1
|
Abstract
Although our ability to store semantic declarative information can nowadays be readily surpassed by that of simple personal computers, our ability to learn and express procedural memories still outperforms that of supercomputers controlling the most advanced robots. To a large extent, our procedural memories are formed in the cerebellum, which embodies more than two-thirds of all neurons in our brain. In this review, we will focus on the emerging view that different modules of the cerebellum use different encoding schemes to form and express their respective memories. More specifically, zebrin-positive zones in the cerebellum, such as those controlling adaptation of the vestibulo-ocular reflex, appear to predominantly form their memories by potentiation mechanisms and express their memories via rate coding, whereas zebrin-negative zones, such as those controlling eyeblink conditioning, appear to predominantly form their memories by suppression mechanisms and express their memories in part by temporal coding using rebound bursting. Together, the different types of modules offer a rich repertoire to acquire and control sensorimotor processes with specific challenges in the spatiotemporal domain.
Collapse
Affiliation(s)
- Chris I De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, 3015 GE Rotterdam, The Netherlands Netherlands Institute for Neuroscience, 1105 BA Amsterdam, The Netherlands
| | - Michiel M Ten Brinke
- Department of Neuroscience, Erasmus Medical Center, 3015 GE Rotterdam, The Netherlands
| |
Collapse
|
2
|
Houck BD, Person AL. Cerebellar Premotor Output Neurons Collateralize to Innervate the Cerebellar Cortex. J Comp Neurol 2015; 523:2254-71. [PMID: 25869188 DOI: 10.1002/cne.23787] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/07/2015] [Accepted: 04/07/2015] [Indexed: 12/12/2022]
Abstract
Motor commands computed by the cerebellum are hypothesized to use corollary discharge, or copies of outgoing commands, to accelerate motor corrections. Identifying sources of corollary discharge, therefore, is critical for testing this hypothesis. Here we verified that the pathway from the cerebellar nuclei to the cerebellar cortex in mice includes collaterals of cerebellar premotor output neurons, mapped this collateral pathway, and identified its postsynaptic targets. Following bidirectional tracer injections into a distal target of the cerebellar nuclei, the ventrolateral thalamus, we observed retrogradely labeled somata in the cerebellar nuclei and mossy fiber terminals in the cerebellar granule layer, consistent with collateral branching. Corroborating these observations, bidirectional tracer injections into the cerebellar cortex retrogradely labeled somata in the cerebellar nuclei and boutons in the ventrolateral thalamus. To test whether nuclear output neurons projecting to the red nucleus also collateralize to the cerebellar cortex, we used a Cre-dependent viral approach, avoiding potential confounds of direct red nucleus-to-cerebellum projections. Injections of a Cre-dependent GFP-expressing virus into Ntsr1-Cre mice, which express Cre selectively in the cerebellar nuclei, retrogradely labeled somata in the interposed nucleus, and putative collateral branches terminating as mossy fibers in the cerebellar cortex. Postsynaptic targets of all labeled mossy fiber terminals were identified using immunohistochemical Golgi cell markers and electron microscopic profiles of granule cells, indicating that the collaterals of nuclear output neurons contact both Golgi and granule cells. These results clarify the organization of a subset of nucleocortical projections that constitute an experimentally accessible corollary discharge pathway within the cerebellum.
Collapse
Affiliation(s)
- Brenda D Houck
- Department of Physiology & Biophysics, University of Colorado School of Medicine, Aurora, Colorado, 80045
| | - Abigail L Person
- Department of Physiology & Biophysics, University of Colorado School of Medicine, Aurora, Colorado, 80045
| |
Collapse
|
3
|
Abstract
Feedback pathways are a common circuit motif in vertebrate brains. Reciprocal interconnectivity is seen between the cerebral cortex and thalamus as well as between basal ganglia structures, for example. Here, we review the literature on the nucleocortical pathway, a feedback pathway from the cerebellar nuclei to the cerebellar cortex, which has been studied anatomically but has remained somewhat obscure. This review covers the work examining this pathway on a number of levels, ranging from its existence in numerous species, its organization within cerebellar circuits, its cellular composition, and a discussion of its potential roles in motor control. Recent interest in cerebellar modular organization raises the profile of this neglected cerebellar pathway, and it is hoped that this review will consolidate knowledge gained over several decades of research into a useful format, spurring new investigations into this evolutionarily conserved pathway.
Collapse
|
4
|
Uusisaari M, Knöpfel T. Functional classification of neurons in the mouse lateral cerebellar nuclei. THE CEREBELLUM 2012; 10:637-46. [PMID: 21116763 PMCID: PMC3215887 DOI: 10.1007/s12311-010-0240-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The deep cerebellar nuclei (DCN) are at the center of the cerebellum not only anatomically but also functionally. Classical anatomical studies have described different types of DCN neurons according to their expression of various marker proteins, but only recently have we begun to characterize these different cell types according to their electrophysiological properties. These efforts have benefited greatly from the availability of transgenic mouse lines that express green fluorescent protein under the control of the glutamic acid decarboxylase (GAD67) and glycine transporter (GlyT2) promoters, which are markers for GABAergic and glycinergic neurons, respectively. These studies have identified several types of neurons within the lateral cerebellar nuclei, each of which exhibits distinct active membrane properties. In addition to their differential use of neurotransmitters (glutamate, GABA, or glycine), these cell types also receive and provide synaptic information from different sources and to different targets.
Collapse
Affiliation(s)
- Marylka Uusisaari
- Laboratory for Neuronal Circuit Dynamics, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198 Japan
- Theoretical and Experimental Neurobiology Unit, OIST, Onna, Okinawa 904-0412 Japan
| | - Thomas Knöpfel
- Laboratory for Neuronal Circuit Dynamics, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198 Japan
| |
Collapse
|
5
|
Mugnaini E, Sekerková G, Martina M. The unipolar brush cell: a remarkable neuron finally receiving deserved attention. BRAIN RESEARCH REVIEWS 2011; 66:220-45. [PMID: 20937306 PMCID: PMC3030675 DOI: 10.1016/j.brainresrev.2010.10.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 10/05/2010] [Accepted: 10/05/2010] [Indexed: 12/17/2022]
Abstract
Unipolar brush cells (UBC) are small, glutamatergic neurons residing in the granular layer of the cerebellar cortex and the granule cell domain of the cochlear nuclear complex. Recent studies indicate that this neuronal class consists of three or more subsets characterized by distinct chemical phenotypes, as well as by intrinsic properties that may shape their synaptic responses and firing patterns. Yet, all UBCs have a unique morphology, as both the dendritic brush and the large endings of the axonal branches participate in the formation of glomeruli. Although UBCs and granule cells may share the same excitatory and inhibitory inputs, the two cell types are distinctively differentiated. Typically, whereas the granule cell has 4-5 dendrites that are innervated by different mossy fibers, and an axon that divides only once to form parallel fibers after ascending to the molecular layer, the UBC has but one short dendrite whose brush engages in synaptic contact with a single mossy fiber terminal, and an axon that branches locally in the granular layer; branches of UBC axons form a non-canonical, cortex-intrinsic category of mossy fibers synapsing with granule cells and other UBCs. This is thought to generate a feed-forward amplification of single mossy fiber afferent signals that would reach the overlying Purkinje cells via ascending granule cell axons and their parallel fibers. In sharp contrast to other classes of cerebellar neurons, UBCs are not distributed homogeneously across cerebellar lobules, and subsets of UBCs also show different, albeit overlapping, distributions. UBCs are conspicuously rare in the expansive lateral cerebellar areas targeted by the cortico-ponto-cerebellar pathway, while they are a constant component of the vermis and the flocculonodular lobe. The presence of UBCs in cerebellar regions involved in the sensorimotor processes that regulate body, head and eye position, as well as in regions of the cochlear nucleus that process sensorimotor information suggests a key role in these critical functions; it also invites further efforts to clarify the cellular biology of the UBCs and their specific functions in the neuronal microcircuits in which they are embedded. High density of UBCs in specific regions of the cerebellar cortex is a feature largely conserved across mammals and suggests an involvement of these neurons in fundamental aspects of the input/output organization as well as in clinical manifestation of focal cerebellar disease.
Collapse
Affiliation(s)
- Enrico Mugnaini
- Department of Cellular and Molecular Biology, The Feinberg School of Medicine of Northwestern University, Chicago, IL, USA.
| | | | | |
Collapse
|
6
|
Abstract
The deep cerebellar nuclei (DCN) are a major hub in the cerebellar circuitry but the functional classification of their neurons is incomplete. We have previously characterized three cell groups in the lateral cerebellar nucleus: large non-GABAergic neurons and two groups of smaller neurons, one of which express green fluorescence protein (GFP) in a GAD67/GFP mouse line and is therefore GABAergic. However, as a substantial number of glycinergic and glycine/GABA co-expressing neurons have been described in the DCN, this classification needed to be refined by considering glycinergic neurons. To this end we took advantage of a glycine transporter isoform 2 (GlyT2)-eGFP mouse line that allows identification of GlyT2-expressing, presumably glycinergic neurons in living cerebellar slices and compared their electrophysiological properties with previously described DCN neuron populations. We found two electrophysiologically and morphologically distinct sets of GlyT2-expressing neurons in the lateral cerebellar nucleus. One of them showed electrophysiological similarity to the previously characterized GABAergic cell group. The second GlyT2+ cell population, however, differed from all other so far described neuron types in DCN in that the cells (1) are intrinsically silent in slices and only fire action potentials upon depolarizing current injection and (2) have a projecting axon that was often seen to leave the DCN and project in the direction of the cerebellar cortex. Presence of this so far undescribed DCN neuron population in the lateral nucleus suggests a direct inhibitory pathway from the DCN to the cerebellar cortex.
Collapse
Affiliation(s)
- Marylka Uusisaari
- Laboratory for Neuronal Circuit Dynamics, Brain Science Institute, RIKEN, Wako-shi, Saitama, Japan
| | | |
Collapse
|
7
|
Diagne M, Delfini C, Angaut P, Buisseret P, Buisseret-Delmas C. Fastigiovestibular projections in the rat: retrograde tracing coupled with gammaamino-butyric acid and glutamate immunohistochemistry. Neurosci Lett 2001; 308:49-53. [PMID: 11445283 DOI: 10.1016/s0304-3940(01)01969-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, a double labeling technique using retrograde tracing with protein-gold complex (gold-HRP) in conjunction with a gammaamino-butyric acid (GABA) and glutamate immunohistochemical procedure was performed to identify GABA (GABA-IR) and glutamate (Glu-IR) immunoreactive neurons in the cerebellar fastigial nucleus (FN) that projects to the vestibular nuclei (VN). The results show that FN neurons projecting to the VN consist of both GABA-IR and Glu-IR neurons with a predominance of glutamatergic ones. Because GABAergic neurons in the cerebellar nuclei project to the inferior olive (IO), double retrograde labeling experiments were performed with injections of gold-HRP in the IO and of biotilynated dextran amine in the VN. This showed that the GABA-IR fastigiovestibular neurons project by axon collaterals to both the VN and the IO.
Collapse
Affiliation(s)
- M Diagne
- Laboratoire de Neuroanatomie Fonctionnelle des Systèmes Sensorimoteurs, EA 3107, UP7, 2 Place Jussieu, case 7077, 75251 Cedex 05, Paris, France.
| | | | | | | | | |
Collapse
|
8
|
Manzoni D, Pompeiano O, Bruschini L, Andre P. Neck input modifies the reference frame for coding labyrinthine signals in the cerebellar vermis: a cellular analysis. Neuroscience 1999; 93:1095-107. [PMID: 10473274 DOI: 10.1016/s0306-4522(99)00275-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The activity of 68 neurons, mainly Purkinje cells, was recorded from the cerebellar anterior vermis of decerebrate cats during wobble of the whole animal (at 0.156 Hz, 5 degrees), a mixture of tilt and rotation, leading to stimulation of labyrinth receptors. Most of the neurons (65/68) were affected by both clockwise and counterclockwise rotations. Twenty-four units showing responses of comparable amplitude to these stimuli (narrowly tuned cells) were represented by a single vector (Smax), whose preferred direction corresponded to the direction of stimulation giving rise to the maximal response. The remaining 41 units, however, showed different amplitude responses to these rotations (broadly tuned cells) and were characterized by two spatially and temporally orthogonal vectors (Smax and Smin), suggesting that labyrinthine signals with different spatial and temporal properties converged on these cells. All these units were tested while the body was aligned with the head (control position), as well as after static displacement of the body under a fixed head by 15 degrees and/or 30 degrees around a vertical axis passing through C1-C2, thus leading to stimulation of neck receptors. The orientation component of the response vector of the Purkinje cells to vestibular stimulation changed following body-to-head displacement. Moreover, the amplitude of vector rotation corresponded, on the average, to that of body rotation. Changes in temporal phase, gain and tuning ratio of the responses were also observed. We propose that information from neck receptors regulates the convergence of labyrinthine signals with different spatial and temporal properties on corticocerebellar units. Due to their strict relationship with the motor system, these units may give rise to appropriate responses in the limb musculature, by modifying the spatial organization of the vestibulospinal reflexes according to the requirements of body stability. The cerebellar vermis may thus represent an important structure, where frames of reference can be altered to account for changes in position of trunk, head and neck.
Collapse
Affiliation(s)
- D Manzoni
- Dipartimento di Fisiologia e Biochimica, Università di Pisa, Italy
| | | | | | | |
Collapse
|
9
|
Teune TM, van der Burg J, de Zeeuw CI, Voogd J, Ruigrok TJ. Single Purkinje cell can innervate multiple classes of projection neurons in the cerebellar nuclei of the rat: a light microscopic and ultrastructural triple-tracer study in the rat. J Comp Neurol 1998; 392:164-78. [PMID: 9512267 DOI: 10.1002/(sici)1096-9861(19980309)392:2<164::aid-cne2>3.0.co;2-0] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Two different populations of projection neurons are intermingled in the cerebellar nuclei. One group consists of small, gamma-aminobutyric acid-containing (GABAergic) neurons that project to the inferior olive, and the other group consists of larger, non-GABAergic neurons that provide an input to one or more, usually premotor, centers in the brainstem, such as the red nucleus, the thalamus, and the superior colliculus. All cerebellar nuclear neurons are innervated by GABAergic Purkinje cells. In this study, we investigated whether individual Purkinje cells of the C1 zone of the paramedian lobe of the rat innervate both groups of projection neurons in the anterior interposed nucleus. Two different, retrogradely transported tracers, either cholera toxin beta subunit (CTb) or wheat germ agglutinin coupled to horseradish peroxidase (WGA-HRP) and a gold lectin tracer were injected into the red nucleus and the inferior olive, respectively, whereas Purkinje cell axons were anterogradely labeled with biotinylated dextran amine (BDA) injected into the paramedian lobule. Cerebellar nuclear sections studied with the light microscope demonstrated a close relation of varicosities from BDA-labeled Purkinje cell axons with both gold lectin- and CTb-labeled neurons. Branches of individual axons could be traced to both retrogradely labeled cell populations. At the ultrastructural level, synapses of labeled Purkinje cell terminals with profiles of WGA-HRP-labeled projection neurons predominated over contacts with gold lectin-containing neurons. Nine out of 367 investigated BDA-labeled terminals were observed to be presynaptic to a WGA-HRP-labeled profile as well as to a gold lectin-labeled profile. This indicates that nuclear cells that project to the inferior olive as well as those that project to premotor centers are under the influence of the same Purkinje cells. Such an arrangement would suggest an in-phase cortical modulation of the activation patterns of the inhibitory cells that project to the inferior olive and excitatory cells that project to premotor nuclei, which could explain why olivary neurons, especially those of the rostral part of the dorsal accessory olive, appear to be unresponsive to stimuli generated during active movement.
Collapse
Affiliation(s)
- T M Teune
- Department of Anatomy, Erasmus University Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
10
|
Kim JJ, Krupa DJ, Thompson RF. Inhibitory cerebello-olivary projections and blocking effect in classical conditioning. Science 1998; 279:570-3. [PMID: 9438852 DOI: 10.1126/science.279.5350.570] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The behavioral phenomenon of blocking indicates that the informational relationship between the conditioned stimulus and the unconditioned stimulus is essential in classical conditioning. The eyeblink conditioning paradigm is used to describe a neural mechanism that mediates blocking. Disrupting inhibition of the inferior olive, a structure that conveys unconditioned stimulus information (airpuff) to the cerebellum prevented blocking in rabbits. Recordings of cerebellar neuronal activity show that the inferior olive input to the cerebellum becomes suppressed as learning occurs. These results suggest that the inferior olive becomes functionally inhibited by the cerebellum during conditioning, and that this negative feedback process might be the neural mechanism mediating blocking.
Collapse
Affiliation(s)
- J J Kim
- Neuroscience Program, University of Southern California, Los Angeles, CA 90089-2520, USA.
| | | | | |
Collapse
|