and hole-filling strategy. For the bin-filling scheme, this study introduces two operators, including the median absolute deviation and the inter-quartile range absolute deviation, to calculate the invariant features of each voxel in the 3D ultrasound volume. And the best contribution range for each voxel is obtained by calculating the Euclidian distance between current voxel and the voxel with the minimum invariant features. Hence, the intensity of the filling vacant voxel can be obtained by weighted combination of the intensity distribution of pixels in the best contribution range. For the hole-filling strategy, three conditions, including the confidence term, the data term and the gradient term, are designed to calculate the weighting coefficient of the matching patch of the vacant voxel. While the matching patch is obtained by finding patches with the best similarity measure that defined by the three conditions in the whole 3D volume data. RESULTS Compared with VNN, PNN, DW, FMM, BI and KR methods, the proposed Global Path Matching method can restore the 3D ultrasound volume with minimum difference. CONCLUSIONS Experimental results on phantom and clinical data sets demonstrate the effectiveness and robustness of the proposed method for the reconstruction of ultrasound volume.
Collapse
Affiliation(s)
- Weijian Cong
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Electronics, Beijing Institute of Technology, Beijing, 100081 China
- School of Computer Science and Engineering, Beihang University, Beijing, 100191 China
| | - Jian Yang
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Electronics, Beijing Institute of Technology, Beijing, 100081 China
| | - Danni Ai
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Electronics, Beijing Institute of Technology, Beijing, 100081 China
| | - Hong Song
- School of Software, Beijing Institute of Technology, Beijing, 100081 China
| | - Gang Chen
- Interventional Ultrasound Department, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853 China
| | - Xiaohui Liang
- School of Computer Science and Engineering, Beihang University, Beijing, 100191 China
| | - Ping Liang
- Interventional Ultrasound Department, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853 China
| | - Yongtian Wang
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Electronics, Beijing Institute of Technology, Beijing, 100081 China
| |
Collapse
|
17
|
Mozaffari MH, Lee WS. Freehand 3-D Ultrasound Imaging: A Systematic Review. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:2099-2124. [PMID: 28716431 DOI: 10.1016/j.ultrasmedbio.2017.06.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 05/20/2023]
Abstract
Two-dimensional ultrasound (US) imaging has been successfully used in clinical applications as a low-cost, portable and non-invasive image modality for more than three decades. Recent advances in computer science and technology illustrate the promise of the 3-D US modality as a medical imaging technique that is comparable to other prevalent modalities and that overcomes certain drawbacks of 2-D US. This systematic review covers freehand 3-D US imaging between 1970 and 2017, highlighting the current trends in research fields, the research methods, the main limitations, the leading researchers, standard assessment criteria and clinical applications. Freehand 3-D US systems are more prevalent in the academic environment, whereas in clinical applications and industrial research, most studies have focused on 3-D US transducers and improvement of hardware performance. This topic is still an interesting active area for researchers, and there remain many unsolved problems to be addressed.
Collapse
Affiliation(s)
- Mohammad Hamed Mozaffari
- School of Electrical Engineering and Computer Science (EECS), University of Ottawa, Ottawa, Ontario, Canada.
| | - Won-Sook Lee
- School of Electrical Engineering and Computer Science (EECS), University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
18
|
Hennersperger C, Fuerst B, Virga S, Zettinig O, Frisch B, Neff T, Navab N. Towards MRI-Based Autonomous Robotic US Acquisitions: A First Feasibility Study. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:538-548. [PMID: 27831861 DOI: 10.1109/tmi.2016.2620723] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Robotic ultrasound has the potential to assist and guide physicians during interventions. In this work, we present a set of methods and a workflow to enable autonomous MRI-guided ultrasound acquisitions. Our approach uses a structured-light 3D scanner for patient-to-robot and image-to-patient calibration, which in turn is used to plan 3D ultrasound trajectories. These MRI-based trajectories are followed autonomously by the robot and are further refined online using automatic MRI/US registration. Despite the low spatial resolution of structured light scanners, the initial planned acquisition path can be followed with an accuracy of 2.46 ± 0.96 mm. This leads to a good initialization of the MRI/US registration: the 3D-scan-based alignment for planning and acquisition shows an accuracy (distance between planned ultrasound and MRI) of 4.47 mm, and 0.97 mm after an online-update of the calibration based on a closed loop registration.
Collapse
|
19
|
|
20
|
Quantitative Assessment of Variational Surface Reconstruction from Sparse Point Clouds in Freehand 3D Ultrasound Imaging during Image-Guided Tumor Ablation. APPLIED SCIENCES-BASEL 2016. [DOI: 10.3390/app6040114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Vasconcelos F, Peebles D, Ourselin S, Stoyanov D. Spatial calibration of a 2D/3D ultrasound using a tracked needle. Int J Comput Assist Radiol Surg 2016; 11:1091-9. [PMID: 27059023 PMCID: PMC4893368 DOI: 10.1007/s11548-016-1392-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/17/2016] [Indexed: 11/30/2022]
Abstract
Purpose Spatial calibration between a 2D/3D ultrasound and a pose tracking system requires a complex and time-consuming procedure. Simplifying this procedure without compromising the calibration accuracy is still a challenging problem. Method We propose a new calibration method for both 2D and 3D ultrasound probes that involves scanning an arbitrary region of a tracked needle in different poses. This approach is easier to perform than most alternative methods that require a precise alignment between US scans and a calibration phantom. Results Our calibration method provides an average accuracy of 2.49 mm for a 2D US probe with 107 mm scanning depth, and an average accuracy of 2.39 mm for a 3D US with 107 mm scanning depth. Conclusion Our method proposes a unified calibration framework for 2D and 3D probes using the same phantom object, work-flow, and algorithm. Our method significantly improves the accuracy of needle-based methods for 2D US probes as well as extends its use for 3D US probes.
Collapse
Affiliation(s)
| | - Donald Peebles
- />Department of Obstetrics and Gynecology, UCL, London, UK
| | | | | |
Collapse
|
22
|
Taki H, Tanimura S, Sakamoto T, Shiina T, Sato T. Accurate ultrasound imaging based on range point migration method for the depiction of fetal surface. J Med Ultrason (2001) 2015; 42:51-8. [PMID: 26578490 DOI: 10.1007/s10396-014-0574-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/18/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE The purpose of this study is to evaluate the performance of a modified range point migration (RPM) method using a semi-broad transmit beam for fetal surface imaging. METHODS The conventional RPM method depicts accurate images of target surfaces by estimating the reflection point on a target surface from the path length of plural transmit-and-receive element combinations. However, the conventional RPM method depicts false images when echoes from different targets are received simultaneously. For the elimination of false images in the employment of the RPM method, we propose a modified RPM method with a semi-broad transmit beam to decrease the number of targets in each measurement region. RESULTS The modified RPM method depicted two acrylic cylinders of 2 cm in diameter with a root-mean-square error (RMSE) of 0.062 mm, where the RMSE of the migration method was 0.145 mm. The modified RPM method also succeeded in depicting a 7-month fetal phantom with a RMSE of 0.058 mm relative to a 3D image acquired using optical measurement. CONCLUSION This study shows the potential of the modified RPM method in achieving accurate surface imaging of multiple targets using a semi-broad beam, indicating that the method is suitable for fetal surface imaging.
Collapse
Affiliation(s)
- Hirofumi Taki
- Graduate School of Informatics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Shinya Tanimura
- Furuno Electric Co., Ltd, 9-52 Ashihara-cho, Nishinomiya, Hyogo, 662-8580, Japan
| | - Takuya Sakamoto
- Graduate School of Informatics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tsuyoshi Shiina
- Graduate School of Informatics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Toru Sato
- Graduate School of Informatics, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
23
|
Kainz B, Steinberger M, Wein W, Kuklisova-Murgasova M, Malamateniou C, Keraudren K, Torsney-Weir T, Rutherford M, Aljabar P, Hajnal JV, Rueckert D. Fast Volume Reconstruction From Motion Corrupted Stacks of 2D Slices. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:1901-13. [PMID: 25807565 PMCID: PMC7115883 DOI: 10.1109/tmi.2015.2415453] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Capturing an enclosing volume of moving subjects and organs using fast individual image slice acquisition has shown promise in dealing with motion artefacts. Motion between slice acquisitions results in spatial inconsistencies that can be resolved by slice-to-volume reconstruction (SVR) methods to provide high quality 3D image data. Existing algorithms are, however, typically very slow, specialised to specific applications and rely on approximations, which impedes their potential clinical use. In this paper, we present a fast multi-GPU accelerated framework for slice-to-volume reconstruction. It is based on optimised 2D/3D registration, super-resolution with automatic outlier rejection and an additional (optional) intensity bias correction. We introduce a novel and fully automatic procedure for selecting the image stack with least motion to serve as an initial registration target. We evaluate the proposed method using artificial motion corrupted phantom data as well as clinical data, including tracked freehand ultrasound of the liver and fetal Magnetic Resonance Imaging. We achieve speed-up factors greater than 30 compared to a single CPU system and greater than 10 compared to currently available state-of-the-art multi-core CPU methods. We ensure high reconstruction accuracy by exact computation of the point-spread function for every input data point, which has not previously been possible due to computational limitations. Our framework and its implementation is scalable for available computational infrastructures and tests show a speed-up factor of 1.70 for each additional GPU. This paves the way for the online application of image based reconstruction methods during clinical examinations. The source code for the proposed approach is publicly available.
Collapse
Affiliation(s)
| | - Markus Steinberger
- Institute for Computer Graphics and Vision at Graz University of Technology, Inffeldgasse 16, 8010 Graz, Austria
| | - Wolfgang Wein
- ImFusion GmbH and the Chair for Computer Aided Medical Procedures & Augmented Reality at TU Munich, Agnes-Pockels-Bogen 1, 80992 Munich, Germany
| | - Maria Kuklisova-Murgasova
- Department of Perinatal Imaging and Health within the Division of Imaging Sciences and Biomedical Engineering at King's College London, Strand, London WC2R 2LS, UK
| | - Christina Malamateniou
- Department of Perinatal Imaging and Health within the Division of Imaging Sciences and Biomedical Engineering at King's College London, Strand, London WC2R 2LS, UK
| | - Kevin Keraudren
- Department of Computing, Imperial College London, 180 Queen's Gate, London SW7 2AZ, UK
| | - Thomas Torsney-Weir
- Visualization and Data Analysis group within the Faculty of Computer Science at the University of Vienna, Waehringer Strae 29, 1090 Vienna, Austria
| | - Mary Rutherford
- Department of Perinatal Imaging and Health within the Division of Imaging Sciences and Biomedical Engineering at King's College London, Strand, London WC2R 2LS, UK
| | - Paul Aljabar
- Department of Perinatal Imaging and Health within the Division of Imaging Sciences and Biomedical Engineering at King's College London, Strand, London WC2R 2LS, UK
| | - Joseph V. Hajnal
- Department of Perinatal Imaging and Health within the Division of Imaging Sciences and Biomedical Engineering at King's College London, Strand, London WC2R 2LS, UK
| | - Daniel Rueckert
- Department of Computing, Imperial College London, 180 Queen's Gate, London SW7 2AZ, UK
| |
Collapse
|
24
|
Cheung CWJ, Zhou GQ, Law SY, Mak TM, Lai KL, Zheng YP. Ultrasound Volume Projection Imaging for Assessment of Scoliosis. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:1760-1768. [PMID: 25594962 DOI: 10.1109/tmi.2015.2390233] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The standing radiograph is used as a gold standard to diagnose spinal deformity including scoliosis, a medical condition defined as lateral spine curvature > 10°. However, the health concern of X-ray and large inter-observer variation of measurements on X-ray images have significantly restricted its application, particularly for scoliosis screening and close follow-up for adolescent patients. In this study, a radiation-free freehand 3-D ultrasound system was developed for scoliosis assessment using a volume projection imaging method. Based on the obtained coronal view images, two measurement methods were proposed using transverse process and spinous profile as landmarks, respectively. As a reliability study, 36 subjects (age: 30.1 ±14.5; male: 12; female: 24) with different degrees of scoliosis were scanned using the system to test the inter- and intra-observer repeatability. The intra- and inter-observer tests indicated that the new assessment methods were repeatable, with ICC larger than 0.92. Small intra- and inter-observer variations of measuring spine curvature were observed for the two measurement methods (intra-: 1.4 ±1.0° and 1.4 ±1.1°; inter-: 2.2 ±1.6° and 2.5 ±1.6°). The results also showed that the spinal curvature obtained by the new method had good linear correlations with X-ray Cobb's method (R2 = 0.8, p < 0.001, 29 subjects). These results suggested that the ultrasound volume projection imaging method can be a promising approach for the assessment of scoliosis, and further research should be followed up to demonstrate its potential clinical applications for mass screening and curve progression and treatment outcome monitoring of scoliosis patients.
Collapse
|
25
|
Freehand three-dimensional ultrasound system for assessment of scoliosis. J Orthop Translat 2015; 3:123-133. [PMID: 30035049 PMCID: PMC5982385 DOI: 10.1016/j.jot.2015.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/30/2015] [Accepted: 06/02/2015] [Indexed: 11/23/2022] Open
Abstract
Background/Objective Standing radiograph with Cobb's method is routinely used to diagnose scoliosis, a medical condition defined as a lateral spine curvature > 10° with concordant vertebral rotation. However, radiation hazard and two-dimensional (2-D) viewing of 3-D anatomy restrict the application of radiograph in scoliosis examination. Methods In this study, a freehand 3-D ultrasound system was developed for the radiation-free assessment of scoliosis. Bony landmarks of the spine were manually extracted from a series of ultrasound images with their spatial information recorded to form a 3-D spine model for measuring its curvature. To validate its feasibility, in vivo measurements were conducted in 28 volunteers (age: 28.0 ± 13.0 years, 9 males and 19 females). A significant linear correlation (R2 = 0.86; p < 0.001) was found between the spine curvatures as measured by Cobb's method and the 3-D ultrasound imaging with transverse process and superior articular process as landmarks. The intra- and interobserver tests indicated that the proposed method is repeatable. Results The 3-D ultrasound method using bony landmarks tended to underestimate the deformity, and a proper scaling is required. Nevertheless, this study demonstrated the feasibility of the freehand 3-D ultrasound system to assess scoliosis in the standing posture with the proposed methods and 3-D spine profile. Conclusion Further studies are required to understand the variations that exist between the ultrasound and radiograph results with a larger number of volunteers, and to demonstrate its potential clinical applications for monitoring of scoliosis patients. Through further clinical trials and development, the reported 3-D ultrasound imaging system can potentially be used for scoliosis mass screening and frequent monitoring of progress and treatment outcome because of its radiation-free and easy accessibility feature.
Collapse
|
26
|
Carvalho DDB, Klein S, Akkus Z, van Dijk AC, Tang H, Selwaness M, Schinkel AFL, Bosch JG, van der Lugt A, Niessen WJ. Joint intensity-and-point based registration of free-hand B-mode ultrasound and MRI of the carotid artery. Med Phys 2014; 41:052904. [PMID: 24784404 DOI: 10.1118/1.4870383] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE To introduce a semiautomatic algorithm to perform the registration of free-hand B-Mode ultrasound (US) and magnetic resonance imaging (MRI) of the carotid artery. METHODS The authors' approach combines geometrical features and intensity information. The only user interaction consists of placing three seed points in US and MRI. First, the lumen centerlines are used as landmarks for point based registration. Subsequently, in a joint optimization the distance between centerlines and the dissimilarity of the image intensities is minimized. Evaluation is performed in left and right carotids from six healthy volunteers and five patients with atherosclerosis. For the validation, the authors measure the Dice similarity coefficient (DSC) and the mean surface distance (MSD) between carotid lumen segmentations in US and MRI after registration. The effect of several design parameters on the registration accuracy is investigated by an exhaustive search on a training set of five volunteers and three patients. The optimum configuration is validated on the remaining images of one volunteer and two patients. RESULTS On the training set, the authors achieve an average DSC of 0.74 and a MSD of 0.66 mm on volunteer data. For the patient data, the authors obtain a DSC of 0.77 and a MSD of 0.69 mm. In the independent set composed of patient and volunteer data, the DSC is 0.69 and the MSD is 0.87 mm. The experiments with different design parameters show that nonrigid registration outperforms rigid registration, and that the combination of intensity and point information is superior to approaches that use intensity or points only. CONCLUSIONS The proposed method achieves an accurate registration of US and MRI, and may thus enable multimodal analysis of the carotid plaque.
Collapse
Affiliation(s)
- Diego D B Carvalho
- Department of Radiology and Department of Medical Informatics, Biomedical Imaging Group Rotterdam, Erasmus MC, Rotterdam 3015 CE, The Netherlands
| | - Stefan Klein
- Department of Radiology and Department of Medical Informatics, Biomedical Imaging Group Rotterdam, Erasmus MC, Rotterdam 3015 CE, The Netherlands
| | - Zeynettin Akkus
- Biomedical Engineering, Erasmus MC, Rotterdam 3015 CE, The Netherlands
| | - Anouk C van Dijk
- Department of Radiology, Erasmus MC, Rotterdam 3015 CE, The Netherlands and Department of Neurology, Erasmus MC, Rotterdam 3015 CE, The Netherlands
| | - Hui Tang
- Department of Radiology and Department of Medical Informatics, Biomedical Imaging Group Rotterdam, Erasmus MC, Rotterdam 3015 CE, The Netherlands and Imaging Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Delft 2600 AA, The Netherlands
| | - Mariana Selwaness
- Department of Radiology, Erasmus MC, Rotterdam 3015 CE, The Netherlands
| | - Arend F L Schinkel
- Department of Internal Medicine, Division of Pharmacology, Vascular and Metabolic Diseases, Erasmus MC, Rotterdam 3015 CE, The Netherlands and Department of Cardiology, Thoraxcenter, Erasmus MC, Rotterdam 3015 CE, The Netherlands
| | - Johan G Bosch
- Biomedical Engineering, Erasmus MC, Rotterdam 3015 CE, The Netherlands
| | - Aad van der Lugt
- Department of Radiology, Erasmus MC, Rotterdam 3015 CE, The Netherlands
| | - Wiro J Niessen
- Department of Radiology and Department of Medical Informatics, Biomedical Imaging Group Rotterdam, Erasmus MC, Rotterdam 3015 CE, The Netherlands and Imaging Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Delft 2600 AA, The Netherlands
| |
Collapse
|
27
|
Huang QH, Yang Z, Hu W, Jin LW, Wei G, Li X. Linear tracking for 3-D medical ultrasound imaging. IEEE TRANSACTIONS ON CYBERNETICS 2013; 43:1747-1754. [PMID: 23757592 DOI: 10.1109/tsmcc.2012.2229270] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
As the clinical application grows, there is a rapid technical development of 3-D ultrasound imaging. Compared with 2-D ultrasound imaging, 3-D ultrasound imaging can provide improved qualitative and quantitative information for various clinical applications. In this paper, we proposed a novel tracking method for a freehand 3-D ultrasound imaging system with improved portability, reduced degree of freedom, and cost. We designed a sliding track with a linear position sensor attached, and it transmitted positional data via a wireless communication module based on Bluetooth, resulting in a wireless spatial tracking modality. A traditional 2-D ultrasound probe fixed to the position sensor on the sliding track was used to obtain real-time B-scans, and the positions of the B-scans were simultaneously acquired when moving the probe along the track in a freehand manner. In the experiments, the proposed method was applied to ultrasound phantoms and real human tissues. The results demonstrated that the new system outperformed a previously developed freehand system based on a traditional six-degree-of-freedom spatial sensor in phantom and in vivo studies, indicating its merit in clinical applications for human tissues and organs.
Collapse
|
28
|
An accurate and effective FMM-based approach for freehand 3D ultrasound reconstruction. Biomed Signal Process Control 2013. [DOI: 10.1016/j.bspc.2013.05.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Owen K, Mauldin FW, Nguyen S, Tiouririne M, Hossack JA. Improved elevational and azimuthal motion tracking using sector scans. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2013; 60:671-684. [PMID: 23549528 DOI: 10.1109/tuffc.2013.2616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Ultrasound data motion tracking is widely used to estimate relative tissue/transducer motion, for example in freehand 3-D imaging, in which successive 2-D ultrasound scan planes are registered in a 3-D volume. Speckle-tracking and decorrelation-based methods are used to estimate motion in the azimuthal and elevational planes. However, the performance of speckle-tracking is significantly degraded in sectorscan systems because of point-spread function rotation with lateral motion. In this paper, we develop a new method for joint azimuthal¿elevational motion estimation based on the complex correlation of individual IQ-demodulated sector-scan A-lines arising from tissue motion in 3-D space. We show that our method has performance benefits over both speckle-tracking and decorrelation-based tracking for motion estimation in sector-scan systems, particularly when there is both elevational and azimuthal motion. Motion-tracking efficacy is further demonstrated by improved freehand imaging of a known target (anatomically accurate 3-D-printed lumbar spine model) in a tissue-mimicking phantom, with an rms surface distance error of 1.2 mm, compared with 2.43 mm for conventional methods. These data indicate that the new algorithm is capable of improved tracking performance for sector scan systems, enabling effective freehand 3-D scanning.
Collapse
Affiliation(s)
- Kevin Owen
- University of Virginia, Charlottesville, VA, USA.
| | | | | | | | | |
Collapse
|
30
|
Salim MS, Abd Malek M, Heng R, Juni K, Sabri N. Capacitive Micromachined Ultrasonic Transducers: Technology and Application. J Med Ultrasound 2012. [DOI: 10.1016/j.jmu.2012.02.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
31
|
Registration of Free-Hand Ultrasound and MRI of Carotid Arteries through Combination of Point-Based and Intensity-Based Algorithms. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/978-3-642-31340-0_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
32
|
Iula A, De Santis M. Experimental evaluation of an ultrasound technique for the biometric recognition of human hand anatomic elements. ULTRASONICS 2011; 51:683-688. [PMID: 21367443 DOI: 10.1016/j.ultras.2011.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/24/2011] [Accepted: 01/26/2011] [Indexed: 05/30/2023]
Abstract
In this work the moving ultrasound linear array technique has been used to perform 3D echographic images of different human hands, in order to evaluate this technique to biometric recognition purposes. An automated set up, based on a commercial echographic machine provided with a high frequency (12 MHz) linear array, has been built up. The probe is moved in the direction orthogonal to the array and at each step a B-scan is performed and stored to form a 3D matrix representing the under skin hand volume. B-scan and C-scan images of the hand of different users were analysed and compared. The results have shown that, in the analysed region (about 10mm under the palm skin), there are several anatomic elements (including hand bones, bending tendons, muscle tissue, blood vessels) that can be exploited for measurements of biometric parameters. The characteristics of the proposed technique are compared with those of the 2D optical hand geometry, which is a well established biometric technique, and its possible advantages are underlined and discussed.
Collapse
Affiliation(s)
- Antonio Iula
- Dipartimento di Ingegneria e Fisica dell'Ambiente, Università degli Studi della Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy.
| | | |
Collapse
|
33
|
Galdames FJ, Perez CA, Estévez PA, Held CM, Jaillet F, Lobo G, Donoso G, Coll C. Registration of renal SPECT and 2.5D US images. Comput Med Imaging Graph 2011; 35:302-14. [DOI: 10.1016/j.compmedimag.2011.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 02/02/2011] [Indexed: 11/29/2022]
|
34
|
Xu J, Jia ZZ, Song ZJ, Yang XD, Chen K, Liang P. Three-dimensional ultrasound image-guided robotic system for accurate microwave coagulation of malignant liver tumours. Int J Med Robot 2011; 6:256-68. [PMID: 20564429 DOI: 10.1002/rcs.313] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The further application of conventional ultrasound (US) image-guided microwave (MW) ablation of liver cancer is often limited by two-dimensional (2D) imaging, inaccurate needle placement and the resulting skill requirement. The three-dimensional (3D) image-guided robotic-assisted system provides an appealing alternative option, enabling the physician to perform consistent, accurate therapy with improved treatment effectiveness. METHODS Our robotic system is constructed by integrating an imaging module, a needle-driven robot, a MW thermal field simulation module, and surgical navigation software in a practical and user-friendly manner. The robot executes precise needle placement based on the 3D model reconstructed from freehand-tracked 2D B-scans. A qualitative slice guidance method for fine registration is introduced to reduce the placement error caused by target motion. By incorporating the 3D MW specific absorption rate (SAR) model into the heat transfer equation, the MW thermal field simulation module determines the MW power level and the coagulation time for improved ablation therapy. Two types of wrists are developed for the robot: a 'remote centre of motion' (RCM) wrist and a non-RCM wrist, which is preferred in real applications. RESULTS The needle placement accuracies were < 3 mm for both wrists in the mechanical phantom experiment. The target accuracy for the robot with the RCM wrist was improved to 1.6 +/- 1.0 mm when real-time 2D US feedback was used in the artificial-tissue phantom experiment. By using the slice guidance method, the robot with the non-RCM wrist achieved accuracy of 1.8 +/- 0.9 mm in the ex vivo experiment; even target motion was introduced. In the thermal field experiment, a 5.6% relative mean error was observed between the experimental coagulated neurosis volume and the simulation result. CONCLUSION The proposed robotic system holds promise to enhance the clinical performance of percutaneous MW ablation of malignant liver tumours.
Collapse
Affiliation(s)
- Jing Xu
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48823, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Rocha R, Campilho A, Silva J, Azevedo E, Santos R. Segmentation of ultrasound images of the carotid using RANSAC and cubic splines. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2011; 101:94-106. [PMID: 20554343 DOI: 10.1016/j.cmpb.2010.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 01/27/2010] [Accepted: 04/19/2010] [Indexed: 05/29/2023]
Abstract
A new algorithm is proposed for the semi-automatic segmentation of the near-end and the far-end adventitia boundary of the common carotid artery in ultrasound images. It uses the random sample consensus method to estimate the most significant cubic splines fitting the edge map of a longitudinal section. The consensus of the geometric model (a spline) is evaluated through a new gain function, which integrates the responses to different discriminating features of the carotid boundary: the proximity of the geometric model to any edge or to valley shaped edges; the consistency between the orientation of the normal to the geometric model and the intensity gradient; and the distance to a rough estimate of the lumen boundary. A set of 50 longitudinal B-mode images of the common carotid and their manual segmentations performed by two medical experts were used to assess the performance of the method. The image set was taken from 25 different subjects, most of them having plaques of different classes (class II to class IV), sizes and shapes. The quantitative evaluation showed promising results, having detection errors similar to the ones observed in manual segmentations for 95% of the far-end boundaries and 73% of the near-end boundaries.
Collapse
Affiliation(s)
- Rui Rocha
- INEB - Instituto de Engenharia Biomédica, Porto, Portugal.
| | | | | | | | | |
Collapse
|
36
|
Scheipers U, Koptenko S, Remlinger R, Falco T, Lachaine M. 3-D ultrasound volume reconstruction using the direct frame interpolation method. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2010; 57:2460-2470. [PMID: 21041133 DOI: 10.1109/tuffc.2010.1712] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A new method for 3-D ultrasound volume reconstruction using tracked freehand 3-D ultrasound is proposed. The method is based on solving the forward volume reconstruction problem using direct interpolation of high-resolution ultrasound B-mode image frames. A series of ultrasound B-mode image frames (an image series) is acquired using the freehand scanning technique and position sensing via optical tracking equipment. The proposed algorithm creates additional intermediate image frames by directly interpolating between two or more adjacent image frames of the original image series. The target volume is filled using the original frames in combination with the additionally constructed frames. Compared with conventional volume reconstruction methods, no additional filling of empty voxels or holes within the volume is required, because the whole extent of the volume is defined by the arrangement of the original and the additionally constructed B-mode image frames. The proposed direct frame interpolation (DFI) method was tested on two different data sets acquired while scanning the head and neck region of different patients. The first data set consisted of eight B-mode 2-D frame sets acquired under optimal laboratory conditions. The second data set consisted of 73 image series acquired during a clinical study. Sample volumes were reconstructed for all 81 image series using the proposed DFI method with four different interpolation orders, as well as with the pixel nearest-neighbor method using three different interpolation neighborhoods. In addition, volumes based on a reduced number of image frames were reconstructed for comparison of the different methods' accuracy and robustness in reconstructing image data that lies between the original image frames. The DFI method is based on a forward approach making use of a priori information about the position and shape of the B-mode image frames (e.g., masking information) to optimize the reconstruction procedure and to reduce computation times and memory requirements. The method is straightforward, independent of additional input or parameters, and uses the high-resolution B-mode image frames instead of usually lower-resolution voxel information for interpolation. The DFI method can be considered as a valuable alternative to conventional 3-D ultrasound reconstruction methods based on pixel or voxel nearest-neighbor approaches, offering better quality and competitive reconstruction time.
Collapse
|
37
|
Parmar BJ, Longsine W, Sabonghy EP, Han A, Tasciotti E, Weiner BK, Ferrari M, Righetti R. Characterization of controlled bone defects using 2D and 3D ultrasound imaging techniques. Phys Med Biol 2010; 55:4839-59. [PMID: 20679698 DOI: 10.1088/0031-9155/55/16/014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ultrasound is emerging as an attractive alternative modality to standard x-ray and CT methods for bone assessment applications. As of today, however, there is a lack of systematic studies that investigate the performance of diagnostic ultrasound techniques in bone imaging applications. This study aims at understanding the performance limitations of new ultrasound techniques for imaging bones in controlled experiments in vitro. Experiments are performed on samples of mammalian and non-mammalian bones with controlled defects with size ranging from 400 microm to 5 mm. Ultrasound findings are statistically compared with those obtained from the same samples using standard x-ray imaging modalities and optical microscopy. The results of this study demonstrate that it is feasible to use diagnostic ultrasound imaging techniques to assess sub-millimeter bone defects in real time and with high accuracy and precision. These results also demonstrate that ultrasound imaging techniques perform comparably better than x-ray imaging and optical imaging methods, in the assessment of a wide range of controlled defects both in mammalian and non-mammalian bones. In the future, ultrasound imaging techniques might provide a cost-effective, real-time, safe and portable diagnostic tool for bone imaging applications.
Collapse
Affiliation(s)
- Biren J Parmar
- Department of Electrical and Computer Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Dewi DEO, Mengko TLR, Purnama IKE, Veldhuizen AG, Wilkinson MHF. An Improved Olympic Hole-Filling Method for Ultrasound Volume Reconstruction of Human Spine. INTERNATIONAL JOURNAL OF E-HEALTH AND MEDICAL COMMUNICATIONS 2010. [DOI: 10.4018/jehmc.2010070103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hole-filling in ultrasound volume reconstruction using freehand three-dimensional ultrasound estimates the values for empty voxels from the unallocated voxels in the Bin-filling process due to inadequate sampling in the acquisition process. Olympic operator, as a neighbourhood averaging filter, can be used to estimate the empty voxel. However, this method needs improvement to generate a closer estimation of the empty voxels. In this paper, the authors propose an improved Olympic operator for the Hole-filling algorithm, and apply it to generate the volume in a 3D ultrasound reconstruction of the spine. The conventional Olympic operator defines the empty voxels by sorting the neighbouring voxels, removing the n% of the upper and lower values, and averaging them to attain the value to fill the empty voxels. The empty voxel estimation can be improved by thresholding the range width of its neighbouring voxels and adjusting it to the average values. The method is tested on a hole-manipulated volume derived from a cropped 3D ultrasound volume of a part of the spine. The MAE calculation on the proposed technique shows improved result compared to all tested existing methods.
Collapse
|
39
|
Prager RW, Ijaz UZ, Gee AH, Treece GM. Three-dimensional ultrasound imaging. Proc Inst Mech Eng H 2010; 224:193-223. [PMID: 20349815 DOI: 10.1243/09544119jeim586] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review is about the development of three-dimensional (3D) ultrasonic medical imaging, how it works, and where its future lies. It assumes knowledge of two-dimensional (2D) ultrasound, which is covered elsewhere in this issue. The three main ways in which 3D ultrasound may be acquired are described: the mechanically swept 3D probe, the 2D transducer array that can acquire intrinsically 3D data, and the freehand 3D ultrasound. This provides an appreciation of the constraints implicit in each of these approaches together with their strengths and weaknesses. Then some of the techniques that are used for processing the 3D data and the way this can lead to information of clinical value are discussed. A table is provided to show the range of clinical applications reported in the literature. Finally, the discussion relating to the technology and its clinical applications to explain why 3D ultrasound has been relatively slow to be adopted in routine clinics is drawn together and the issues that will govern its development in the future explored.
Collapse
Affiliation(s)
- R W Prager
- Department of Engineering, University of Cambridge, Cambridge, UK.
| | | | | | | |
Collapse
|
40
|
Huang Q, Zheng Y, Lu M, Wang T, Chen S. A new adaptive interpolation algorithm for 3D ultrasound imaging with speckle reduction and edge preservation. Comput Med Imaging Graph 2008; 33:100-10. [PMID: 19117725 DOI: 10.1016/j.compmedimag.2008.10.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 09/10/2008] [Accepted: 10/22/2008] [Indexed: 10/21/2022]
Abstract
Conventional interpolation algorithms for reconstructing freehand three-dimensional (3D) ultrasound data always contain speckle noises and artifacts. This paper describes a new algorithm for reconstructing regular voxel arrays with reduced speckles and preserved edges. To study speckle statistics properties including mean and variance in sequential B-mode images in 3D space, experiments were conducted on an ultrasound resolution phantom and real human tissues. In the volume reconstruction, the homogeneity of the neighborhood for each voxel was evaluated according to the local variance/mean of neighboring pixels. If a voxel was locating in a homogeneous region, its neighboring pixels were averaged as the interpolation output. Otherwise, the size of the voxel neighborhood was contracted and the ratio was re-calculated. If its neighborhood was deemed as an inhomogeneous region, the voxel value was calculated using an adaptive Gaussian distance weighted method with respect to the local statistics. A novel method was proposed to reconstruct volume data set with economical usage of memory. Preliminary results obtained from the phantom and a subject's forearm demonstrated that the proposed algorithm was able to well suppress speckles and preserve edges in 3D images. We expect that this study can provide a useful imaging tool for clinical applications using 3D ultrasound.
Collapse
Affiliation(s)
- Qinghua Huang
- School of Electronic and Information Engineering, South China University of Technology, Guangzhou, Guangdong, P R China.
| | | | | | | | | |
Collapse
|
41
|
Hsu PW, Treece GM, Prager RW, Houghton NE, Gee AH. Comparison of freehand 3-D ultrasound calibration techniques using a stylus. ULTRASOUND IN MEDICINE & BIOLOGY 2008; 34:1610-1621. [PMID: 18420335 DOI: 10.1016/j.ultrasmedbio.2008.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2007] [Revised: 02/09/2008] [Accepted: 02/21/2008] [Indexed: 05/26/2023]
Abstract
In a freehand 3-D ultrasound system, a probe calibration is required to find the rigid body transformation from the corner of the B-scan to the electrical center of the position sensor. The most intuitive way to perform such a calibration is by locating fiducial points in the scan plane directly with a stylus. The main problem of this approach is the difficulty in aligning the tip of the stylus with the scan plane. The thick beamwidth makes the tip of the stylus visible in the B-scan, even if the tip is not exactly at the elevational center of the scan plane. We present a novel stylus and phantom that simplify the alignment process for more accurate probe calibration. We also compare our calibration techniques with a range of styli. We show that our stylus and cone phantom are both simple in design and can achieve a point reconstruction accuracy of 2.2 mm and 1.8 mm, respectively, an improvement from 3.2 mm and 3.6 mm with the sharp and spherical stylus. The performance of our cone stylus and phantom lie between the state-of-the-art Z-phantom and Cambridge phantom, where accuracies of 2.5 mm and 1.7 mm are achieved.
Collapse
Affiliation(s)
- Po-Wei Hsu
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | | | |
Collapse
|
42
|
Housden RJ, Gee AH, Prager RW, Treece GM. Rotational motion in sensorless freehand three-dimensional ultrasound. ULTRASONICS 2008; 48:412-422. [PMID: 18374383 DOI: 10.1016/j.ultras.2008.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 01/10/2008] [Accepted: 01/30/2008] [Indexed: 05/26/2023]
Abstract
Freehand three-dimensional ultrasound is usually acquired with a position sensor attached to the ultrasound probe. However, position sensors can be expensive, obtrusive and difficult to calibrate. For this reason, there has been much research on alternative, image-based techniques, with in-plane motion tracked using conventional image registration methods, and out-of-plane motion inferred from the decorrelation between nearby B-scans. However, since out-of-plane motion is not the only source of decorrelation, image-based positions determined in this way suffer from cumulative drift errors. In this paper, we consider the effect of probe rotation on correlation and how this affects the position estimates. We then present a novel technique to compensate for out-of-plane rotations, by making use of orientation measurements from an unobtrusive sensor. Using simulations and in vitro experiments, we demonstrate that the technique is able to reduce the drift error in elevational positioning by 57% on average.
Collapse
Affiliation(s)
- R J Housden
- University of Cambridge, Department of Engineering, Trumpington Street, Cambridge, CB2 1PZ, UK.
| | | | | | | |
Collapse
|
43
|
Huang QH, Zheng YP. Volume reconstruction of freehand three-dimensional ultrasound using median filters. ULTRASONICS 2008; 48:182-192. [PMID: 18206200 DOI: 10.1016/j.ultras.2007.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 11/26/2007] [Accepted: 11/28/2007] [Indexed: 05/25/2023]
Abstract
OBJECTIVES This paper aims to apply median filters for reducing interpolation error and improving the quality of 3D images in a freehand 3D ultrasound (US) system. BACKGROUND AND MOTIVATION Freehand 3D US imaging has been playing an important role in obtaining the entire 3D impression of tissues and organs. Reconstructing a sequence of irregularly located 2D US images (B-scans) into a 3D data set is one of the key procedures for visualization and data analysis. METHODS In this study, we investigated the feasibility of using median filters for the reconstruction of 3D images in a freehand 3D US system. The B-scans were collected using a 7.5 MHz ultrasound probe. Four algorithms including the standard median (SM), Gaussian weighted median (GWM) and two types of distance-weighted median (DWM) filters were proposed to filter noises and compute voxel intensities. Qualitative and quantitative comparisons were made among the results of different methods based on the image set captured in freehand from the forearm of a healthy subject. A leave-one-out approach was used to demonstrate the performance of the median filters for predicting the removed B-scan pixels. RESULTS Compared with the voxel nearest-neighbourhood (VNN) and distance-weighted (DW) interpolation methods, the four median filters reduced the interpolation error by 8.0-24.0% and 1.2-21.8%, respectively, when 1/4 to 5 B-scans was removed from the raw B-scan sequence. CONCLUSIONS In summary, the median filters can improve the quality of volume reconstruction by reducing the interpolation errors and facilitate the following image analyses in clinical applications.
Collapse
Affiliation(s)
- Qing-Hua Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, PR China
| | | |
Collapse
|
44
|
Lindop JE, Treece GM, Gee AH, Prager RW. An intelligent interface for freehand strain imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2008; 34:1117-1128. [PMID: 18440122 DOI: 10.1016/j.ultrasmedbio.2007.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 11/27/2007] [Accepted: 12/13/2007] [Indexed: 05/26/2023]
Abstract
We present a new, intelligent interface for freehand strain imaging, which has been designed to support clinical trials investigating the potential of ultrasonic strain imaging for diagnostic purposes across a broad range of target pathologies. The aim with this interface is to make scanning easier and to help clinicians learn the necessary scanning technique quickly, by providing real time feedback indicating the quality of the strain data as they are produced. The methods require a pixel-level indicator of estimation precision, which can be calculated in-line with strain estimation. This is exploited in novel approaches to normalisation, persistence and display. The effect of each component is indicated in the results with examples from in vitro and in vivo scanning. As well as providing real-time feedback, the images are easier to interpret because data at unacceptably low signal-to-noise ratios do not reach the display. Additionally, the level of noise in the displayed images is actually reduced compared with other methods that use the same strain estimates with the same level of persistence. The interface also considerably reduces the difficulty in producing volumes of strain data from freehand three-dimensional scans.
Collapse
Affiliation(s)
- Joel E Lindop
- Department of Engineering, University of Cambridge, UK.
| | | | | | | |
Collapse
|
45
|
Gooding MJ, Kennedy S, Noble JA. Volume segmentation and reconstruction from freehand three-dimensional ultrasound data with application to ovarian follicle measurement. ULTRASOUND IN MEDICINE & BIOLOGY 2008; 34:183-195. [PMID: 17935866 DOI: 10.1016/j.ultrasmedbio.2007.07.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 05/29/2007] [Accepted: 07/25/2007] [Indexed: 05/25/2023]
Abstract
This article presents a semi-automatic method for segmentation and reconstruction of freehand three-dimensional (3D) ultrasound data. The method incorporates a number of interesting features within the level-set framework: First, segmentation is carried out using region competition, requiring multiple distinct and competing regions to be encoded within the framework. This region competition uses a simple dot-product based similarity measure to compare intensities within each region. In addition, segmentation and surface reconstruction is performed within the 3D domain to take advantage of the additional spatial information available. This means that the method must interpolate the surface where there are gaps in the data, a feature common to freehand 3D ultrasound reconstruction. Finally, although the level-set method is restricted to a voxel grid, no assumption is made that the data being segmented will conform to this grid and may be segmented in its world-reference position. The volume reconstruction method is demonstrated in vivo for the volume measurement of ovarian follicles. The 3D reconstructions produce a lower error variance than the current clinical measurement based on a mean diameter estimated from two-dimensional (2D) images. However, both the clinical measurement and the semi-automatic method appear to underestimate the true follicular volume.
Collapse
Affiliation(s)
- Mark J Gooding
- Wolfson Medical Vision Laboratory, Dept. Engineering Science, University of Oxford, Parks Road, Oxford, UK.
| | | | | |
Collapse
|
46
|
Hsu PW, Prager RW, Gee AH, Treece GM. Real-time freehand 3D ultrasound calibration. ULTRASOUND IN MEDICINE & BIOLOGY 2008; 34:239-251. [PMID: 17935870 DOI: 10.1016/j.ultrasmedbio.2007.07.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2006] [Revised: 06/22/2007] [Accepted: 07/27/2007] [Indexed: 05/25/2023]
Abstract
Z-fiducial phantoms allow three-dimensional ultrasound probe calibration with a single B-scan. One of the main difficulties in using this phantom is the need for reliable segmentation of the wires in the ultrasound images, which necessitates manual intervention. In this article, we have shown how we can solve this problem by mounting a thin rubber membrane on top of the phantom. The membrane is segmented automatically and the wires can be easily located as they are at known positions relative to the membrane. This enables us to segment the wires automatically at the full PAL frame rate of 25 Hz, to produce calibrations in real-time, while achieving accuracies similar to those reported in the literature. We have also devised a technique to improve the estimation of the elevational offset (calibration parameter) by capturing a few images of the planar membrane. If spatial calibration is known, fully automatic wire segmentation allows the fiducials to be tracked in real-time. This also enables temporal calibration to be performed in real-time as the probe is moved away from the phantom. We have evaluated the performance of our phantom by calibrating a probe at 8 cm and 15 cm depth. The precision of the calibrations are 0.7 mm and 1.2 mm, respectively. The point reconstruction accuracies of fiducial points provided by the same Z-phantom are slightly below 1.5 mm. The point reconstruction accuracies obtained by scanning the end of a wire tip are 2.5 mm and 3.0 mm. These results match the accuracies achieved in the literature. It takes approximately 2 min to set up the experiment, submerge the phantom in the water bath, locate the phantom in space with a pointer and capture six images of the planar membrane. After this, spatial calibration can be performed in less than a second. Temporal calibration can be completed in approximately 3 s.
Collapse
Affiliation(s)
- Po-Wei Hsu
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, United Kingdom.
| | | | | | | |
Collapse
|
47
|
Rahni AAA, Yahya I. Obtaining translation from a 6-DOF MEMS IMU — an overview. 2007 ASIA-PACIFIC CONFERENCE ON APPLIED ELECTROMAGNETICS 2007. [DOI: 10.1109/apace.2007.4603861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
48
|
Housden RJ, Gee AH, Treece GM, Prager RW. Sensorless reconstruction of unconstrained freehand 3D ultrasound data. ULTRASOUND IN MEDICINE & BIOLOGY 2007; 33:408-19. [PMID: 17280771 DOI: 10.1016/j.ultrasmedbio.2006.09.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 08/29/2006] [Accepted: 09/07/2006] [Indexed: 05/13/2023]
Abstract
Freehand 3D ultrasound can be acquired without a position sensor by finding the separations of pairs of frames using information in the images themselves. Previous work has not considered how to reconstruct entirely freehand data, which can exhibit irregularly spaced frames, intersecting frames, nonmonotonic out-of-plane probe motion and significant in-plane motion. This paper presents reconstruction methods that overcome these limitations and are able to robustly reconstruct unconstrained freehand data. The methods are assessed on freehand data sets and compared with reconstructions obtained with a position sensor.
Collapse
Affiliation(s)
- R James Housden
- University of Cambridge, Department of Engineering, Trumpington Street, Cambridge, CB2 1PZ, UK.
| | | | | | | |
Collapse
|
49
|
Huang Q, Zheng Y. Median filters used for volume reconstruction in freehand 3-d ultrasound. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2007; 2005:1826-9. [PMID: 17282573 DOI: 10.1109/iembs.2005.1616804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Freehand 3-D ultrasound imaging has been playing an important role in obtaining entire 3-D impression of tissues and organs. Reconstructing a sequence of irregularly located B-scan images into a volume data set with regular voxel arrays is one of key procedures for visualization and data analysis. In this study, we investigated the feasibility of median filters for volume reconstruction in freehand systems. Three median filters were proposed to filter noises and obtain voxel intensities. Qualitative and quantitative comparison results were presented to demonstrate the performance of median filters for volume reconstruction. Compared with conventional distance weighted (DW) interpolation, the three median filters were able to preserve more image details and reconstruct volume data with better quality.
Collapse
Affiliation(s)
- Qinghua Huang
- Rehabilitation Eng. Centre, Hong Kong Polytech Univ., Kowloon
| | | |
Collapse
|
50
|
Huang QH, Zheng YP. An adaptive squared-distance-weighted interpolation for volume reconstruction in 3D freehand ultrasound. ULTRASONICS 2006; 44 Suppl 1:e73-7. [PMID: 16844174 DOI: 10.1016/j.ultras.2006.06.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Volume reconstruction is a key procedure in 3D ultrasound imaging. An algorithm named as squared-distance-weighted (SDW) interpolation has been earlier proposed to reduce the blurring effect in the 3D ultrasonic images caused by the conventional distance weighted (DW) interpolation. However, the SDW parameter alpha, which controls the weight distribution, is a constant assigned by operators so that the interpolation effect is invariant for both sharp edges and speckle noises. In this paper, we introduced a new adaptive algorithm based on SDW interpolation for volume reconstruction of 3D freehand ultrasound. In the algorithm, the local statistics of pixels surrounding each voxel grid were used to adaptively adjust the parameter alpha in SDW. The voxel grids with a higher ratio of local variance and mean in their neighbourhoods would have a smaller alpha to make the image details sharper, while the voxel grids locating in regions with a lower ratio of local variance and mean would have a larger alpha to smooth image content in homogeneous regions, where speckle noise is usually observed and damages the image quality. By comparing the simulation results using the SDW and new adaptive algorithm, it was demonstrated that this new algorithm worked well in both edge preservation and speckle reduction.
Collapse
Affiliation(s)
- Qing-Hua Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | | |
Collapse
|