1
|
Kaya D, Aydin AE, Isik AT. Orthostatic Hypotension in Elderly Patients with Essential Tremor. Clin Interv Aging 2021; 16:155-160. [PMID: 33519196 PMCID: PMC7837549 DOI: 10.2147/cia.s296190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/08/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Essential tremor (ET) is the most common movement disorder in which dysautonomia symptoms can be present. We aimed to evaluate the presence of orthostatic hypotension (OH) and its relationship with the clinical features. PATIENTS AND METHODS Forty-four elderly patients with ET and 118 healthy elderly controls were included. OH was assessed via the head-up tilt table test and defined, according to the change in position, as a drop of at least 20 mmHg in systolic blood pressure and/or 10 mmHg in diastolic blood pressure. Tremor severity was evaluated using the Fahn-Tolosa-Marin Tremor Rating (FTMTR) Scale. All patients underwent geriatric comprehensive assessment. RESULTS There were no differences between the controls and patients with ET regarding age and gender. The mean age was 72.8±6.1, the mean disease duration 19.1±13.5 years and the mean FTMTR score was 30.9±17.1 in patients with ET. The frequency of OH at the 1st minute in patients with ET was higher than in controls (31.8% vs 17.8%, p=0.046). Furthermore, the frequency of jaw tremor in patients with OH was higher than in those without OH (35.7% vs 6.7%, p=0.025). About 28.6% of ET patients with OH had orthostatic symptoms. CONCLUSION We demonstrated that ET patients, particularly those with jaw tremors, had OH and that most of them were asymptomatic. Therefore, in order to protect patients from complications related to OH, it would be appropriate to evaluate OH in the follow-up and treatment of elderly patients with ET.
Collapse
Affiliation(s)
- Derya Kaya
- Unit for Brain Aging and Dementia, Department of Geriatric Medicine, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Ali Ekrem Aydin
- Department of Geriatric Medicine, Sivas State Hospital, Sivas, Turkey
| | - Ahmet Turan Isik
- Unit for Brain Aging and Dementia, Department of Geriatric Medicine, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| |
Collapse
|
2
|
Baker J, Kimpinski K. Evidence of Impaired Cerebellar Connectivity at Rest and During Autonomic Maneuvers in Patients with Autonomic Failure. THE CEREBELLUM 2020; 19:30-39. [PMID: 31529276 DOI: 10.1007/s12311-019-01076-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The objective of the current study was to investigate whether patients with neurogenic orthostatic hypotension (NOH) secondary to autonomic failure have impaired functional connectivity between the cerebellum and central autonomic structures during autonomic challenges. Fifteen healthy controls (61 ± 14 years) and 15 NOH patients (67 ± 6 years; p = 0.12) completed the following tasks during a functional brain MRI: (1) 5 min of rest, (2) 5 min of lower-body negative pressure (LBNP) performed at - 35 mmHg, and (3) Three, 15-s Valsalva maneuvers (VM) at 40 mmHg. Functional connectivity (Conn Toolbox V18) between central autonomic structures and discrete cerebellar regions involved in cardiovascular autonomic control, including the vermis and posterior cerebellum, was assessed using a regions-of-interest approach during rest, LBNP and VM. Functional connectivity was contrasted between controls and patients with autonomic failure. At rest, controls had significantly more intra-cerebellar connectivity and more connectivity between cerebellar lobule 9 and key central autonomic structures, including: bilateral anterior insula (TR-value: 4.84; TL-value: 4.51), anterior cingulate cortex (T-value: 3.41) and bilateral thalamus (TR-value: 3.95; TL-value: 4.51). During autonomic maneuvers, controls showed significantly more connectivity between cardiovascular cerebellar regions (lobule 9 and anterior vermis) and important autonomic regulatory sites, including the brainstem, hippocampus and cingulate: vermis-brainstem (T-value: 4.31), lobule 9-brainstem (TR-value, 5.29; TL-value, 4.53), vermis-hippocampus (T-value, 4.63), and vermis-cingulate (T-value, 4.18). Anatomical and functional studies in animals and humans substantiate a significant role for the cerebellum in cardiovascular autonomic control during postural adjustments. In the current study, patients with NOH related to autonomic failure showed evidence of reduced connectivity between cardiovascular cerebellar regions and several important central autonomic structures, including the brainstem. The cerebellum is an established structure in cardiovascular autonomic control; therefore, evidence of impaired cerebellar connectivity to other autonomic structures may further contribute to the inability to properly regulate blood pressure during postural changes in NOH patients.
Collapse
Affiliation(s)
- Jacquie Baker
- School of Kinesiology, Western University, London, Ontario, Canada. .,Department of Clinical Neurological Sciences, University Hospital, London Health Sciences Centre, Rm. B7-140, 339 Windermere Road, London, Ontario, N6A 5A5, Canada.
| | - Kurt Kimpinski
- School of Kinesiology, Western University, London, Ontario, Canada.,Department of Clinical Neurological Sciences, University Hospital, London Health Sciences Centre, Rm. B7-140, 339 Windermere Road, London, Ontario, N6A 5A5, Canada.,Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
3
|
Valenza G, Duggento A, Passamonti L, Toschi N, Barbieri R. Resting State Neural Correlates of Cardiac Sympathetic Dynamics in Healthy Subjects. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:4330-4333. [PMID: 31946826 DOI: 10.1109/embc.2019.8856978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent advances in functional Magnetic Resonance Imaging (fMRI) research have uncovered the existence of the central autonomic network (CAN), which comprises brain regions whose activity correlates with autonomic nervous system dynamics. By exploiting the spectral paradigm of heartbeat dynamics, cortical and sub-cortical areas functionally linked to vagal activity have been identified. However, due to methodological limitations, functional neural correlates of cardiac sympathetic dynamics remain uncharacterized. To this extent, we exploit the high spatiotemporal resolution of fMRI data from the Human Connectome Project to study the CAN activity by correlating a recently proposed instantaneous characterization of sympathetic activity (the sympathetic activity index - SAI) from heartbeat dynamics. SAI estimates are embedded into the probabilistic modeling of inhomogeneous point-processes, and are derived from a combination of disentangling coefficients linked to the orthonormal Laguerre functions. By analyzing resting state recordings from 34 young healthy people, we obtain positive correlations between instantaneous SAI estimates and a number of brain regions including frontal pole, insular cortex, frontal and temporal gyri, lateral occipital cortex, paracingulate and cingulate gyri, precuneus and temporal fusiform cortices, as well as thalamus, caudate nucleus, putamen, brain-stem, hippocampus, amygdala, and nucleus accumbens. Our findings significantly extend current knowledge on the CAN, opening new avenues in the characterization of healthy and pathological states in humans.
Collapse
|
4
|
Li H, Zhang G, Zhou L, Nuss Z, Beel M, Hines B, Murphy T, Liles J, Zhang L, Kem DC, Yu X. Adrenergic Autoantibody-Induced Postural Tachycardia Syndrome in Rabbits. J Am Heart Assoc 2019; 8:e013006. [PMID: 31547749 PMCID: PMC6806023 DOI: 10.1161/jaha.119.013006] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Previous studies have demonstrated that functional autoantibodies to adrenergic receptors may be involved in the pathogenesis of postural tachycardia syndrome. The objective of this study was to examine the impact of these autoantibodies on cardiovascular responses to postural changes and adrenergic orthosteric ligand infusions in immunized rabbits. Methods and Results Eight New Zealand white rabbits were coimmunized with peptides from the α1-adrenergic receptor and β1-adrenergic receptor (β1AR). Tilt test and separate adrenergic agonist infusion studies were performed on conscious animals before and after immunization and subsequent treatment with epitope-mimetic peptide inhibitors. At 6 weeks after immunization, there was a greater percent increase in heart rate upon tilting compared with preimmune baseline. No significant difference in blood pressure response to tilting was observed. The heart rate response to infusion of the β-adrenoceptor agonist isoproterenol was significantly enhanced in immunized animals, suggesting a positive allosteric effect of β1AR antibodies. In contrast, the blood pressure response to infusion of the α1-adrenergic receptor agonist phenylephrine was attenuated in immunized animals, indicating a negative allosteric effect of α1-adrenergic receptor antibodies. Injections of antibody-neutralizing peptides suppressed the postural tachycardia and reversed the altered heart rate and blood pressure responses to orthosteric ligand infusions in immunized animals at 6 and 30 weeks. Antibody production and suppression were confirmed with in vitro bioassays. Conclusions The differential allosteric effect of α1-adrenergic receptor and β1AR autoantibodies would lead to a hyperadrenergic state and overstimulation of cardiac β1AR. These data support evidence for an autoimmune basis for postural tachycardia syndrome.
Collapse
Affiliation(s)
- Hongliang Li
- Department of Medicine University of Oklahoma Health Sciences Center Oklahoma City OK
| | - Gege Zhang
- Department of Medicine University of Oklahoma Health Sciences Center Oklahoma City OK
| | - Liping Zhou
- Department of Medicine University of Oklahoma Health Sciences Center Oklahoma City OK
| | - Zachary Nuss
- Department of Medicine University of Oklahoma Health Sciences Center Oklahoma City OK
| | - Marci Beel
- Department of Medicine University of Oklahoma Health Sciences Center Oklahoma City OK
| | - Brendon Hines
- Department of Medicine University of Oklahoma Health Sciences Center Oklahoma City OK
| | - Taylor Murphy
- Department of Medicine University of Oklahoma Health Sciences Center Oklahoma City OK
| | - Jonathan Liles
- Department of Medicine University of Oklahoma Health Sciences Center Oklahoma City OK
| | - Ling Zhang
- Department of Medicine University of Oklahoma Health Sciences Center Oklahoma City OK
| | - David C Kem
- Department of Medicine University of Oklahoma Health Sciences Center Oklahoma City OK
| | - Xichun Yu
- Department of Medicine University of Oklahoma Health Sciences Center Oklahoma City OK
| |
Collapse
|
5
|
Baker J, Paturel JR, Kimpinski K. Cerebellar impairment during an orthostatic challenge in patients with neurogenic orthostatic hypotension. Clin Neurophysiol 2018; 130:189-195. [PMID: 30527385 DOI: 10.1016/j.clinph.2018.07.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/13/2018] [Accepted: 07/25/2018] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Compare activation patterns within the cortical autonomic network in patients with neurogenic orthostatic hypotension (NOH) versus healthy age-matched controls during an orthostatic challenge. METHODS Fifteen health controls and 15 NOH patients performed 3 Valsalva maneuvers, and 5-min of lower-body negative pressure (LBNP) during a functional brain MRI. RESULTS Compared to controls, NOH patients had significantly less activation within the cerebellum during both LBNP and VM. Both groups had significant activation of the bilateral insula and left thalamus during LBNP. No significant differences were found during the recovery phase of LBNP. CONCLUSIONS The cerebellum, which plays an important role in vestibulo-sympathetic reflexes, important for blood pressure adjustments during postural changes, appear to be affected in patients with NOH. The cerebellum also appears to be affected during other baroreflex mediated stressors such as the VM. SIGNIFICANCE Orthostatic reflexes mediated by the cerebellum may be impaired in patients with NOH. The results suggest an additional pathological pathway in patients with autonomic failure.
Collapse
Affiliation(s)
- Jacquie Baker
- School of Kinesiology, Western University, London, Ontario, Canada; Department of Clinical Neurological Sciences, University Hospital, London Health Sciences Centre, London, Ontario, Canada
| | - Justin R Paturel
- School of Kinesiology, Western University, London, Ontario, Canada; Department of Clinical Neurological Sciences, University Hospital, London Health Sciences Centre, London, Ontario, Canada
| | - Kurt Kimpinski
- School of Kinesiology, Western University, London, Ontario, Canada; Department of Clinical Neurological Sciences, University Hospital, London Health Sciences Centre, London, Ontario, Canada; Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.
| |
Collapse
|
6
|
Zhen LL, Miao B, Chen YY, Su Z, Xu MQ, Fei S, Zhang J. Protective effect and mechanism of injection of glutamate into cerebellum fastigial nucleus on chronic visceral hypersensitivity in rats. Life Sci 2018; 203:184-192. [PMID: 29704480 DOI: 10.1016/j.lfs.2018.04.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/17/2018] [Accepted: 04/24/2018] [Indexed: 12/11/2022]
Abstract
AIMS We investigated the effects of chemical stimulation of cerebellum fastigial nucleus (FN) on the chronic visceral hypersensitivity (CVH) and its possible mechanism in rats. MAIN METHODS We stimulated the FN by microinjecting glutamate into the FN, in order to explore whether the cerebellum fastigial nucleus played a role on CVH in rat. The model of CVH was established by colorectal distension (CRD) in neonatal rats. Abdominal withdrawal reflex (AWR) scores, pain threshold, and amplitude of electromyography (EMG) were used to assess the hyperalgesia. KEY FINDINGS We showed that microinjection of l-glutamate (Glu) into the FN markedly attenuated hyperalgesia. The protective effect of FN was prevented by pretreatment with the glutamate decarboxylase inhibitor, 3-mercaptopropionic acid (3-MPA) into the FN or GABAA receptor antagonist, bicuculline (Bic) into the LHA (lateral hypothalamic area). The expressions of protein Bax, caspase-3 were decreased, but the expression of protein Bcl-2 was increased after chemical stimulation of FN. These results indicated that the FN participated in regulation of CVH, and was a specific area in the CNS for exerting protective effects on the CVH. In addition, LHA and GABA receptor may be involved in this process. SIGNIFICANCE Our findings might provide a new and improved understanding of the FN function, and might show an effective treatment strategy for the chronic visceral hypersensitivity.
Collapse
Affiliation(s)
- Ling-Ling Zhen
- Department of Gastroenterlogy, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| | - Bei Miao
- Department of Gastroenterlogy, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| | - Ying-Ying Chen
- Department of Gastroenterlogy, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| | - Zhen Su
- Department of Gastroenterlogy, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| | - Man-Qiu Xu
- Department of Gastroenterlogy, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| | - Sujuan Fei
- Department of Gastroenterlogy, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China.
| | - Jianfu Zhang
- Department of Gastroenterlogy, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China.
| |
Collapse
|
7
|
A review of human neuroimaging investigations involved with central autonomic regulation of baroreflex-mediated cardiovascular control. Auton Neurosci 2017; 207:10-21. [DOI: 10.1016/j.autneu.2017.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/10/2017] [Accepted: 05/13/2017] [Indexed: 12/30/2022]
|
8
|
Orexin-neuromodulated cerebellar circuit controls redistribution of arterial blood flows for defense behavior in rabbits. Proc Natl Acad Sci U S A 2013; 110:14124-31. [PMID: 23912185 DOI: 10.1073/pnas.1312804110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We investigated a unique microzone of the cerebellum located in folium-p (fp) of rabbit flocculus. In fp, Purkinje cells were potently excited by stimulation of the hypothalamus or mesencephalic periaqueductal gray, which induced defense reactions. Using multiple neuroscience techniques, we determined that this excitation was mediated via beaded axons of orexinergic hypothalamic neurons passing collaterals through the mesencephalic periaqueductal gray. Axonal tracing studies using DiI and biotinylated dextran amine evidenced the projection of fp Purkinje cells to the ventrolateral corner of the ipsilateral parabrachial nucleus (PBN). Because, in defense reactions, arterial blood flow has been known to redistribute from visceral organs to active muscles, we hypothesized that, via PBN, fp adaptively controls arterial blood flow redistribution under orexin-mediated neuromodulation that could occur in defense behavior. This hypothesis was supported by our finding that climbing fiber signals to fp Purkinje cells were elicited by stimulation of the aortic nerve, a high arterial blood pressure, or a high potassium concentration in muscles, all implying errors in the control of arterial blood flow. We further examined the arterial blood flow redistribution elicited by electric foot shock stimuli in awake, behaving rabbits. We found that systemic administration of an orexin antagonist attenuated the redistribution and that lesioning of fp caused an imbalance in the redistribution between active muscles and visceral organs. Lesioning of fp also diminished foot shock-induced increases in the mean arterial blood pressure. These results collectively support the hypothesis that the fp microcomplex adaptively controls defense reactions under orexin-mediated neuromodulation.
Collapse
|
9
|
Zhang S, Hu S, Chao HH, Luo X, Farr OM, Li CSR. Cerebral correlates of skin conductance responses in a cognitive task. Neuroimage 2012; 62:1489-98. [PMID: 22634217 DOI: 10.1016/j.neuroimage.2012.05.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 04/26/2012] [Accepted: 05/16/2012] [Indexed: 12/30/2022] Open
Abstract
Changes in physiological arousal frequently accompany cognitive performance. Many studies sought to identify the neural correlates of heightened arousal as indexed by skin conductance responses (SCR). However, the observed regional activations may be confounded by task events. We addressed this issue by recording SCR in 25 adults performing a stop signal task (SST) during functional magnetic resonance imaging. We compared only go trials with high and low SCR in order to isolate the event-independent processes. Furthermore, we distinguished go trials that followed another go, a stop success, or a stop error trial to examine whether the neural activities are contingent on the local context in which changes in SCR occurred. The results showed that the supplementary motor area responded to increased SCR irrespective of the preceding trial. The dorsal anterior cingulate cortex increased activation to heightened arousal most significantly in response to stop errors. The medial prefrontal cortex increased activation to SCR following a stop error but decreased activation following a go or stop success trial. These new findings specify the regional activations that accompany changes in physiological arousal during the SST and support distinct processes for the changes that occur under different local contexts. In particular, the MPFC shows opposing responses by increasing activation to changes in arousal evoked by salient stimuli and decreasing activation to the control of arousal.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Psychiatry, Yale University, New Haven, CT 06519, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Optogenetic inhibition of Purkinje cell activity reveals cerebellar control of blood pressure during postural alterations in anesthetized rats. Neuroscience 2012; 210:137-44. [PMID: 22441034 DOI: 10.1016/j.neuroscience.2012.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 03/07/2012] [Accepted: 03/07/2012] [Indexed: 11/21/2022]
Abstract
The cerebellar uvula (lobule IX), a part of the vestibulocerebellum, is extensively connected to the areas of the brainstem that participate in cardiovascular regulation and vestibular signal processing. This suggests that the uvula regulates blood pressure (BP) during postural alterations. Previous studies showed that lesions of the uvula affected the baroreceptor reflex and cardiovascular responses during postural alterations. To investigate the mechanisms underlying this BP regulation, it is necessary to have a method to selectively modulate the activity of Purkinje cells (PCs), the sole output neurons from the cerebellar cortex, without affecting other neuronal types such as local interneurons or nonlocal neurons that send their axons to the cerebellar cortex. We recently developed a novel technique using optogenetics to manipulate PC activity and showed that activation and inhibition of PCs in the uvula either decreased or increased the resting BP, respectively. This technique was employed in the current study to examine the roles of the uvula in BP regulation during postural alterations in anesthetized rats. Enhanced Natronomonas pharaonis halorhodopsin (eNpHR), a light-driven chloride ion pump, was selectively expressed in uvular PCs using a lentiviral vector containing the PC-specific L7 promoter. The eNpHR-expressing PCs were then illuminated by orange laser (593 nm) either during 30° head-up or 30° head-down tilts. The eNpHR-mediated photoinhibition of the uvula attenuated the extent of BP recovery after a BP increase induced by postural changes during head-down tilts. By contrast, photoinhibition had no statistically significant effect on BP recovery during head-up tilts. The effects of photoinhibition on BP during tilts were significantly different from those observed during the resting condition, indicating that cerebellar control of BP during tilts is dynamic rather than static. Taken together, these results suggest that PCs in the uvula dynamically regulates BP maintenance during postural alterations.
Collapse
|
11
|
Harms H, Reimnitz P, Bohner G, Werich T, Klingebiel R, Meisel C, Meisel A. Influence of Stroke Localization on Autonomic Activation, Immunodepression, and Post-Stroke Infection. Cerebrovasc Dis 2011; 32:552-60. [DOI: 10.1159/000331922] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 08/02/2011] [Indexed: 11/19/2022] Open
|
12
|
Paterson DS, Darnall R. 5-HT2A receptors are concentrated in regions of the human infant medulla involved in respiratory and autonomic control. Auton Neurosci 2009; 147:48-55. [PMID: 19213611 DOI: 10.1016/j.autneu.2009.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 12/22/2008] [Accepted: 01/05/2009] [Indexed: 12/26/2022]
Abstract
The serotonergic (5-HT) system in the human medulla oblongata is well-recognized to play an important role in the regulation of respiratory and autonomic function. In this study, using both immunocytochemistry (n=5) and tissue section autoradiography with the radioligand (125)I-1-(2,5-dimethoxy-4-iodo-phenyl)2-aminopropane (n=7), we examine the normative development and distribution of the 5-HT(2A) receptor in the human medulla during the last part of gestation and first postnatal year when dramatic changes are known to occur in respiratory and autonomic control, in part mediated by the 5-HT(2A) receptor. High 5-HT(2A) receptor binding was observed in the dorsal motor nucleus of the vagus (preganglionic parasympathetic output) and hypoglossal nucleus (airway patency); intermediate binding was present in the nucleus of the solitary tract (visceral sensory input), gigantocellularis, intermediate reticular zone, and paragigantocellularis lateralis. Negligible binding was present in the raphé obscurus and arcuate nucleus. The pattern of 5-HT(2A) immunoreactivity paralleled that of binding density. By 15 gestational weeks, the relative distribution of the 5-HT(2A) receptor was similar to that in infancy. In all nuclei sampled, 5-HT(2A) receptor binding increased with age, with significant increases in the hypoglossal nucleus (p=0.027), principal inferior olive (p=0.044), and medial accessory olive (0.038). Thus, 5-HT(2A) receptors are concentrated in regions involved in autonomic and respiratory control in the human infant medulla, and their developmental profile changes over the first year of life in the hypoglossal nucleus critical to airway patency and the inferior olivary complex essential to cerebellar function.
Collapse
Affiliation(s)
- David S Paterson
- Department of Pathology, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
13
|
Kimmerly DS, O'Leary DD, Menon RS, Gati JS, Shoemaker JK. Cortical regions associated with autonomic cardiovascular regulation during lower body negative pressure in humans. J Physiol 2005; 569:331-45. [PMID: 16150800 PMCID: PMC1464214 DOI: 10.1113/jphysiol.2005.091637] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The purpose of the present study was to determine the cortical structures involved with integrated baroreceptor-mediated modulation of autonomic cardiovascular function in conscious humans independent of changes in arterial blood pressure. We assessed the brain regions associated with lower body negative pressure (LBNP)-induced baroreflex control using functional magnetic resonance imaging with blood oxygen level-dependent (BOLD) contrast in eight healthy male volunteer subjects. The levels of LBNP administered were 5, 15 and 35 mmHg. Heart rate (HR; representing the cardiovascular response) and LBNP (representing the baroreceptor activation level) were simultaneously monitored during the scanning period. In addition, estimated central venous pressure (CVP), arterial blood pressure (ABP) and muscle sympathetic nerve activity were recorded on a separate session. Random effects analyses (SPM2) were used to evaluate significant (P < 0.05) BOLD signal changes that correlated separately with both LBNP and HR (15- and 35-mmHg versus 5-mmHg LBNP). Compared to baseline, steady-state LBNP at 15 and 35 mmHg decreased CVP (from 7 +/- 1 to 5 +/- 1 and 4 +/- 1 mmHg, respectively) and increased MSNA (from 12 +/- 1 to 23 +/- 3 and 36 +/- 4 bursts min(-1), respectively, both P < 0.05 versus baseline). Furthermore, steady-state LBNP elevated HR from 54 +/- 2 beats min(-1) at baseline to 64 +/- 2 beats min(-1) at 35-mmHg suction. Both mean arterial and pulse pressure were not different between rest and any level of LBNP. Cortical regions demonstrating increased activity that correlated with higher HR and greater LBNP included the right superior posterior insula, frontoparietal cortex and the left cerebellum. Conversely, using the identical statistical paradigm, bilateral anterior insular cortices, the right anterior cingulate, orbitofrontal cortex, amygdala, midbrain and mediodorsal nucleus of the thalamus showed decreased neural activation. These data corroborate previous investigations highlighting the involved roles of the insula, anterior cingulate cortex and amygdala in central autonomic cardiovascular control. In addition, we have provided the first evidence for the identification of the cortical network involved specifically with baroreflex-mediated autonomic cardiovascular function in conscious humans.
Collapse
Affiliation(s)
- Derek S Kimmerly
- Neurovascular Research Laboratory, Faculty of Health Sciences and School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
14
|
Abstract
Mapping with local lesions, electrical or chemical stimulation, or recording evoked field potentials or unit spikes revealed localized representations of cardiovascular functions in the cerebellum. In this review, which is based on literatures in the field (including our own publications), I propose that the cerebellum contains five distinct modules (cerebellar corticonuclear microcomplexes) dedicated to cardiovascular control. First, a discrete rostral portion of the fastigial nucleus and the overlying medial portion of the anterior vermis (lobules I, II and III) conjointly form a module that controls the baroreflex. Second, anterior vermis also forms a microcomplex with the parabrachial nucleus. Third, a discrete caudal portion of the fastigial nucleus and the overlying medial portion of the posterior vermis (lobules VII and VIII) form another module controlling the vestibulosympathetic reflex. Fourth, the medial portion of the uvula may form a module with the nucleus tractus solitarius and parabrachial nucleus. Fifth, the lateral edge of the nodulus and the uvula, together with the parabrachial nucleus and vestibular nuclei, forms a cardiovascular microcomplex that controls the magnitude and/or timing of sympathetic nerve responses and stability of the mean arterial blood pressure during changes of head position and body posture. The lateral nodulus-uvula appears to be an integrative cardiovascular control center involving both the baroreflex and the vestibulosympathetic reflex.
Collapse
Affiliation(s)
- Naoko Nisimaru
- Department of Physiology, Faculty of Medicine, University of Oita, Oita 879-5593, Japan.
| |
Collapse
|
15
|
Hata T, Funakami Y, Itoh E. Effects of AF-DX116 and Other Muscarinic Receptor Antagonists on Orthostatic Hypotension in Autonomic Imbalanced (SART-Stressed) Rats. J Pharmacol Sci 2005; 97:386-92. [PMID: 15750286 DOI: 10.1254/jphs.fp0040774] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
SART (specific alternation of rhythm in temperature)-stressed rats are an animal model of autonomic imbalance created by exposing animals to repeated cold stress. The SART-stressed rats have been shown to easily develop orthostatic hypotension (OH). In this study, effects of AF-DX116, a selective M(2) antagonist, and other muscarinic receptor antagonists on OH were investigated in SART-stressed and unstressed rats. Each anesthetized rat was canulated into the left common carotid artery, and blood pressure (BP) and heart rate were measured. Stimulation for postural change was initiated by head-up tilting. As the indices of OH, the maximum fall of BP, % reflex (recovery from maximum fall), and the area enclosed between the baseline and the recovery curve for BP (AUC) were used. Large AUC and small % reflex in SART-stressed rats were changed, becoming similar to those of the unstressed rats by AF-DX116 and methoctoramine. Atropine and methylatropine had similar effects to AF-DX116. However, the effects of methoctoramine, atropine, and methylatropine were less than that of AF-DX116. Pirenzepine was not effective. In conclusion, it was suggested in SART-stressed rats that OH was related to hyperactivity in the parasympathetic nerve and the M(2) receptor played the major role in OH.
Collapse
Affiliation(s)
- Taeko Hata
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Kinki University, Higashi-Osaka.
| | | | | |
Collapse
|
16
|
Wen YQ, Zhu JN, Zhang YP, Wang JJ. Cerebellar interpositus nuclear inputs impinge on paraventricular neurons of the hypothalamus in rats. Neurosci Lett 2004; 370:25-9. [PMID: 15489011 DOI: 10.1016/j.neulet.2004.07.072] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Revised: 07/01/2004] [Accepted: 07/26/2004] [Indexed: 11/17/2022]
Abstract
Several reports have indicated that the cerebellum is involved in regulation of some non-somatic activities through the cerebellohypothalamic projections. Therefore, the modulatory effects of the cerebellar interpositus nucleus (IN) on neuronal activity of the paraventricular nucleus of the hypothalamus (PVN) was investigated in this study by using in vivo extracellular recording technique in rats. We recorded from 115 PVN neurons, 51 (44.3%) responded to the cerebellar IN stimulation. Of the responsive PVN neurons tested for their sensitivity to hypertensive and/or hyperosmotic stimulations, 66.7% (6/9) and 75.0% (6/8) responded to intravenous metaraminol and hypertonic saline administration, respectively. These results demonstrate that the cerebellar IN afferent inputs impinge on the PVN neurons, including those baroreflex-sensitive and osmoresponsive neurons, suggesting that the cerebellum may actively participate in the cardiovascular regulation and osmoregulation through the cerebellohypothalamic projections.
Collapse
Affiliation(s)
- Yun-Qing Wen
- Department of Biological Science and Technology and State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Mailbox 426, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | | | | | | |
Collapse
|
17
|
Panigrahy A, Filiano J, Sleeper LA, Mandell F, Valdes-Dapena M, Krous HF, Rava LA, Foley E, White WF, Kinney HC. Decreased serotonergic receptor binding in rhombic lip-derived regions of the medulla oblongata in the sudden infant death syndrome. J Neuropathol Exp Neurol 2000; 59:377-84. [PMID: 10888367 DOI: 10.1093/jnen/59.5.377] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The sudden infant death syndrome (SIDS) is postulated to result from a failure of homeostatic responses to life-threatening challenges (e.g. asphyxia, hypercapnia) during sleep. The ventral medulla participates in sleep-related homeostatic responses, including chemoreception, arousal, airway reflex control, thermoregulation, respiratory drive, and blood pressure regulation, in part via serotonin and its receptors. The ventral medulla in humans contains the arcuate nucleus, in which we have shown isolated defects in muscarinic and kainate receptor binding in SIDS victims. We also have demonstrated that the arcuate nucleus is anatomically linked to the nucleus raphé obscurus, a medullary region with serotonergic neurons. We tested the hypothesis that serotonergic receptor binding is decreased in both the arcuate nucleus and nucleus raphé obscurus in SIDS victims. Using quantitative autoradiography, 3H-lysergic acid diethylamide (3H-LSD binding) to serotonergic receptors (5-HT1A-D and 5-HT2 subtypes) was measured blinded in 19 brainstem nuclei. Cases were classified as SIDS (n = 52), acute controls (infants who died suddenly and in whom a complete autopsy established a cause of death) (n = 15), or chronic cases with oxygenation disorders (n = 17). Serotonergic binding was significantly lowered in the SIDS victims compared with controls in the arcuate nucleus (SIDS, 6 +/- 1 fmol/mg tissue; acutes, 19 +/- 1; and chronics, 16 +/- 1; p = 0.0001) and n. raphé obscurus (SIDS, 28 +/- 3 fmol/mg tissue; acutes, 66 +/- 6; and chronics, 59 +/- 1; p = 0.0001). Binding, however, was also significantly lower (p < 0.05) in 4 other regions that are integral parts of the medullary raphé/serotonergic system, and/or are derived, like the arcuate nucleus and nucleus raphé obscurus, from the same embryonic anlage (rhombic lip). These data suggest that a larger neuronal network than the arcuate nucleus alone is involved in the pathogenesis of SIDS, that is, a network composed of inter-related serotonergic nuclei of the ventral medulla that are involved in homeostatic mechanisms, and/or are derived from a common embryonic anlage.
Collapse
Affiliation(s)
- A Panigrahy
- Department of Neurology, Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Critchley HD, Corfield DR, Chandler MP, Mathias CJ, Dolan RJ. Cerebral correlates of autonomic cardiovascular arousal: a functional neuroimaging investigation in humans. J Physiol 2000; 523 Pt 1:259-70. [PMID: 10673560 PMCID: PMC2269796 DOI: 10.1111/j.1469-7793.2000.t01-1-00259.x] [Citation(s) in RCA: 521] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. States of peripheral autonomic arousal accompany emotional behaviour, physical exercise and cognitive effort, and their central representation may influence decision making and the regulation of social and emotional behaviours. However, the cerebral functional neuroanatomy representing and mediating peripheral autonomic responses in humans is poorly understood. 2. Six healthy volunteer subjects underwent H215O positron emission tomography (PET) scanning while performing isometric exercise and mental arithmetic stressor tasks, and during corresponding control tasks. Mean arterial blood pressure (MAP) and heart rate (HR) were monitored during scanning. 3. Data were analysed using statistical parametric mapping (SPM99). Conjunction analyses were used to determine significant changes in regional cerebral blood flow (rCBF) during states of cardiovascular arousal common to both exercise and mental stressor tasks. 4. Exercise and mental stressor tasks, relative to their control tasks, were associated with significantly (P < 0.001) increased MAP and HR. Significant common activations (increased rCBF) were observed in cerebellar vermis, brainstem and right anterior cingulate. In both exercise and mental stress tasks, increased rCBF in cerebellar vermis, right anterior cingulate and right insula covaried with MAP; rCBF in pons, cerebellum and right insula covaried with HR. Cardiovascular arousal in both categorical and covariance analyses was associated with decreased rCBF in prefrontal and medial temporal regions. 5. Neural responses in discrete brain regions accompany peripheral cardiovascular arousal. We provide evidence for the involvement of areas previously implicated in cognitive and emotional behaviours in the representation of peripheral autonomic states, consistent with a functional organization that produces integrated cardiovascular response patterns in the service of volitional and emotional behaviours.
Collapse
Affiliation(s)
- H D Critchley
- Wellcome Department of Cognitive Neurology, Institute of Neurology and Autonomic Unit, National Hospital for Neurology and Neurosurgery, Institute of Neurology, University College London, Queen Square, London, UK.
| | | | | | | | | |
Collapse
|
19
|
Sadakane K, Kondo M, Nisimaru N. Direct projection from the cardiovascular control region of the cerebellar cortex, the lateral nodulus-uvula, to the brainstem in rabbits. Neurosci Res 2000; 36:15-26. [PMID: 10678528 DOI: 10.1016/s0168-0102(99)00103-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In decerebrate unanesthetized rabbits, electrical stimulation of the lateral nodulus-uvula in the cerebellar vermal cortex evoked an increase in renal sympathetic nerve activity, an increase in blood pressure and a decrease in renal arterial blood flow, which were all in contrast to the effects reported previously in the anesthetized rabbits. In order to identify the pathway mediating these responses, we investigated the Purkinje cell projection from the lateral nodulus-uvula using both anterograde (biotinylated dextran amine, BDA) and retrograde (horseradish peroxidase, HRP) tracing methods in rabbits. When BDA was iontophoretically injected into the lateral nodulus-uvula, labeled Purkinje cell axons were found within and around the superior and inferior cerebellar peduncles (SCP and ICP, respectively). Furthermore, terminal-like fields were found in the dentate and vestibular nuclei as reported in previous studies. However, the terminal-like patterns that we observed in the parabrachial nucleus (PB) in the rabbit have not been reported yet. When HRP was microinjected into the lateral PB, retrogradely labeled Purkinje cells were found in the lateral nodulus-uvula. These results indicate that Purkinje cells in the lateral nodulus-uvula project into the vestibular nuclei via the ICP and to the lateral PB via the SCP. We suggest that these two pathways mediating cardiovascular responses have different sensitivities to anesthetics.
Collapse
Affiliation(s)
- K Sadakane
- Department of Physiology, Oita Medical University, Japan.
| | | | | |
Collapse
|