1
|
Abstract
The motor cortex is far from a stable conduit for motor commands and instead undergoes significant changes during learning. An understanding of motor cortex plasticity has been advanced greatly using rodents as experimental animals. Two major focuses of this research have been on the connectivity and activity of the motor cortex. The motor cortex exhibits structural changes in response to learning, and substantial evidence has implicated the local formation and maintenance of new synapses as crucial substrates of motor learning. This synaptic reorganization translates into changes in spiking activity, which appear to result in a modification and refinement of the relationship between motor cortical activity and movement. This review presents the progress that has been made using rodents to establish the motor cortex as an adaptive structure that supports motor learning.
Collapse
Affiliation(s)
- Andrew J Peters
- Neurobiology Section, Center for Neural Circuits and Behavior, and Department of Neurosciences, University of California, San Diego, La Jolla, California 92093; , ,
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
| | - Haixin Liu
- Neurobiology Section, Center for Neural Circuits and Behavior, and Department of Neurosciences, University of California, San Diego, La Jolla, California 92093; , ,
| | - Takaki Komiyama
- Neurobiology Section, Center for Neural Circuits and Behavior, and Department of Neurosciences, University of California, San Diego, La Jolla, California 92093; , ,
| |
Collapse
|
2
|
Similar Motor Cortical Control Mechanisms for Precise Limb Control during Reaching and Locomotion. J Neurosci 2016; 35:14476-90. [PMID: 26511240 DOI: 10.1523/jneurosci.1908-15.2015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Throughout the course of evolution there has been a parallel development of the complexity and flexibility of the nervous system and the skeletomuscular system that it controls. This development is particularly evident for the cerebral cortical areas and the transformation of the use of the upper limbs from a purely locomotor function to one including, or restricted to, reaching and grasping. This study addresses the issue of whether the control of reaching has involved the development of new cortical circuits or whether the same neurons are used to control both locomotion and reaching. We recorded the activity of pyramidal tract neurons in the motor cortex of the cat both during voluntary gait modifications and during reaching. All cells showed generally similar patterns of activity in both tasks. More specifically, we showed that, in many cases, cells maintained a constant temporal relationship to the activity of synergistic muscle groups in each task. In addition, in some cells the relationship between the intensity of the cell discharge activity and the magnitude of the EMG activity was equally constant during gait modifications and reaching. As such, the results are compatible with the hypothesis that the corticospinal circuits used to control reaching evolved from those used to precisely modify gait.
Collapse
|
3
|
Gonzalez-Rothi EJ, Rombola AM, Rousseau CA, Mercier LM, Fitzpatrick GM, Reier PJ, Fuller DD, Lane MA. Spinal interneurons and forelimb plasticity after incomplete cervical spinal cord injury in adult rats. J Neurotrauma 2015; 32:893-907. [PMID: 25625912 DOI: 10.1089/neu.2014.3718] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cervical spinal cord injury (cSCI) disrupts bulbospinal projections to motoneurons controlling the upper limbs, resulting in significant functional impairments. Ongoing clinical and experimental research has revealed several lines of evidence for functional neuroplasticity and recovery of upper extremity function after SCI. The underlying neural substrates, however, have not been thoroughly characterized. The goals of the present study were to map the intraspinal motor circuitry associated with a defined upper extremity muscle, and evaluate chronic changes in the distribution of this circuit following incomplete cSCI. Injured animals received a high cervical (C2) lateral hemisection (Hx), which compromises supraspinal input to ipsilateral spinal motoneurons controlling the upper extremities (forelimb) in the adult rat. A battery of behavioral tests was used to characterize the time course and extent of forelimb motor recovery over a 16 week period post-injury. A retrograde transneuronal tracer - pseudorabies virus - was used to define the motor and pre-motor circuitry controlling the extensor carpi radialis longus (ECRL) muscle in spinal intact and injured animals. In the spinal intact rat, labeling was observed unilaterally within the ECRL motoneuron pool and within spinal interneurons bilaterally distributed within the dorsal horn and intermediate gray matter. No changes in labeling were observed 16 weeks post-injury, despite a moderate degree of recovery of forelimb motor function. These results suggest that recovery of the forelimb function assessed following C2Hx injury does not involve recruitment of new interneurons into the ipsilateral ECRL motor pathway. However, the functional significance of these existing interneurons to motor recovery requires further exploration.
Collapse
Affiliation(s)
- Elisa Janine Gonzalez-Rothi
- 1 Department of Physical Therapy, College of Public Health and Health Professions, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Angela M Rombola
- 2 Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Celeste A Rousseau
- 2 Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Lynne M Mercier
- 2 Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Garrett M Fitzpatrick
- 1 Department of Physical Therapy, College of Public Health and Health Professions, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Paul J Reier
- 2 Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - David D Fuller
- 1 Department of Physical Therapy, College of Public Health and Health Professions, McKnight Brain Institute, University of Florida , Gainesville, Florida
| | - Michael A Lane
- 2 Department of Neuroscience, College of Medicine, McKnight Brain Institute, University of Florida , Gainesville, Florida
| |
Collapse
|
4
|
Alstermark B, Isa T, Pettersson LG, Sasaki S. The C3-C4 propriospinal system in the cat and monkey: a spinal pre-motoneuronal centre for voluntary motor control. Acta Physiol (Oxf) 2007; 189:123-40. [PMID: 17250564 DOI: 10.1111/j.1748-1716.2006.01655.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This review deals with a spinal interneuronal system, denoted the C3-C4 propriospinal system, which is unique in the sense that it so far represents the only spinal interneuronal system for which it has been possible to demonstrate a command mediating role for voluntary movements. The C3-C4 propriospinal neurones govern target reaching and can update the descending cortical command when a fast correction is required of the movement trajectory and also integrate signals generated from the forelimb to control deceleration and termination of reaching.
Collapse
Affiliation(s)
- B Alstermark
- Department of Integrative Medical Biology, Section of Physiology, Umeå University, Umeå, Sweden.
| | | | | | | |
Collapse
|
5
|
Andujar JE, Drew T. Organization of the projections from the posterior parietal cortex to the rostral and caudal regions of the motor cortex of the cat. J Comp Neurol 2007; 504:17-41. [PMID: 17614102 DOI: 10.1002/cne.21434] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The posterior parietal cortex (PPC) is an important source of input to the motor cortex in both the primate and the cat. However, the available evidence from the cat suggests that the projection from the PPC to those rostral areas of the motor cortex that project to the intermediate and ventral parts of the spinal gray matter is relatively small. This leaves in question the importance of the contribution of the PPC to the initiation and modulation of voluntary movements in the cat. As this anatomical evidence is not entirely compatible with the physiological data, we reinvestigated the PPC projection to the motor cortex by injecting dextran amine tracers either into the proximal or distal representations of the forelimb in the rostral motor cortex, into the representation of the forelimb in the caudal motor cortex, or into the hindlimb representation. The results show strong projections from the PPC to each of these regions. However, projections to the rostral motor cortex were observed primarily from the caudal bank of the ansate sulcus and the adjacent gyrus, whereas those to the caudal motor cortex were generally located more rostrally. There was also evidence of some topographic organization with the distal limb being located progressively more laterally and rostrally in the PPC than the areas projecting to more proximal regions. In contrast to previous anatomical investigations, these results suggest that the PPC can potentially modulate motor activity via its strong projection to the more rostral regions of the motor cortex.
Collapse
|
6
|
Meng Z, Li Q, Martin JH. The transition from development to motor control function in the corticospinal system. J Neurosci 2004; 24:605-14. [PMID: 14736845 PMCID: PMC6729268 DOI: 10.1523/jneurosci.4313-03.2004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During early postnatal development, corticospinal (CS) system stimulation, electrical or transcranial magnetic, is minimally effective in producing muscle contraction, despite having axon terminals that excite spinal neurons. Later, after stimulation becomes more effective, the cortical motor representation develops, and movements the system controls in maturity are expressed. We determined whether development of temporal facilitation (response enhancement produced by the second of a pair of pyramidal tract stimuli, or a higher stimulus multiple of a train of stimuli) correlated with these changes. Facilitation of the monosynaptic CS response was larger in older kittens and adults than younger kittens. When facilitation was strong, strong motor responses were evoked by pyramidal stimulation with small currents and few pulses. With strong facilitation in older kittens, corticospinal axon varicosities colocalize synaptophysin like adults, suggesting a presynaptic mechanism. With effective facilitation, control signals from the cortex can be sufficiently effective to provoke muscle contraction for guiding movements.
Collapse
Affiliation(s)
- Zhuo Meng
- Center for Neurobiology and Behavior, Columbia University and New York State Psychiatric Institute, New York, New York 10032, USA
| | | | | |
Collapse
|
7
|
Alstermark B, Isa T. Premotoneuronal and direct corticomotoneuronal control in the cat and macaque monkey. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 508:281-97. [PMID: 12171123 DOI: 10.1007/978-1-4615-0713-0_34] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The literature on premotoneuronal and direct corticomotoneuronal (CM) control in the cat and macaque monkey is reviewed. The available experimental findings are not in accordance with a recently proposed hypothesis that direct CM connections have "replaced" the premotoneuronal pathways. Instead, we propose that premotoneuronal CM control plays an important role in motor control also in primates and that the direct CM connection has been added during phylogeny.
Collapse
Affiliation(s)
- Bror Alstermark
- Dept of Integrative Medical Biology, University of Umeå, Sweden.
| | | |
Collapse
|
8
|
Li Q, Martin JH. Postnatal development of connectional specificity of corticospinal terminals in the cat. J Comp Neurol 2002; 447:57-71. [PMID: 11967895 DOI: 10.1002/cne.10203] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The purpose of this study was to examine postnatal development of connectional specificity of corticospinal terminals. We labeled a small population of primary motor cortex neurons with the anterograde tracer biotinylated dextran amine. We reconstructed individual corticospinal segmental axon terminals in the spinal gray matter in cats of varying postnatal ages and adults. We found that at days 25 and 35 the segmental termination field of reconstructed axons was large, estimated to cover more than half of the contralateral gray matter. Branches and varicosities were sparse and had a relatively uniform distribution. When we examined the terminal fields of multiple axons, reconstructed over the same set of spinal sections (120-200 microm), we found that there was extensive overlap. By day 55, the morphology and termination fields had changed remarkably. There were many short branches, organized into discrete clusters, and varicosities were preferentially located within these clusters. The termination field of individual axons was substantially reduced compared with that of younger animals, and there was minimal overlap between the terminals of neighboring corticospinal neurons. In adults, a further reduction was seen in the spatial extent of terminals, branching, and varicosity density. Termination overlap was not substantially different from that in PD 55 animals. Development of spatially restricted clusters of short terminal branches and dense axonal varicosities occurred just prior to development of the motor map in primary motor cortex and may be necessary for ensuring that the corticospinal system can exert a dominant influence on skilled limb movement control in maturity.
Collapse
Affiliation(s)
- Qun Li
- Center for Neurobiology and Behavior, Columbia University, and New York State Psychiatric Institute, New York, New York 10032, USA
| | | |
Collapse
|
9
|
Alstermark B, Ohlson S. Origin of corticospinal neurones evoking monosynaptic excitation in C3--C4 propriospinal neurones in the cat. Neurosci Res 2000; 38:249-56. [PMID: 11070191 DOI: 10.1016/s0168-0102(00)00160-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intracellular recording was made from propriospinal neurones (PNs) in the C3-C4 spinal cord segments in the cat (alpha-chloralose anaesthesia). The effect of electrical stimulation of corticospinal neurones (CSNs) in the cortex was investigated. Short C3-C4 PNs were identified by antidromic activation of their axons in the ventral horn in C6/C7 and in the lateral reticular nucleus. Long PNs were antidromically identified from Th12-13. In short PNs, monosynaptic excitory postsynoptic potentials (EPSPs) were elicited from the rostral part of the lateral sigmoid gyrus, the lateral part of the anterior sigmoid gyrus in area 4 gamma and in the adjacent area 6. Two subtypes of short PNs were identified. PNs of type I received monosynaptic EPSPs from the rostral part of the lateral sigmoid gyrus, the lateral part of the anterior sigmoid gyrus in area 4 gamma, which is from the same region as disynaptic cortical EPSPs were evoked in forelimb motoneurones. PNs of type II received monosynaptic EPSPs from regions slightly more rostrally in the anterior sigmoid gyrus in area 4 gamma and in the adjacent area 6, which is outside the region from which disynaptic EPSPs could be evoked in forelimb motoneurones. Long PNs received monosynaptic EPSPs, like the short PNs, by stimulation in the rostral part of the lateral sigmoid gyrus, the lateral part of the anterior sigmoid gyrus in area 4 gamma and in the adjacent area 6. In contrast, the long PNs also received monosynaptic EPSPs from area 3b near the border of area 1. The present results show segregation of the cortical control to functionally different premotoneuronal systems and suggest that this control could in part be separated for subtypes of short C3-C4 PNs.
Collapse
Affiliation(s)
- B Alstermark
- Department of Integrative Medical Biology, Section of Physiology, Umeå University, S-901 87 Umeå, Sweden.
| | | |
Collapse
|