1
|
Roetschi A, Baumeyer A, Berthoud H, Braillard L, Gschwend F, Guisolan A, Haldemann J, Hummerjohann J, Joller C, Loosli F, Meola M, Naskova J, Oberhänsli S, Shani N, von Ah U, Arias-Roth E. Antilisterial Properties of Selected Strains from the Autochthonous Microbiota of a Swiss Artisan Soft Smear Cheese. Foods 2024; 13:3473. [PMID: 39517258 PMCID: PMC11545730 DOI: 10.3390/foods13213473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
High incidences of the foodborne pathogen Listeria monocytogenes have been reported on smear cheeses, and despite increased hygiene efforts, this incidence has remained stable in recent years. Applying antilisterial strains may increase the safety of smear cheeses. To find and test antilisterial strains, we inoculated fresh soft cheeses from nine dairies with the surrogate species Listeria innocua and assessed its growth under standardized ripening conditions. Acetic acid at day 23 (r = -0.66), lactose in fresh cheese (r = -0.63), and glucose at day 10 (r = -0.62), as well as seven amplicon sequence variants (ASVs), were negatively correlated with L. innocua growth. Two of these ASVs were assigned to the genus Leuconostoc of Lactobacillaceae (r = -0.82 and -0.71). Isolates from this family, from Aerococcaceae, and Carnobacteriaceae were characterized according to their inhibitory properties, and those showing antilisterial properties were applied as protective cultures in challenge tests. The combined application of strains of Leuconostoc mesenteroides, Aerococcaceae, and Carnobacteriaceae successfully eliminated low levels of L. innocua in the final products. This is likely explained by antimicrobial compounds, including mesentericin Y105 and acetate, and competition for carbon sources and iron. This study shows a promising way to improve the safety of soft smear cheeses by applying defined protective cultures.
Collapse
Affiliation(s)
- Alexandra Roetschi
- Fermentation Organisms, Agroscope, 3097 Liebefeld, Switzerland (M.M.); (N.S.)
| | | | - Hélène Berthoud
- Fermentation Organisms, Agroscope, 3097 Liebefeld, Switzerland (M.M.); (N.S.)
| | - Lauriane Braillard
- Fermentation Organisms, Agroscope, 3097 Liebefeld, Switzerland (M.M.); (N.S.)
| | | | - Anne Guisolan
- Biotechnology, Agroscope, 3097 Liebefeld, Switzerland (U.v.A.)
| | - John Haldemann
- Applied Processing Technology, Agroscope, 3097 Liebefeld, Switzerland
| | | | - Charlotte Joller
- Cultures, Biodiversity and Terroir, Agroscope, 3097 Liebefeld, Switzerland
| | - Florian Loosli
- Applied Processing Technology, Agroscope, 3097 Liebefeld, Switzerland
| | - Marco Meola
- Fermentation Organisms, Agroscope, 3097 Liebefeld, Switzerland (M.M.); (N.S.)
| | - Javorka Naskova
- Microbiological Food Safety, Agroscope, 3097 Liebefeld, Switzerland
| | - Simone Oberhänsli
- Interfaculty Bioinformatics Unit, University of Bern, 3012 Bern, Switzerland
| | - Noam Shani
- Fermentation Organisms, Agroscope, 3097 Liebefeld, Switzerland (M.M.); (N.S.)
| | - Ueli von Ah
- Biotechnology, Agroscope, 3097 Liebefeld, Switzerland (U.v.A.)
| | | |
Collapse
|
2
|
Sionek B, Okoń A, Łepecka A, Zielińska D, Jaworska D, Kajak-Siemaszko K, Neffe-Skocińska K, Trząskowska M, Karbowiak M, Szymański P, Dolatowski ZJ, Kołożyn-Krajewska D. The Role of Autochthonous Levilactobacillus brevis B1 Starter Culture in Improving the Technological and Nutritional Quality of Cow's Milk Acid-Rennet Cheeses-Industrial Model Study. Foods 2024; 13:392. [PMID: 38338527 PMCID: PMC10855195 DOI: 10.3390/foods13030392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
In the study, an attempt was made to develop an innovative technology for cheese manufacturing. It was hypothesized that selected autochthonous lactic acid bacteria as a starter culture are more suitable for the production of acid-rennet cheeses of good technological and sensory quality. The study aimed to assess the possibility of using the strain Levilactobacillus brevis B1 (L. brevis B1) as a starter culture to produce acid-rennet cheeses using raw cow's milk. Two variants of cheese were manufactured. The control variant (R) was coagulated with microbial rennet and buttermilk, and the other variant (B1) was inoculated with rennet and L. brevis B1 starter culture. The effect of the addition of these autochthonous lactic acid bacteria on selected physicochemical characteristics, durability, the composition of fatty acids, cholesterol, Iipid Quality Indices, and microbiological and sensory quality of acid-rennet cheeses was determined during a 3-month period of storage. The dominant fatty acids observed in the tested cheeses were saturated fatty acids (SFA) (68.43-69.70%) and monounsaturated fatty acids (MUFA) (25.85-26.55%). Significantly higher polyunsaturated fatty acid (PUFA) content during storage was observed for B1 cheeses. The B1 cheeses were characterized by lower cholesterol content compared to cheese R and showed better indexes, including the Index of atherogenicity, Index of thrombogenicity, DFA, OFA, H/H, and HPI indexes, than the R cheese. No effect of the tested L. brevis B1 on sensory quality was observed in relation to the control cheeses during 3 months of storage. The results of the research indicate the possibility of using the L. brevis B1 strain for the production of high-quality, potentially probiotic acid-rennet cheeses.
Collapse
Affiliation(s)
- Barbara Sionek
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), 02-776 Warsaw, Poland; (D.Z.); (D.J.); (K.K.-S.); (K.N.-S.); (M.T.); (M.K.); (D.K.-K.)
| | - Anna Okoń
- Department of Meat and Fat Technology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 36 Rakowiecka St, 02-532 Warsaw, Poland; (A.O.); (A.Ł.); (P.S.); (Z.J.D.)
| | - Anna Łepecka
- Department of Meat and Fat Technology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 36 Rakowiecka St, 02-532 Warsaw, Poland; (A.O.); (A.Ł.); (P.S.); (Z.J.D.)
| | - Dorota Zielińska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), 02-776 Warsaw, Poland; (D.Z.); (D.J.); (K.K.-S.); (K.N.-S.); (M.T.); (M.K.); (D.K.-K.)
| | - Danuta Jaworska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), 02-776 Warsaw, Poland; (D.Z.); (D.J.); (K.K.-S.); (K.N.-S.); (M.T.); (M.K.); (D.K.-K.)
| | - Katarzyna Kajak-Siemaszko
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), 02-776 Warsaw, Poland; (D.Z.); (D.J.); (K.K.-S.); (K.N.-S.); (M.T.); (M.K.); (D.K.-K.)
| | - Katarzyna Neffe-Skocińska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), 02-776 Warsaw, Poland; (D.Z.); (D.J.); (K.K.-S.); (K.N.-S.); (M.T.); (M.K.); (D.K.-K.)
| | - Monika Trząskowska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), 02-776 Warsaw, Poland; (D.Z.); (D.J.); (K.K.-S.); (K.N.-S.); (M.T.); (M.K.); (D.K.-K.)
| | - Marcelina Karbowiak
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), 02-776 Warsaw, Poland; (D.Z.); (D.J.); (K.K.-S.); (K.N.-S.); (M.T.); (M.K.); (D.K.-K.)
| | - Piotr Szymański
- Department of Meat and Fat Technology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 36 Rakowiecka St, 02-532 Warsaw, Poland; (A.O.); (A.Ł.); (P.S.); (Z.J.D.)
| | - Zbigniew J. Dolatowski
- Department of Meat and Fat Technology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 36 Rakowiecka St, 02-532 Warsaw, Poland; (A.O.); (A.Ł.); (P.S.); (Z.J.D.)
| | - Danuta Kołożyn-Krajewska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), 02-776 Warsaw, Poland; (D.Z.); (D.J.); (K.K.-S.); (K.N.-S.); (M.T.); (M.K.); (D.K.-K.)
| |
Collapse
|
3
|
Praça J, Furtado R, Coelho A, Correia CB, Borges V, Gomes JP, Pista A, Batista R. Listeria monocytogenes, Escherichia coli and Coagulase Positive Staphylococci in Cured Raw Milk Cheese from Alentejo Region, Portugal. Microorganisms 2023; 11:322. [PMID: 36838288 PMCID: PMC9964920 DOI: 10.3390/microorganisms11020322] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Traditional cheeses are part of the Portuguese gastronomic identity, and raw milk of autochthonous species is a common primary ingredient. Here, we investigated the presence of Listeria monocytogenes, Coagulase Positive Staphylococci (CPS) and pathogenic Escherichia coli, as well as of indicator microorganisms (E. coli and other Listeria spp.) in 96 cured raw milk cheeses from the Alentejo region. Whole genome sequencing (WGS) of pathogenic E. coli and Listeria spp. as well as antimicrobial resistance (AMR) screening of E. coli isolates was also performed. L. monocytogenes, CPS > 104 cfu/g and Extraintestinal E. coli were detected in 15.6%, 16.9% and 10.1% of the samples, respectively. Moreover, L. monocytogenes > 102 cfu/g and Staphylococcal enterotoxins were detected in 4.2% and 2.2% of the samples, respectively. AMR was observed in 27.3% of the E. coli isolates, six of which were multidrug resistant. WGS analysis unveiled clusters of high closely related isolates for both L. monocytogenes and L. innocua (often correlating with the cheese producer). This study can indicate poor hygiene practices during milk collection/preservation or during cheese-making procedures and handling, and highlights the need of more effective prevention and control measures and of multi-sectoral WGS data integration, in order to prevent and detect foodborne bacterial outbreaks.
Collapse
Affiliation(s)
- Joana Praça
- Food Microbiology Laboratory, Food and Nutrition Department, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
- Faculty of Farmacy, University of Lisbon, Avenida Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Rosália Furtado
- Food Microbiology Laboratory, Food and Nutrition Department, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Anabela Coelho
- Food Microbiology Laboratory, Food and Nutrition Department, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Cristina Belo Correia
- Food Microbiology Laboratory, Food and Nutrition Department, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Vítor Borges
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - João Paulo Gomes
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Angela Pista
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Rita Batista
- Food Microbiology Laboratory, Food and Nutrition Department, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| |
Collapse
|
4
|
Zhao S, Zhao G, Gu L, Solem C. A novel approach for accelerating smear development on bacterial smear-ripened cheeses reduces ripening time and inhibits the growth of Listeria and other unwanted microorganisms on the rind. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Martín I, Rodríguez A, Córdoba JJ. Application of selected lactic-acid bacteria to control Listeria monocytogenes in soft-ripened “Torta del Casar” cheese. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Monitoring by a Sensitive Liquid-Based Sampling Strategy Reveals a Considerable Reduction of Listeria monocytogenes in Smeared Cheese Production over 10 Years of Testing in Austria. Foods 2021; 10:foods10091977. [PMID: 34574086 PMCID: PMC8471813 DOI: 10.3390/foods10091977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Most Austrian dairies and cheese manufacturers participated in a Listeria monitoring program, which was established after the first reports of dairy product-associated listeriosis outbreaks more than thirty years ago. Within the Listeria monitoring program, up to 800 mL of product-associated liquids such as cheese smear or brine are processed in a semi-quantitative approach to increase epidemiological sensitivity. A sampling strategy within cheese production, which detects environmental contamination before it results in problematic food contamination, has benefits for food safety management. The liquid-based sampling strategy was implemented by both industrial cheese makers and small-scale dairies located in the mountainous region of Western Austria. This report considers more than 12,000 Listeria spp. examinations of liquid-based samples in the 2009 to 2018 timeframe. Overall, the occurrence of L. monocytogenes in smear liquid samples was 1.29% and 1.55% (n = 5043 and n = 7194 tested samples) for small and industrial cheese enterprises, respectively. The liquid-based sampling strategy for Listeria monitoring at the plant level appears to be superior to solid surface monitoring. Cheese smear liquids seem to have good utility as an index of the contamination of cheese up to that point in production. A modelling or validation process should be performed for the new semi-quantitative approach to estimate the true impact of the method in terms of reducing Listeria contamination at the cheese plant level.
Collapse
|
7
|
Assessment of Quality and Safety of Farm Level Produced Cheeses from Sheep and Goat Milk. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11073196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Consumption of sheep’s and goat’s milk and cheese is currently increasing. The production process of these types of cheese is being carried out by traditional domestic production at farm level. However, knowledge in the field of hygiene, technology and health safety of cheeses are still insufficient. This study aimed to examine the physical and chemical quality and microbiological safety of sheep’s and goat’s milk and cheeses made from them. The month of milking influenced the content of milk components (p < 0.001) in sheep’s milk and goat’s milk, but no changes in SCC content during the examined period were found (p > 0.05). Level of contamination by Enterobacteriaceae sp. and coagulase-positive staphylococci was lower than 5 log CFU/mL in sheep’s and goat’s milk. During the ripening time, the number of lactic acid bacteria significantly raised (p < 0.001). Ripening time statistically changed (p < 0.001) not just the microbial safety of cheeses but also the color (p < 0.01). Under the applicable regulations, the analyzed samples were evaluated as suitable for human consumption.
Collapse
|
8
|
Study of the Effect of Echinophora platyloba Ethanolic Extract on Survival of Listeria monocytogenes in Lighvan Cheese During Ripening Time. MACEDONIAN VETERINARY REVIEW 2021. [DOI: 10.2478/macvetrev-2021-0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Listeria monocytogenes is one of the most frequent foodborne bacteria that can be transmitted through dairy products. The demand for replacing chemical preservatives with natural compounds has increased recently. The aim of this study was to investigate the effect of Echinophora platyloba DC ethanolic extract on the survival of L. monocytogenes in Lighvan cheese during ripening time. Three concentrations of E. platyloba ethanolic extract (0, 0.5, 1 and 1.5%) were added to raw milk at the beginning of Lighvan cheese manufacture, and the population of L. monocytogenes was counted on days 15, 30, 60 and 90. Furthermore, the pH and salt concentration of Lighvan cheese were evaluated in these periods. The results showed that an increase in the concentration of ethanolic extract, as well as the ripening time of Lighvan cheese, resulted in a significant decrease (p<0.05) in the levels of L. monocytogenes (cfu/g). Moreover, the logarithm of the L. monocytogenes population (log cfu/g) was significantly decreased (p<0.05) as the concentration of the added ethanolic extract was enhanced over the ripening time, but no significant changes in pH and salt concentration were observed in Lighvan cheese (p>0.05). It was found that the optimal concentration of E. platyloba ethanolic extract for the complete inhibition of L. monocytogenes was 1-1.5% following 90 days of the ripening.
Collapse
|
9
|
Bechtel TD, Gibbons JG. Population Genomic Analysis of Listeria monocytogenes From Food Reveals Substrate-Specific Genome Variation. Front Microbiol 2021; 12:620033. [PMID: 33633707 PMCID: PMC7902062 DOI: 10.3389/fmicb.2021.620033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes is the major causative agent of the foodborne illness listeriosis. Listeriosis presents as flu-like symptoms in healthy individuals, and can be fatal for children, elderly, pregnant women, and immunocompromised individuals. Estimates suggest that L. monocytogenes results in ∼1,600 illnesses and ∼260 deaths annually in the United States. L. monocytogenes can survive and persist in a variety of harsh environments, including conditions encountered in production of fermented dairy products such as cheese. For instance, microbial growth is often limited in soft cheese fermentation because of harsh pH, water content, and salt concentrations. However, L. monocytogenes has caused a number of deadly listeriosis outbreaks through the contamination of cheese. The purpose of this study was to understand if genetically distinct populations of L. monocytogenes are associated with particular foods, including cheese and dairy. To address this goal, we analyzed the population genetic structure of 504 L. monocytogenes strains isolated from food with publicly available genome assemblies. We identified 10 genetically distinct populations spanning L. monocytogenes lineages 1, II, and III and serotypes 1/2a, 1/2b, 1/2c, 4b, and 4c. We observed an overrepresentation of isolates from specific populations with cheese (population 2), fruit/vegetable (population 2), seafood (populations 5, 8 and 9) and meat (population 10). We used the Large Scale Blast Score Ratio pipeline and Roary to identify genes unique to population 1 and population 2 in comparison with all other populations, and screened for the presence of antimicrobial resistance genes and virulence genes across all isolates. We identified > 40 genes that were present at high frequency in population 1 and population 2 and absent in most other isolates. Many of these genes encoded for transcription factors, and cell surface anchored proteins. Additionally, we found that the virulence genes aut and ami were entirely or partially deleted in population 2. These results indicate that some L. monocytogenes populations may exhibit associations with particular foods, including cheese, and that gene content may contribute to this pattern.
Collapse
Affiliation(s)
- Tyler D Bechtel
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - John G Gibbons
- Department of Food Science, University of Massachusetts, Amherst, MA, United States.,Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, United States.,Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
10
|
Szymczak B, Szymczak M, Trafiałek J. Prevalence of Listeria species and L. monocytogenes in ready-to-eat foods in the West Pomeranian region of Poland: Correlations between the contamination level, serogroups, ingredients, and producers. Food Microbiol 2020; 91:103532. [DOI: 10.1016/j.fm.2020.103532] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/10/2020] [Accepted: 04/22/2020] [Indexed: 11/27/2022]
|
11
|
Skowron K, Wiktorczyk N, Grudlewska K, Kwiecińska-Piróg J, Wałecka-Zacharska E, Paluszak Z, Gospodarek-Komkowska E. Drug-susceptibility, biofilm-forming ability and biofilm survival on stainless steel of Listeria spp. strains isolated from cheese. Int J Food Microbiol 2019; 296:75-82. [PMID: 30851643 DOI: 10.1016/j.ijfoodmicro.2019.02.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 12/22/2022]
Abstract
The aim of the study was to analyze the contamination of mold cheese (Brie, Camembert, Gorgonzola, Munster and Roquefort) with Listeria spp. and assessment of culturable cells number recovered from the biofilm formed on the surface of stainless steel by obtained strains. Identified isolates (MALDI TOF MS technique) were subjected to susceptibility testing (disk-diffusion method) and their genetic similarity (PFGE method), ability to form biofilm (quantitative method), biofilm dry weight, and biofilm survival on stainless steel were evaluated. Out of 250 samples of cheese 26 (10.4%) were Listeria spp. positive, including 15 isolates (6.0% of samples) of L. monocytogenes, 7 isolates of L. innocua (2.8% of samples) and 4 isolates of L. welshimeri species (1.6% of samples). Of the 26 isolates tested, 22 strains were genetically different. It was shown that L. innocua and L. welshimeri strains were sensitive to all antibiotics tested, while two (16.7%) L. monocytogenes strains were resistant to penicillin and one (8.3%) to erythromycin. L. monocytogenes formed biofilm most intensively on stainless steel, while L. welshimeri the least effectively. The median of bacteria number recovered from the biofilm for L. monocytogenes was 6.81 log CFU × cm-2, for L. innocua - 5.63 log CFU × cm-2, and for L. welshimeri - 4.93 log CFU × cm-2. The survival in the biofilm of Listeria spp. strains decreased along with the increase in a storage temperature of steel coupons. The longest survival time was reported at 4 °C, i.e. 47.58-124.41 days, with an elimination rate of 0.06-0.13 log CFU × day-1. Collectively, L. monocytogenes is the most prevalent species of Listeria genus in the mold cheese. The ability of L. monocytogenes strains to form biofilm on stainless steel and survive in the food processing environment increases chance of the secondary contamination of food posing risk to the consumer health.
Collapse
Affiliation(s)
- Krzysztof Skowron
- Department of Microbiology, Nicolaus Copernicus University in Toruń, L. Rydygier Collegium Medicum in Bydgoszcz, 9 M. Skłodowska-Curie St., 85-094 Bydgoszcz, Poland.
| | - Natalia Wiktorczyk
- Department of Microbiology, Nicolaus Copernicus University in Toruń, L. Rydygier Collegium Medicum in Bydgoszcz, 9 M. Skłodowska-Curie St., 85-094 Bydgoszcz, Poland
| | - Katarzyna Grudlewska
- Department of Microbiology, Nicolaus Copernicus University in Toruń, L. Rydygier Collegium Medicum in Bydgoszcz, 9 M. Skłodowska-Curie St., 85-094 Bydgoszcz, Poland
| | - Joanna Kwiecińska-Piróg
- Department of Microbiology, Nicolaus Copernicus University in Toruń, L. Rydygier Collegium Medicum in Bydgoszcz, 9 M. Skłodowska-Curie St., 85-094 Bydgoszcz, Poland
| | - Ewa Wałecka-Zacharska
- Department of Food Hygiene and Consumer Health, Wrocław University of Environmental and Life Sciences, 31 C.K. Norwid St., 50-375 Wrocław, Poland
| | - Zbigniew Paluszak
- Department of Microbiology and Food Technology, UTP University of Science and Technology, 6 Bernardyńska St., 85-029 Bydgoszcz, Poland
| | - Eugenia Gospodarek-Komkowska
- Department of Microbiology, Nicolaus Copernicus University in Toruń, L. Rydygier Collegium Medicum in Bydgoszcz, 9 M. Skłodowska-Curie St., 85-094 Bydgoszcz, Poland
| |
Collapse
|
12
|
Murdaca G, Negrini S, Pellecchio M, Greco M, Schiavi C, Giusti F, Puppo F. Update upon the infection risk in patients receiving TNF alpha inhibitors. Expert Opin Drug Saf 2019; 18:219-229. [DOI: 10.1080/14740338.2019.1577817] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Giuseppe Murdaca
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy
| | - Simone Negrini
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy
| | - Marco Pellecchio
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy
| | - Monica Greco
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy
| | - Chiara Schiavi
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesca Giusti
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesco Puppo
- Clinical Immunology Unit, Department of Internal Medicine, University of Genoa and Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
13
|
Dambrosio A, Ioanna F, Storelli MM, Castiglia D, Giannico F, Colonna MA, De Rosa M, Quaglia NC. Microbiological quality and safety of cheeses belonging to “Traditional Agri‐Food Products” (T.A.P.) produced in Southern Italy. J Food Saf 2018. [DOI: 10.1111/jfs.12539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Angela Dambrosio
- Department of Emergency and Organ Transplantation, Section of Veterinary Clinic and Animal ProductionUniversity of Bari Aldo Moro Bari Italy
| | | | - Maria M. Storelli
- Department of Biosciences, Biotechnologies and BiopharmaceuticalUniversity of Bari Aldo Moro Bari Italy
| | | | - Francesco Giannico
- Department of Agricultural and Environmental ScienceUniversity of Bari Aldo Moro, University campus "Ernesto Quagliariello" Bari Italy
| | - Maria A. Colonna
- Department of Agricultural and Environmental ScienceUniversity of Bari Aldo Moro, University campus "Ernesto Quagliariello" Bari Italy
| | | | - Nicoletta C. Quaglia
- Department of Emergency and Organ Transplantation, Section of Veterinary Clinic and Animal ProductionUniversity of Bari Aldo Moro Bari Italy
| |
Collapse
|
14
|
Gérard A, El-Hajjaji S, Niyonzima E, Daube G, Sindic M. Prevalence and survival of Listeria monocytogenes
in various types of cheese-A review. INT J DAIRY TECHNOL 2018. [DOI: 10.1111/1471-0307.12552] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Amaury Gérard
- Laboratory of Quality and Safety of Agro-Food Products; Gembloux Agro-Bio Tech; University of Liège; Passage des Déportés, 2 5030 Gembloux Belgium
| | - Soundous El-Hajjaji
- Laboratory of Quality and Safety of Agro-Food Products; Gembloux Agro-Bio Tech; University of Liège; Passage des Déportés, 2 5030 Gembloux Belgium
| | - Eugène Niyonzima
- Food Safety and Quality Management Department; School of Food Science and Technology; University of Rwanda; Avenue de l'armée, P.O. Box 3900 Kigali Rwanda
| | - Georges Daube
- Food Science Department; Faculty of Veterinary Medicine; FARAH, University of Liège; Sart-Tilman B43b 4000 Liège Belgium
| | - Marianne Sindic
- Laboratory of Quality and Safety of Agro-Food Products; Gembloux Agro-Bio Tech; University of Liège; Passage des Déportés, 2 5030 Gembloux Belgium
| |
Collapse
|
15
|
Hygiene Quality and Consumer Safety of Traditional Short- and Long-Ripened Cheeses from Poland. J FOOD QUALITY 2018. [DOI: 10.1155/2018/8732412] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was the assessment of the microbiological quality of three types of traditional cheeses which are produced from raw and pasteurized cow’s milk. Two types of cheeses were of the short-ripened type, and one cheese was long-ripened. A microbial examination was conducted for the presence of Salmonella spp. and Listeria monocytogenes microorganisms and the count of aerobic, psychrotrophic, lactic acid bacteria, and coliform bacteria, as well as Escherichia coli, Enterobacteriaceae, Enterococcus spp., Staphylococcus spp., and yeasts. The examined cheeses did not fulfill the microbial criteria for food safety (presence of L. monocytogenes) and process hygiene (exceeded allowable levels of E. coli and coagulase-positive Staphylococcus). The levels of coliform bacteria, E. coli, and Enterobacteriaceae and the presence of Enterococcus faecalis determined in the three examined cheese types indicated that insufficient hygiene procedures were used during the production process. The results of the study indicate that the examined cheeses did not fulfill the microbial criteria for food safety and process hygiene according to the legislation. It is necessary to introduce correction procedures as indicated in the current report.
Collapse
|
16
|
Castro H, Jaakkonen A, Hakkinen M, Korkeala H, Lindström M. Occurrence, Persistence, and Contamination Routes of Listeria monocytogenes Genotypes on Three Finnish Dairy Cattle Farms: a Longitudinal Study. Appl Environ Microbiol 2018; 84:e02000-17. [PMID: 29222098 PMCID: PMC5795088 DOI: 10.1128/aem.02000-17] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/30/2017] [Indexed: 11/20/2022] Open
Abstract
The molecular epidemiology of Listeria monocytogenes was investigated in a longitudinal study of three Finnish dairy farms during 2013 to 2016. A total of 186 bulk tank milk (BTM), 224 milk filter sock (MFS), and 1,702 barn environment samples were analyzed, and isolates of L. monocytogenes were genotyped using pulsed-field gel electrophoresis. L. monocytogenes occurred throughout the year in all sample types, and the prevalence in MFS increased significantly during the indoor season. L. monocytogenes was more prevalent in MFS (29%) than in BTM (13%) samples. However, the prevalence of L. monocytogenes varied more between farms in samples of MFS (13 to 48%) than in BTM (10 to 16%). For each farm, the L. monocytogenes genotypes detected were classified by persistence (defined as persistent if isolated from ≥3 samples during ≥6 months) and predominance (defined as predominant if >5% prevalence on at least one farm visit). The prevalence of sporadic genotypes was 4 to 5% on all three farms. In contrast, the prevalence of persistent predominant genotypes varied between farms by 4% to 16%. The highest prevalence of persistent predominant genotypes was observed on the farm with the poorest production hygiene. Persistent predominant genotypes were most prevalent on feeding surfaces, water troughs, and floors. Genotypes isolated from the milking system or from cow udders had a greater relative risk of occurring in BTM and MFS than genotypes that only occurred elsewhere in the farm, supporting the hypothesis that L. monocytogenes is transmitted to milk from contamination on the udder surface or in the milking equipment.IMPORTANCEListeria monocytogenes is a ubiquitous environmental bacterium and the causative agent of a serious foodborne illness, listeriosis. Dairy products are common vehicles of listeriosis, and dairy cattle farms harbor L. monocytogenes genotypes associated with human listeriosis outbreaks. Indeed, dairy cattle farms act as a reservoir of L. monocytogenes, and the organism is frequently detected in bulk tank milk (BTM) and in the feces of clinically healthy cows. The ecology of L. monocytogenes in the farm environment is complex and poorly understood. Isolates of the same L. monocytogenes genotype can occur in the farm for years, but the factors contributing to the persistence of genotypes on dairy farms are unknown. Knowledge of the persistence patterns and contamination routes of L. monocytogenes on dairy farms can improve management of the contamination pressure in the farm environment and aid in the development of focused control strategies to reduce BTM contamination.
Collapse
Affiliation(s)
- Hanna Castro
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Anniina Jaakkonen
- Microbiology Research Unit, Finnish Food Safety Authority (Evira), Helsinki, Finland
| | - Marjaana Hakkinen
- Microbiology Research Unit, Finnish Food Safety Authority (Evira), Helsinki, Finland
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
17
|
Akrami-Mohajeri F, Derakhshan Z, Ferrante M, Hamidiyan N, Soleymani M, Conti GO, Tafti RD. The prevalence and antimicrobial resistance of Listeria spp in raw milk and traditional dairy products delivered in Yazd, central Iran (2016). Food Chem Toxicol 2018; 114:141-144. [PMID: 29448094 DOI: 10.1016/j.fct.2018.02.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/30/2018] [Accepted: 02/04/2018] [Indexed: 11/19/2022]
Abstract
Listeria monocytogenes is an important foodborne pathogen which its data in Iranian dairy products is limited. A total of 545 samples of traditional dairy products (raw milk, traditional cheese, traditional butter, traditional curd, and traditional ice cream) were collected from traditional dairy shops located in Yazd, Iran. L. monocytogenes was isolated, and positive samples were confirmed by polymerase chain reaction. Antibiotic sensitivity test was conducted to determine the antibiotic resistance. Listeria species were isolated from 11.7% samples. 4.03% samples were identified as L. monocytogenes, 5.6% as L. innocua, 1.8% as L. seeligeri, and 0.18% L. murrayi. All L. monocytogenes isolates were resistant to tetracycline, chloramphenicol, penicillin, and amoxicillin/clavulanic acid. Consumption of raw milk and its traditional products prepared inadequate heat treatment and the lack of appropriate control measures might lead to serious health problems. As our results show, the Iranian food safety authorities should set up an effective standard to screen all susceptible food for the presence of Listeria spp.
Collapse
Affiliation(s)
- Fateme Akrami-Mohajeri
- Zoonotic Diseases Research Center, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Department of Food Safety and Hygiene, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zahra Derakhshan
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Department of Environmental Health, School of Health, Larestan University of Medical Sciences, Larestan, Iran; Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Margherita Ferrante
- Environmental and Food Hygiene Laboratories (LIAA) of Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", Hygiene and Public Health, University of Catania, Italy
| | - Negar Hamidiyan
- Zoonotic Diseases Research Center, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Department of Food Safety and Hygiene, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Meysam Soleymani
- Zoonotic Diseases Research Center, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Department of Food Safety and Hygiene, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Gea Oliveri Conti
- Environmental and Food Hygiene Laboratories (LIAA) of Department of Medical Sciences, Surgical and Advanced Technologies "G.F. Ingrassia", Hygiene and Public Health, University of Catania, Italy
| | - Roohollah Dehghani Tafti
- Private Practitioner, Graduated Student of Animal Reproduction Science, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
18
|
|
19
|
Listeria monocytogenes in Gorgonzola cheese: Study of the behaviour throughout the process and growth prediction during shelf life. Int J Food Microbiol 2017; 262:71-79. [DOI: 10.1016/j.ijfoodmicro.2017.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 08/11/2017] [Accepted: 09/24/2017] [Indexed: 11/30/2022]
|
20
|
Biofilm formation and microscopic analysis of biofilms formed by Listeria monocytogenes in a food processing context. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.05.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Prevalence and methodologies for detection, characterization and subtyping of Listeria monocytogenes and L. ivanovii in foods and environmental sources. FOOD SCIENCE AND HUMAN WELLNESS 2017. [DOI: 10.1016/j.fshw.2017.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
22
|
Hammer P, Bockelmann W, Hoffmann W. Fate of Listeria innocua during production and ripening of smeared hard cheese made from raw milk. J Dairy Sci 2017; 100:7846-7856. [PMID: 28755934 DOI: 10.3168/jds.2017-12823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/05/2017] [Indexed: 11/19/2022]
Abstract
The fate of 2 different Listeria innocua strains was analyzed during the production and ripening of smeared raw milk Greyerzer cheese (Gruyère). These strains were used as surrogates for the pathogenic Listeria monocytogenes, as they are physiologically very similar. Bacterial cells were added to the cheese milk at levels of 105 cfu/mL. During the first 24 h of cheese making, the number of the test strains decreased to a level of below 102 cfu/g. Obviously, the cooking temperature of 56°C and the subsequent slight temperature decrease to 50°C within 70 min contributed to a distinct reduction of Listeria counts. The counts in the cheese cores did not exceed 103 cfu/g within 12 wk of cheese ripening and Listeria was not detectable after 24 wk. In contrast to the cores of the cheeses of the 4 batches in this study, their rinds always contained a high listerial load of approximately 106 to 108 cfu/g throughout the entire ripening period. The smeared surface showed an increase of pH to alkaline values, corresponding to smear microbiota development. Coryneforms and Staphylococcus counts were stable at >107 cfu/cm2 over 175 d, whereas yeast counts decreased to about 105 cfu/cm2 at the end of ripening. The study shows that the smear culture had no noticeable anti-listerial potential. When removing the rind or portioning such smeared cheese loaves with a cutting device, a postprocess contamination of the core might occur, thus presenting a major hygienic risk.
Collapse
Affiliation(s)
- P Hammer
- Department of Safety and Quality of Milk and Fish Products, Max Rubner-Institut, 24103 Kiel, Germany
| | - W Bockelmann
- Department of Microbiology and Biotechnology, Max Rubner-Institut, 24103 Kiel, Germany
| | - W Hoffmann
- Department of Safety and Quality of Milk and Fish Products, Max Rubner-Institut, 24103 Kiel, Germany.
| |
Collapse
|
23
|
Lahou E, Uyttendaele M. Growth potential of Listeria monocytogenes in soft, semi-soft and semi-hard artisanal cheeses after post-processing contamination in deli retail establishments. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.12.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Chen JQ, Healey S, Regan P, Laksanalamai P, Hu Z. PCR-based methodologies for detection and characterization of Listeria monocytogenes and Listeria ivanovii in foods and environmental sources. FOOD SCIENCE AND HUMAN WELLNESS 2017. [DOI: 10.1016/j.fshw.2017.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
25
|
Ahmadzadeh Nia S, Hanifian S. Survival of Listeria monocytogenes
strains in ultra-filtered white cheese: Effect of Lactobacillus plantarum
and incubation period. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sara Ahmadzadeh Nia
- Department of Food Science and Technology; Tabriz Branch, Islamic Azad University; Tabriz Iran
| | - Shahram Hanifian
- Department of Food Science and Technology; Tabriz Branch, Islamic Azad University; Tabriz Iran
| |
Collapse
|
26
|
Bockelmann W, Koslowsky M, Goerges S, Scherer S, Franz CM, Heller KJ. Growth inhibition of Listeria monocytogenes by bacteriocin-producing Staphylococcus equorum SE3 in cheese models. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.06.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Trmčić A, Chauhan K, Kent DJ, Ralyea RD, Martin NH, Boor KJ, Wiedmann M. Coliform detection in cheese is associated with specific cheese characteristics, but no association was found with pathogen detection. J Dairy Sci 2016; 99:6105-6120. [PMID: 27289158 DOI: 10.3168/jds.2016-11112] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/02/2016] [Indexed: 11/19/2022]
Abstract
Coliform detection in finished products, including cheese, has traditionally been used to indicate whether a given product has been manufactured under unsanitary conditions. As our understanding of the diversity of coliforms has improved, it is necessary to assess whether coliforms are a good indicator organism and whether coliform detection in cheese is associated with the presence of pathogens. The objective of this study was (1) to evaluate cheese available on the market for presence of coliforms and key pathogens, and (2) to characterize the coliforms present to assess their likely sources and public health relevance. A total of 273 cheese samples were tested for presence of coliforms and for Salmonella, Staphylococcus aureus, Shiga toxin-producing Escherichia coli, Listeria monocytogenes, and other Listeria species. Among all tested cheese samples, 27% (75/273) tested positive for coliforms in concentrations >10cfu/g. Pasteurization, pH, water activity, milk type, and rind type were factors significantly associated with detection of coliforms in cheese; for example, a higher coliform prevalence was detected in raw milk cheeses (42% with >10cfu/g) compared with pasteurized milk cheese (21%). For cheese samples contaminated with coliforms, only water activity was significantly associated with coliform concentration. Coliforms isolated from cheese samples were classified into 13 different genera, including the environmental coliform genera Hafnia, Raoultella, and Serratia, which represent the 3 genera most frequently isolated across all cheeses. Escherichia, Hafnia, and Enterobacter were significantly more common among raw milk cheeses. Based on sequencing of the housekeeping gene clpX, most Escherichia isolates were confirmed as members of fecal commensal clades of E. coli. All cheese samples tested negative for Salmonella, Staph. aureus, and Shiga toxin-producing E. coli. Listeria spp. were found in 12 cheese samples, including 5 samples positive for L. monocytogenes. Although no association was found between coliform and Listeria spp. detection, Listeria spp. were significantly more likely to be detected in cheese with the washed type of rind. Our data provide information on specific risk factors for pathogen detection in cheese, which will facilitate development of risk-based strategies to control microbial food safety hazards in cheese, and suggest that generic coliform testing cannot be used to assess the safety of natural cheese.
Collapse
Affiliation(s)
- A Trmčić
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14850
| | - K Chauhan
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14850
| | - D J Kent
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14850
| | - R D Ralyea
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14850
| | - N H Martin
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14850
| | - K J Boor
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14850
| | - M Wiedmann
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14850.
| |
Collapse
|
28
|
|
29
|
|
30
|
Law JWF, Ab Mutalib NS, Chan KG, Lee LH. An insight into the isolation, enumeration, and molecular detection of Listeria monocytogenes in food. Front Microbiol 2015; 6:1227. [PMID: 26579116 PMCID: PMC4630303 DOI: 10.3389/fmicb.2015.01227] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/20/2015] [Indexed: 12/23/2022] Open
Abstract
Listeria monocytogenes, a foodborne pathogen that can cause listeriosis through the consumption of food contaminated with this pathogen. The ability of L. monocytogenes to survive in extreme conditions and cause food contaminations have become a major concern. Hence, routine microbiological food testing is necessary to prevent food contamination and outbreaks of foodborne illness. This review provides insight into the methods for cultural detection, enumeration, and molecular identification of L. monocytogenes in various food samples. There are a number of enrichment and plating media that can be used for the isolation of L. monocytogenes from food samples. Enrichment media such as buffered Listeria enrichment broth, Fraser broth, and University of Vermont Medium (UVM) Listeria enrichment broth are recommended by regulatory agencies such as Food and Drug Administration-bacteriological and analytical method (FDA-BAM), US Department of Agriculture-Food and Safety (USDA-FSIS), and International Organization for Standardization (ISO). Many plating media are available for the isolation of L. monocytogenes, for instance, polymyxin acriflavin lithium-chloride ceftazidime aesculin mannitol, Oxford, and other chromogenic media. Besides, reference methods like FDA-BAM, ISO 11290 method, and USDA-FSIS method are usually applied for the cultural detection or enumeration of L. monocytogenes. most probable number technique is applied for the enumeration of L. monocytogenes in the case of low level contamination. Molecular methods including polymerase chain reaction, multiplex polymerase chain reaction, real-time/quantitative polymerase chain reaction, nucleic acid sequence-based amplification, loop-mediated isothermal amplification, DNA microarray, and next generation sequencing technology for the detection and identification of L. monocytogenes are discussed in this review. Overall, molecular methods are rapid, sensitive, specific, time- and labor-saving. In future, there are chances for the development of new techniques for the detection and identification of foodborne with improved features.
Collapse
Affiliation(s)
- Jodi Woan-Fei Law
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash UniversityBandar Sunway, Malaysia
| | | | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of MalayaKuala Lumpur, Malaysia
| | - Learn-Han Lee
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash UniversityBandar Sunway, Malaysia
| |
Collapse
|
31
|
Schoder D, Strauß A, Szakmary-Brändle K, Wagner M. How safe is European Internet cheese? A purchase and microbiological investigation. Food Control 2015. [DOI: 10.1016/j.foodcont.2014.12.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Tiwari U, Cummins E, Valero A, Walsh D, Dalmasso M, Jordan K, Duffy G. Farm to Fork Quantitative Risk Assessment of Listeria monocytogenes Contamination in Raw and Pasteurized Milk Cheese in Ireland. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2015; 35:1140-1153. [PMID: 25850713 DOI: 10.1111/risa.12332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The objective of this study was to model and quantify the level of Listeria monocytogenes in raw milk cheese (RMc) and pasteurized milk cheese (PMc) from farm to fork using a Bayesian inference approach combined with a quantitative risk assessment. The modeling approach included a prediction of contamination arising from the farm environment as well from cross-contamination within the cheese-processing facility through storage and subsequent human exposure. The model predicted a high concentration of L. monocytogenes in contaminated RMc (mean 2.19 log10 CFU/g) compared to PMc (mean -1.73 log10 CFU/g). The mean probability of illness (P1 for low-risk population, LR) and (P2 for high-risk population, HR, e.g., immunocompromised) adult Irish consumers following exposure to contaminated cheese was 7 × 10(-8) (P1 ) and 9 × 10(-4) (P2 ) for RMc and 7 × 10(-10) (P1 ) and 8 × 10(-6) (P2 ) for PMc, respectively. In addition, the model was used to evaluate performance objectives at various stages, namely, the cheese making and ripening stages, and to set a food safety objective at the time of consumption. A scenario analysis predicted various probabilities of L. monocytogenes contamination along the cheese-processing chain for both RMc and PMc. The sensitivity analysis showed the critical factors for both cheeses were the serving size of the cheese, storage time, and temperature at the distribution stage. The developed model will allow food processors and policymakers to identify the possible routes of contamination along the cheese-processing chain and to reduce the risk posed to human health.
Collapse
Affiliation(s)
- Uma Tiwari
- Teagasc Food Research Food Centre, Ashtown, Dublin, Ireland
| | - Enda Cummins
- School of Biosystems Engineering, University College Dublin, Dublin, Ireland
| | - Antonio Valero
- Department of Food Science and Technology, University of Cordoba, Cordoba, Spain
| | - Des Walsh
- Teagasc Food Research Food Centre, Ashtown, Dublin, Ireland
| | - Marion Dalmasso
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Kieran Jordan
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | | |
Collapse
|
33
|
Kunová S, Kačániová M, Čuboň J, Haščík P, Lopašovský Ľ. Evaluation of microbiological quality of selected cheeses during storage. POTRAVINARSTVO 2015. [DOI: 10.5219/463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of this article was to evaluate and compare the microbiological quality of selected types of cheeses immediately after opening and after 5 days storage in the refrigerator. Total viable counts (TVC), coliform bacteria (CB) and microscopic filamentous fungi (MFF) were determined by microbiological analysis. We analyzed 8 samples of cheese of Slovak origin. Plate dilution method was used for microbiological analysis. The Codex Alimentarius of Slovak republic (2006) just indicates number of coliforms bacteria (102) and microscopic fungi (5 × 102). The TVC values after opening of cheeses ranged from 1.68 × 103 CFU.g-1 (3.22 log CFU.g-1) in the sample no. 1 to 1.71 × 105 KTJ.g-1 (5.23 log CFU.g-1) in the sample no. 4 after storage in the refrigerator. All samples were negative for the presence of coliform bacteria after opening. The values of CB were 1.18 × 102 CFU.g-1 (2.07 log CFU.g-1) in sample no. 7 and 1.90 × 102 CFU.g-1 (2.27 log CFU.g-1) in the sample no. 8 after storage in refrigerator. These values are not in accordance with Codex Alimentarius of Slovak Republic (2006). Other samples were negative for presence of CB after storage at 4 °C. The values of MFF in samplesranged from 1.81 × 101 CFU.g-1 (1.25 log CFU.g-1) in the sample no. 1 after opening to 1.68 × 102 CFU.g-1 (2.22 log CFU.g-1) in sample no. 7 after storage of samples. All analysed samples were in accordance with Codex Alimentarius of Slovak republic (2006).
Collapse
|
34
|
Murdaca G, Spanò F, Contatore M, Guastalla A, Penza E, Magnani O, Puppo F. Infection risk associated with anti-TNF-α agents: a review. Expert Opin Drug Saf 2015; 14:571-82. [PMID: 25630559 DOI: 10.1517/14740338.2015.1009036] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION TNF-α is a pro-inflammatory cytokine known to a have a key role in the pathogenesis of chronic immune-mediated diseases. TNF-α inhibitors can be administered either as monotherapy or in combination with other anti-inflammatory or disease-modifying anti-rheumatic drugs (DMARDs) to treat chronic immune-mediated diseases. AREAS COVERED Patients receiving TNF-α inhibitors are at high risk of infections. Based on our experience, in this paper, we discuss the risk of infections associated with the administration of TNF-α inhibitors and the strategies for mitigating against the development of these serious adverse events. EXPERT OPINION Infliximab more so than etanercept appears to be responsible for the increased risk of infections. Re-activation of latent tuberculosis (LTB) infection and the overall risk of opportunistic infections should be considered before beginning TNF-α inhibitor therapy. A careful medical history, Mantoux test and chest-x-ray should always be performed before prescribing TNF-α inhibitors. Particular attention should be paid to risk factors for Pneumocystis jirovecii infection. Hepatitis B and C virological follow-up should be considered during TNF-α inhibitor treatment. Finally, patients who are at high risk of herpes zoster (HZ) reactivation would benefit from a second vaccination in adulthood when receiving TNF-α inhibitors.
Collapse
Affiliation(s)
- Giuseppe Murdaca
- University of Genova, Department of Internal Medicine, Clinical Immunology Unit , Viale Benedetto XV, n. 6, 16132 Genova , Italy +39 0103537924 ; +39 0105556950 ;
| | | | | | | | | | | | | |
Collapse
|
35
|
Prevalence and antimicrobial resistance of Listeria monocytogenes and Salmonella strains isolated in ready-to-eat foods in Eastern Spain. Food Control 2015. [DOI: 10.1016/j.foodcont.2014.06.043] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Melo J, Andrew P, Faleiro M. Listeria monocytogenes in cheese and the dairy environment remains a food safety challenge: The role of stress responses. Food Res Int 2015. [DOI: 10.1016/j.foodres.2014.10.031] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
37
|
Lücke FK, Zangerl P. Food safety challenges associated with traditional foods in German-speaking regions. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Schvartzman MS, Gonzalez-Barron U, Butler F, Jordan K. Modeling the growth of Listeria monocytogenes on the surface of smear- or mold-ripened cheese. Front Cell Infect Microbiol 2014; 4:90. [PMID: 25072033 PMCID: PMC4079949 DOI: 10.3389/fcimb.2014.00090] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 06/12/2014] [Indexed: 11/13/2022] Open
Abstract
Surface-ripened cheeses are matured by means of manual or mechanical technologies posing a risk of cross-contamination, if any cheeses are contaminated with Listeria monocytogenes. In predictive microbiology, primary models are used to describe microbial responses, such as growth rate over time and secondary models explain how those responses change with environmental factors. In this way, primary models were used to assess the growth rate of L. monocytogenes during ripening of the cheeses and the secondary models to test how much the growth rate was affected by either the pH and/or the water activity (aw) of the cheeses. The two models combined can be used to predict outcomes. The purpose of these experiments was to test three primary (the modified Gompertz equation, the Baranyi and Roberts model, and the Logistic model) and three secondary (the Cardinal model, the Ratowski model, and the Presser model) mathematical models in order to define which combination of models would best predict the growth of L. monocytogenes on the surface of artificially contaminated surface-ripened cheeses. Growth on the surface of the cheese was assessed and modeled. The primary models were firstly fitted to the data and the effects of pH and aw on the growth rate (μmax) were incorporated and assessed one by one with the secondary models. The Logistic primary model by itself did not show a better fit of the data among the other primary models tested, but the inclusion of the Cardinal secondary model improved the final fit. The aw was not related to the growth of Listeria. This study suggests that surface-ripened cheese should be separately regulated within EU microbiological food legislation and results expressed as counts per surface area rather than per gram.
Collapse
Affiliation(s)
- M. Sol Schvartzman
- Food Safety Department, Teagasc Food Research CentreMoorepark, Fermoy, Ireland
- Biosystems Engineering, School of Agriculture, Food Science and Veterinary Medicine, University College DublinDublin, Ireland
| | - Ursula Gonzalez-Barron
- Biosystems Engineering, School of Agriculture, Food Science and Veterinary Medicine, University College DublinDublin, Ireland
| | - Francis Butler
- Biosystems Engineering, School of Agriculture, Food Science and Veterinary Medicine, University College DublinDublin, Ireland
| | - Kieran Jordan
- Food Safety Department, Teagasc Food Research CentreMoorepark, Fermoy, Ireland
| |
Collapse
|
39
|
Greco S, Tolli R, Bossù T, Rodas EMF, Di Giamberardino F, Di Sirio A, Vita S, De Angelis V, Bilei S, Sonnessa M, Gattuso A, Lanni L. Case of contamination by Listeria monocytogenes in mozzarella cheese. Ital J Food Saf 2014; 3:1708. [PMID: 27800317 PMCID: PMC5076667 DOI: 10.4081/ijfs.2014.1708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/09/2013] [Accepted: 09/10/2013] [Indexed: 11/24/2022] Open
Abstract
Following a Listeria monocytogenes detection in a mozzarella cheese sampled at a dairy plant in Lazio Region, further investigations have been conducted both by the competent Authority and the food business operatordairy factory (as a part of dairy factory HACCP control). In total, 90 dairy products, 7 brine and 64 environmental samples have been tested. The prevalence of Listeria monocytogenes was 24.4% in mozzarella cheese, and 9.4% in environmental samples, while brines were all negatives. Forty-seven strains of L. monocytogenes have been isolated, all belonging to 4b/4e serotype. In 12 of these, the macrorestriction profile has been determined by means of pulsed field gel electrophoresis. The profiles obtained with AscI enzyme showed a 100% similarity while those obtained with ApaI a 96.78% similarity. These characteristics of the isolated strains jointly with the production process of mozzarella cheese has allowed to hypothesise an environmental contamination.
Collapse
Affiliation(s)
- Sara Greco
- Direzione Operativa Controllo degli Alimenti, Istituto Zooprofilattico Sperimentale delle Regioni Lazio e Toscana , Roma, Italy
| | - Rita Tolli
- Direzione Operativa Controllo degli Alimenti, Istituto Zooprofilattico Sperimentale delle Regioni Lazio e Toscana , Roma, Italy
| | - Teresa Bossù
- Direzione Operativa Controllo degli Alimenti, Istituto Zooprofilattico Sperimentale delle Regioni Lazio e Toscana , Roma, Italy
| | - Eda Maria Flores Rodas
- Direzione Operativa Controllo degli Alimenti, Istituto Zooprofilattico Sperimentale delle Regioni Lazio e Toscana , Roma, Italy
| | - Fabiola Di Giamberardino
- Direzione Operativa Controllo degli Alimenti, Istituto Zooprofilattico Sperimentale delle Regioni Lazio e Toscana , Roma, Italy
| | - Alessandro Di Sirio
- Direzione Operativa Controllo degli Alimenti, Istituto Zooprofilattico Sperimentale delle Regioni Lazio e Toscana , Roma, Italy
| | - Silvia Vita
- Direzione Operativa Controllo degli Alimenti, Istituto Zooprofilattico Sperimentale delle Regioni Lazio e Toscana , Roma, Italy
| | - Veronica De Angelis
- Direzione Operativa Controllo degli Alimenti, Istituto Zooprofilattico Sperimentale delle Regioni Lazio e Toscana , Roma, Italy
| | - Stefano Bilei
- Direzione Operativa Controllo degli Alimenti, Istituto Zooprofilattico Sperimentale delle Regioni Lazio e Toscana , Roma, Italy
| | - Michele Sonnessa
- Dipartimento di Sanità Pubblica Veterinaria e Sicurezza Alimentare, Istituto Superiore di Sanità , Roma, Italy
| | - Antonietta Gattuso
- Dipartimento di Sanità Pubblica Veterinaria e Sicurezza Alimentare, Istituto Superiore di Sanità , Roma, Italy
| | - Luigi Lanni
- Direzione Operativa Controllo degli Alimenti, Istituto Zooprofilattico Sperimentale delle Regioni Lazio e Toscana , Roma, Italy
| |
Collapse
|
40
|
Montel MC, Buchin S, Mallet A, Delbes-Paus C, Vuitton DA, Desmasures N, Berthier F. Traditional cheeses: rich and diverse microbiota with associated benefits. Int J Food Microbiol 2014; 177:136-54. [PMID: 24642348 DOI: 10.1016/j.ijfoodmicro.2014.02.019] [Citation(s) in RCA: 356] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 02/17/2014] [Accepted: 02/22/2014] [Indexed: 11/26/2022]
Abstract
The risks and benefits of traditional cheeses, mainly raw milk cheeses, are rarely set out objectively, whence the recurrent confused debate over their pros and cons. This review starts by emphasizing the particularities of the microbiota in traditional cheeses. It then describes the sensory, hygiene, and possible health benefits associated with traditional cheeses. The microbial diversity underlying the benefits of raw milk cheese depends on both the milk microbiota and on traditional practices, including inoculation practices. Traditional know-how from farming to cheese processing helps to maintain both the richness of the microbiota in individual cheeses and the diversity between cheeses throughout processing. All in all more than 400 species of lactic acid bacteria, Gram and catalase-positive bacteria, Gram-negative bacteria, yeasts and moulds have been detected in raw milk. This biodiversity decreases in cheese cores, where a small number of lactic acid bacteria species are numerically dominant, but persists on the cheese surfaces, which harbour numerous species of bacteria, yeasts and moulds. Diversity between cheeses is due particularly to wide variations in the dynamics of the same species in different cheeses. Flavour is more intense and rich in raw milk cheeses than in processed ones. This is mainly because an abundant native microbiota can express in raw milk cheeses, which is not the case in cheeses made from pasteurized or microfiltered milk. Compared to commercial strains, indigenous lactic acid bacteria isolated from milk/cheese, and surface bacteria and yeasts isolated from traditional brines, were associated with more complex volatile profiles and higher scores for some sensorial attributes. The ability of traditional cheeses to combat pathogens is related more to native antipathogenic strains or microbial consortia than to natural non-microbial inhibitor(s) from milk. Quite different native microbiota can protect against Listeria monocytogenes in cheeses (in both core and surface) and on the wooden surfaces of traditional equipment. The inhibition seems to be associated with their qualitative and quantitative composition rather than with their degree of diversity. The inhibitory mechanisms are not well elucidated. Both cross-sectional and cohort studies have evidenced a strong association of raw-milk consumption with protection against allergic/atopic diseases; further studies are needed to determine whether such association extends to traditional raw-milk cheese consumption. In the future, the use of meta-omics methods should help to decipher how traditional cheese ecosystems form and function, opening the way to new methods of risk-benefit management from farm to ripened cheese.
Collapse
Affiliation(s)
| | - Solange Buchin
- INRA, UR342 Technologie et Analyses Laitières, F-39801 Poligny, France
| | - Adrien Mallet
- Normandie Univ, France; UNICAEN, ABTE, F-14032 Caen, France
| | - Céline Delbes-Paus
- INRA, Unité Recherches Fromagères, 20 Côte de Reyne, F-15000 Aurillac, France
| | - Dominique A Vuitton
- UNICAEN, ABTE, F-14032 Caen, France; EA3181/Université de Franche-Comté, 25030, Besançon, France
| | | | | |
Collapse
|
41
|
Kamana O, Ceuppens S, Jacxsens L, Kimonyo A, Uyttendaele M. Microbiological quality and safety assessment of the Rwandan milk and dairy chain. J Food Prot 2014; 77:299-307. [PMID: 24490925 DOI: 10.4315/0362-028x.jfp-13-230] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Milk is a valuable and nutritious food product that can partially fulfill the rising food demand of the growing African population. The microbiological status of milk and derived products was assessed throughout the milk and dairy chain in Rwanda by enumeration of the total mesophilic count, coliforms, and Staphylococcus aureus and detection of Salmonella and Listeria monocytogenes. The quality of raw milk was satisfactory for the majority of samples, but 5.2% contained Salmonella. At the processing level, the total mesophilic count and coliform numbers indicated ineffective heat treatment during pasteurization or postpasteurization contamination. Increasing bacterial counts were observed along the retail chain and could be attributed to insufficient temperature control during storage. Milk and dairy products sold in milk shops were of poor and variable microbiological quality in comparison with the pasteurized milk sold in supermarkets. In particular, the microbiological load and pathogen prevalence in cheese were unacceptably high.
Collapse
Affiliation(s)
- Olivier Kamana
- Ghent University, Faculty of Bioscience Engineering, Laboratory of Food Microbiology and Food Preservation (LFMFP), Ghent, Belgium; Higher Institute of Agriculture and Animal Husbandry, Faculty of Agriculture and Rural Development, Department of Animal Production, Busogo, Rwanda
| | - Siele Ceuppens
- Ghent University, Faculty of Bioscience Engineering, Laboratory of Food Microbiology and Food Preservation (LFMFP), Ghent, Belgium
| | - Liesbeth Jacxsens
- Ghent University, Faculty of Bioscience Engineering, Laboratory of Food Microbiology and Food Preservation (LFMFP), Ghent, Belgium
| | - Anastase Kimonyo
- Kigali Institute of Science and Technology, Faculty of Applied Sciences, Department of Food Science and Technology, Kigali, Rwanda
| | - Mieke Uyttendaele
- Ghent University, Faculty of Bioscience Engineering, Laboratory of Food Microbiology and Food Preservation (LFMFP), Ghent, Belgium.
| |
Collapse
|
42
|
Human isolates ofListeria monocytogenesin Sweden during half a century (1958–2010). Epidemiol Infect 2014; 142:2251-60. [DOI: 10.1017/s0950268813003385] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
SUMMARYIsolates ofListeria monocytogenes(n = 932) isolated in Sweden during 1958–2010 from human patients with invasive listeriosis were characterized by serotyping and pulsed-field gel electrophoresis (PFGE) (AscI). Of the 932 isolates, 183 different PFGE types were identified, of which 83 were each represented by only one isolate. In all, 483 serovar 1/2a isolates were distributed over 114 PFGE types; 90 serovar 1/2b isolates gave 32 PFGE types; 21 serovar 1/2c isolates gave nine PFGE types; three serovar 3b isolates gave one PFGE type; and, 335 serovar 4b isolates gave 31 PFGE types. During the 1980s in Sweden, several serovar 4b cases were associated with the consumption of European raw soft cheese. However, as cheese-production hygiene has improved, the number of 4b cases has decreased. Since 1996, serovar 1/2a has been the dominantL. monocytogenesserovar in human listeriosis in Sweden. Therefore, based on current serovars and PFGE types, an association between human cases of listeriosis and the consumption of vacuum-packed gravad and cold-smoked salmon is suggested.
Collapse
|
43
|
Assessing in-house monitoring efficiency by tracing contamination rates in cheese lots recalled during an outbreak of listeriosis in Austria. Int J Food Microbiol 2013; 167:353-8. [DOI: 10.1016/j.ijfoodmicro.2013.09.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 07/19/2013] [Accepted: 09/29/2013] [Indexed: 11/20/2022]
|
44
|
Hystead E, Diez-Gonzalez F, Schoenfuss TC. The effect of sodium reduction with and without potassium chloride on the survival of Listeria monocytogenes in Cheddar cheese. J Dairy Sci 2013; 96:6172-85. [PMID: 23910550 DOI: 10.3168/jds.2013-6675] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 06/18/2013] [Indexed: 11/19/2022]
Abstract
Sodium chloride (NaCl) in cheese contributes to flavor and texture directly and by its effect on microbial and enzymatic activity. The salt-to-moisture ratio (S/M) is used to gauge if conditions for producing good-quality cheese have been met. Reductions in salt that deviate from the ideal S/M range could result in changing culture acidification profiles during cheese making. Lactococcus lactis ssp. lactis or Lc. lactis ssp. cremoris are both used as cultures in Cheddar cheese manufacture, but Lc. lactis ssp. lactis has a higher salt and pH tolerance than Lc. lactis ssp. cremoris. Both salt and pH are used to control growth and survival of Listeria monocytogenes and salts such as KCl are commonly used to replace the effects of NaCl in food when NaCl is reduced. The objectives of this project were to determine the effects of sodium reduction, KCl use, and the subspecies of Lc. lactis used on L. monocytogenes survival in stirred-curd Cheddar cheese. Cheese was manufactured with either Lc. lactis ssp. lactis or Lc. lactis ssp. cremoris. At the salting step, curd was divided and salted with a concentration targeted to produce a final cheese with 600 mg of sodium/100 g (control), 25% reduced sodium (450 mg of sodium/100 g; both with and without KCl), and low sodium (53% sodium reduction or 280 mg of sodium/100 g; both with and without KCl). Potassium chloride was added on a molar equivalent to the NaCl it replaced to maintain an equivalent S/M. Cheese was inoculated with a 5-strain cocktail of L. monocytogenes at different times during aging to simulate postprocessing contamination, and counts were monitored over 27 or 50 d, depending on incubation temperature (12 or 5 °C, respectively). In cheese inoculated with 4 log₁₀ cfu of L. monocytogenes/g 2 wk after manufacture, viable counts declined by more than 3 log₁₀ cfu/g in all treatments over 60 d. When inoculated with 5 log₁₀ cfu/g at 3mo of cheese age, L. monocytogenes counts in Cheddar cheese were also reduced during storage, but by less than 1.5 log10 cfu/g after 50 d. However, cheese with a 50% reduction in sodium without KCl had higher counts than full-sodium cheese at the end of 50 d of incubation at 4 °C when inoculated at 3 mo. When inoculated at 8 mo postmanufacture, this trend was only observed in 50% reduced sodium with KCl, for cheese manufactured with both cultures. This enhanced survival for 50% reduced-sodium cheese was not seen when a higher incubation temperature (12 °C) was used when cheese was inoculated at 3 mo of age and monitored for 27 d (no difference in treatments was observed at this incubation temperature). In the event of postprocessing contamination during later stages of ripening, L. monocytogenes was capable of survival in Cheddar cheese regardless of which culture was used, whether or not sodium had been reduced by as much as 50% from standard concentrations, or if KCl had been added to maintain the effective S/M of full-sodium Cheddar cheese.
Collapse
Affiliation(s)
- E Hystead
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul 55108
| | | | | |
Collapse
|
45
|
Combining individual-based modeling and food microenvironment descriptions to predict the growth of Listeria monocytogenes on smear soft cheese. Appl Environ Microbiol 2013; 79:5870-81. [PMID: 23872572 DOI: 10.1128/aem.01311-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An individual-based modeling (IBM) approach was developed to describe the behavior of a few Listeria monocytogenes cells contaminating smear soft cheese surface. The IBM approach consisted of assessing the stochastic individual behaviors of cells on cheese surfaces and knowing the characteristics of their surrounding microenvironments. We used a microelectrode for pH measurements and micro-osmolality to assess the water activity of cheese microsamples. These measurements revealed a high variability of microscale pH compared to that of macroscale pH. A model describing the increase in pH from approximately 5.0 to more than 7.0 during ripening was developed. The spatial variability of the cheese surface characterized by an increasing pH with radius and higher pH on crests compared to that of hollows on cheese rind was also modeled. The microscale water activity ranged from approximately 0.96 to 0.98 and was stable during ripening. The spatial variability on cheese surfaces was low compared to between-cheese variability. Models describing the microscale variability of cheese characteristics were combined with the IBM approach to simulate the stochastic growth of L. monocytogenes on cheese, and these simulations were compared to bacterial counts obtained from irradiated cheeses artificially contaminated at different ripening stages. The simulated variability of L. monocytogenes counts with the IBM/microenvironmental approach was consistent with the observed one. Contrasting situations corresponding to no growth or highly contaminated foods could be deduced from these models. Moreover, the IBM approach was more effective than the traditional population/macroenvironmental approach to describe the actual bacterial behavior variability.
Collapse
|
46
|
Analysis of the baseline survey on the prevalence ofListeria monocytogenesin certain ready-to-eat foods in the EU, 2010-2011 Part A:Listeria monocytogenesprevalence estimates. EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3241] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
47
|
Huang E, Zhang L, Chung YK, Zheng Z, Yousef AE. Characterization and application of enterocin RM6, a bacteriocin from Enterococcus faecalis. BIOMED RESEARCH INTERNATIONAL 2013; 2013:206917. [PMID: 23844357 PMCID: PMC3697273 DOI: 10.1155/2013/206917] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 05/30/2013] [Indexed: 11/17/2022]
Abstract
Use of bacteriocins in food preservation has received great attention in recent years. The goal of this study is to characterize enterocin RM6 from Enterococcus faecalis OSY-RM6 and investigate its efficacy against Listeria monocytogenes in cottage cheese. Enterocin RM6 was purified from E. faecalis culture supernatant using ion exchange column, multiple C18-silica cartridges, followed by reverse-phase high-performance liquid chromatography. The molecular weight of enterocin RM6 is 7145.0823 as determined by mass spectrometry (MS). Tandem mass spectrometry (MS/MS) analysis revealed that enterocin RM6 is a 70-residue cyclic peptide with a head-to-tail linkage between methionine and tryptophan residues. The peptide sequence of enterocin RM6 was further confirmed by sequencing the structural gene of the peptide. Enterocin RM6 is active against Gram-positive bacteria, including L. monocytogenes, Bacillus cereus, and methicillin-resistant Staphylococcus aureus (MRSA). Enterocin RM6 (final concentration in cottage cheese, 80 AU/mL) caused a 4-log reduction in population of L. monocytogenes inoculated in cottage cheese within 30 min of treatment. Therefore, enterocin RM6 has potential applications as a potent antimicrobial peptide against foodborne pathogens in food.
Collapse
Affiliation(s)
- En Huang
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| | - Liwen Zhang
- Mass Spectrometry and Proteomics Facility, The Ohio State University, Columbus, OH 43210, USA
| | - Yoon-Kyung Chung
- Department of Food & Biotechnology, Hankyong National University, Gyeonggi 456749, Republic of Korea
| | - Zuoxing Zheng
- Central Research, Kraft Foods Group, Inc., Glenview, IL 60025, USA
| | - Ahmed E. Yousef
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
48
|
Application of a bacteriocin-like inhibitory substance producing Enterococcus durans E204 strain, isolated from camel milk, to control Listeria monocytogenes CECT 4032 in goat jben. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-013-0666-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
49
|
Different assembly of acid and salt tolerance response in two dairy Listeria monocytogenes wild strains. Arch Microbiol 2013; 195:339-48. [DOI: 10.1007/s00203-013-0878-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 02/11/2013] [Accepted: 02/14/2013] [Indexed: 01/11/2023]
|
50
|
Presence of L. monocytogenes and some bacterial pathogens in two Turkish traditional foods, Mihalic cheese and Hosmerim dessert. Food Control 2012. [DOI: 10.1016/j.foodcont.2012.01.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|