1
|
Lamarche A, Lessard MH, Viel C, Turgeon SL, St-Gelais D, Labrie S. Quantitative PCR reveals the frequency and distribution of 3 indigenous yeast species across a range of specialty cheeses. J Dairy Sci 2022; 105:8677-8687. [PMID: 36114057 DOI: 10.3168/jds.2022-21949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/26/2022] [Indexed: 11/19/2022]
Abstract
Indigenous microorganisms are important components of the complex ecosystem of many dairy foods including cheeses, and they are potential contributors to the development of a specific cheese's sensory properties. Among these indigenous microorganisms are the yeasts Cyberlindnera jadinii, Pichia kudriavzevii, and Kazachstania servazzii, which were previously detected using traditional microbiological methods in both raw milk and some artisanal specialty cheeses produced in the province of Québec, Canada. However, their levels across different cheese varieties are unknown. A highly specific and sensitive real-time quantitative PCR assay was developed to quantitate these yeast species in a variety of specialty cheeses (bloomy-rind, washed-rind, and natural-rind cheeses from raw, thermized, and pasteurized milks). The specificity of the quantitative PCR assay was validated, and it showed no cross-amplification with 11 other fungal microorganisms usually found in bloomy-rind and washed-rind cheeses. Cyberlindnera jadinii and P. kudriavzevii were found in the majority of the cheeses analyzed (25 of 29 and 24 of 29 cheeses, respectively) in concentrations up to 104 to 108 gene copies/g in the cheese cores, which are considered oxygen-poor environments, and 101 to 104 gene copies/cm2 in the rind. However, their high abundance was not observed in the same samples. Whereas C. jadinii was present and dominant in all core and rind samples, P. kudriavzevii was mostly present in cheese cores. In contrast, K. servazzii was present in the rinds of only 2 cheeses, in concentrations ranging from 101 to 103 gene copies/cm2, and in 1 cheese core at 105 gene copies/g. Thus, in the ecosystems of specialty cheeses, indigenous yeasts are highly frequent but variable, with certain species selectively present in specific varieties. These results shed light on some indigenous yeasts that establish during the ripening of specialty cheeses.
Collapse
Affiliation(s)
- A Lamarche
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), STELA Dairy Research Centre, Université Laval, Québec, G1V 0A6, Canada; Laboratoire de mycologie alimentaire (LMA), Université Laval, Québec, G1V 0A6, Canada
| | - M-H Lessard
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), STELA Dairy Research Centre, Université Laval, Québec, G1V 0A6, Canada; Laboratoire de mycologie alimentaire (LMA), Université Laval, Québec, G1V 0A6, Canada
| | - C Viel
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), STELA Dairy Research Centre, Université Laval, Québec, G1V 0A6, Canada; Laboratoire de mycologie alimentaire (LMA), Université Laval, Québec, G1V 0A6, Canada
| | - S L Turgeon
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), STELA Dairy Research Centre, Université Laval, Québec, G1V 0A6, Canada
| | - D St-Gelais
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), STELA Dairy Research Centre, Université Laval, Québec, G1V 0A6, Canada; Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, Saint-Hyacinthe, J2S 8E3, Canada
| | - S Labrie
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), STELA Dairy Research Centre, Université Laval, Québec, G1V 0A6, Canada; Laboratoire de mycologie alimentaire (LMA), Université Laval, Québec, G1V 0A6, Canada.
| |
Collapse
|
2
|
Gil-Rodríguez AM, Garcia-Gutierrez E. Antimicrobial mechanisms and applications of yeasts. ADVANCES IN APPLIED MICROBIOLOGY 2020; 114:37-72. [PMID: 33934852 DOI: 10.1016/bs.aambs.2020.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Yeasts and humans have had a close relationship for millenia. Yeast have been used for food production since the first human societies. Since then, alternative uses have been discovered. Nowadays, antibiotic resistance constitutes a pressing need worldwide. In order to overcome this threat, one of the most important strategies is the search for new antimicrobials in natural sources. Moreover, biopreservation based on natural sources has emerged as an alternative to more common chemical preservatives. Yeasts constitute an underexploited source of antagonistic activity against other microorganisms. Here, we compile a summary of the antagonistic activity of yeast origin against other yeast and other microorganisms, such as bacteria or parasites. We present the mechanisms of action used by yeasts to display these activities. We also provide applications of these antagonistic activities in food industry and agriculture, medicine and veterinary, where yeast promise to play a pivotal role in the near future.
Collapse
|
3
|
Cosetta CM, Kfoury N, Robbat A, Wolfe BE. Fungal volatiles mediate cheese rind microbiome assembly. Environ Microbiol 2020; 22:4745-4760. [PMID: 32869420 DOI: 10.1111/1462-2920.15223] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 12/01/2022]
Abstract
In vitro studies in plant, soil, and human systems have shown that microbial volatiles can mediate microbe-microbe or microbe-host interactions. These previous studies have often used artificially high concentrations of volatiles compared to in situ systems and have not demonstrated the roles volatiles play in mediating community-level dynamics. We used the notoriously volatile cheese rind microbiome to identify bacteria responsive to volatiles produced by five widespread cheese fungi. Vibrio casei had the strongest growth stimulation when exposed to all fungi. In multispecies community experiments, fungal volatiles caused a shift to a Vibrio-dominated community, potentially explaining the widespread occurrence of Vibrio in surface-ripened cheeses. RNA sequencing identified activation of the glyoxylate shunt as a possible mechanism underlying volatile-mediated growth promotion and community assembly. Our study demonstrates how airborne chemicals could be used to control the composition of microbiomes and illustrates how volatiles may impact the development of cheese rinds.
Collapse
Affiliation(s)
- Casey M Cosetta
- Department of Biology, Tufts University, 200 Boston Ave, Medford, MA, 02155, USA
| | - Nicole Kfoury
- Department of Chemistry, Tufts University, 62 Talbot Ave., Medford, MA, 02155, USA
| | - Albert Robbat
- Department of Chemistry, Tufts University, 62 Talbot Ave., Medford, MA, 02155, USA
| | - Benjamin E Wolfe
- Department of Biology, Tufts University, 200 Boston Ave, Medford, MA, 02155, USA
| |
Collapse
|
4
|
Kačániová M, Kunova S, Horská E, Nagyová Ľ, Puchalski C, Haščík P, Terentjeva M. Diversity of microorganisms in the traditional Slovak cheese. POTRAVINARSTVO 2019. [DOI: 10.5219/1061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of the present study was to describe the microbial groups of the traditional Slovak cheese Parenica during rippening. The microbial group included the total bacterial count, coliform bacteria, enterococci, lactic acid bacteria, and microscopic filamentous fungi, which may affect the organoleptic characteristics of this product. A total of 42 cheese samples were collected from four different farms during three months. The total bacterial counts were cultivated on Plate count agar at 30 °C, lactic acid bacteria (LAB) on MRS, APT and MSE at 37 °C, coliform bacteria on VRBL at 37 °C. Gram-positive and Gram-negative isolates were identified by MALDI-TOF MS profiling. Bacillus sp. and Enterococcus faecium were the most frequently identified species of bacteria. Candida kefyr was the most distributed yeast according to microbiological methods. Lactic acid bacteria group was represented by Lactobacillus helveticus, L. jensenii, L. alimentarius, L. crispatus, L. curvatus, L. fermentum, L. suebicus, L. delbrueckii ssp. lactis, L. paracasei ssp. paracasei, Lactococcus lactis ssp. lactis, Leuconostoc lactis and Le. mesenteroides ssp. mesenteroides . This report describing the indigenous microbiota of the traditional raw milk cheeses from Slovakia. Our results provide useful information on occurrence of valuable microbial strain for the industrialization of producing of the traditional dairy products in Slovakia.
Collapse
|
5
|
Haastrup MK, Johansen P, Malskær AH, Castro-Mejía JL, Kot W, Krych L, Arneborg N, Jespersen L. Cheese brines from Danish dairies reveal a complex microbiota comprising several halotolerant bacteria and yeasts. Int J Food Microbiol 2018; 285:173-187. [PMID: 30176565 DOI: 10.1016/j.ijfoodmicro.2018.08.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/06/2018] [Accepted: 08/15/2018] [Indexed: 11/19/2022]
Abstract
The Danish Danbo cheese is a surface ripened semi-hard cheese, which before ripening is submerged in brine for up to 24 h. The brining is required in order to obtain the structural and organoleptic properties of the cheeses. Likewise, the content of NaCl in the cheese will influence especially the surface microbiota being of significant importance for flavour development and prevention of microbial spoilage. Even though the microbiota on cheese surfaces have been studied extensively, limited knowledge is available on the occurrence of microorganisms in cheese brine. The aim of the present study was to investigate by both culture-dependent and -independent techniques the brine microbiota in four Danish dairies producing Danbo cheese. The pH of the brines varied from 5.1 to 5.6 with a dry matter content from 20 to 27% (w/w). The content of lactate varied from 4.1 to 10.8 g/L and free amino acids from 65 to 224 mg/L. Bacteria were isolated on five different media with NaCl contents of 0.85-23.0% (w/v) NaCl. The highest count of 6.3 log CFU/mL was obtained on TSA added 4% (w/v) NaCl. For yeasts, the highest count was 3.7 log CFU/mL on MYGP added 8% (w/v) NaCl. A total of 31 bacterial and eight eukaryotic species were isolated including several halotolerant and/or halophilic species. Among bacteria, counts of ≥6.0 log CFU/mL were obtained for Tetragenococcus muriaticus and Psychrobacter celer, while counts between ≥4.5 and < 6.0 log CFU/mL were obtained for Lactococcus lactis, Staphylococcus equorum, Staphylococcus hominis, Chromohalobacter beijerinckii, Chromohalobacter japonicus and Microbacterium maritypicum. Among yeasts, counts of ≥3.5 log CFU/mL were only obtained for Debaryomyces hansenii. By amplicon-based high-throughput sequencing of 16S rRNA gene and ITS2 regions for bacteria and eukaryotes respectively, brines from the same dairy clustered together indicating the uniqueness of the dairy brine microbiota. To a great extent the results obtained by amplicon sequencing fitted with the culture-dependent technique though each of the two methodologies identified unique genera/species. Dairy brine handling procedures as e.g. microfiltration were found to influence the brine microbiota. The current study proves the occurrence of a specific dairy brine microbiota including several halotolerant and/or halophilic species most likely of sea salt origin. The importance of these species during especially the initial stages of cheese ripening and their influence on cheese quality and safety need to be investigated. Likewise, optimised brine handling procedures and microbial cultures are required to ensure an optimal brine microbiota.
Collapse
Affiliation(s)
- Martin Kragelund Haastrup
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Pernille Johansen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Agnete Harboe Malskær
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Josué L Castro-Mejía
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Witold Kot
- Environmental Microbiology and Biotechnology, University of Aarhus, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Lukasz Krych
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Nils Arneborg
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Lene Jespersen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark.
| |
Collapse
|
6
|
Witte AK, Leeb C, Pinior B, Mester P, Fister S, Bobal M, Schoder D, Rossmanith P. Influence of sampling and DNA extraction on 16S rRNA gene amplicon sequencing - Comparison of the bacterial community between two food processing plants. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.12.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Lee JS, Bae I. Quality Characteristics, Changes in Physiochemical Properties and Functional Properties of Camembert Cheese Containing Red Ginseng Powder. Korean J Food Sci Anim Resour 2018; 38:64-77. [PMID: 29725225 PMCID: PMC5932958 DOI: 10.5851/kosfa.2018.38.1.64] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 12/14/2017] [Accepted: 12/20/2017] [Indexed: 11/29/2022] Open
Abstract
Effects of quality, physicochemical properties and antioxidants in Camembert cheese added with red ginseng powder (RGP) were investigated. Cheese samples were prepared with 0.05%, 0.10%, 0.15% and 0.20% RGP. and then monitored during ripening at 14°C for 28 d. The pH of the RGP amended treatment groups increased during the ripening period relative to the control (p<0.05). Moreover, the 1,2-Diphenyl-1-picrylhydrazyle (DPPH) was highest in the 0.15% RGP group from 21 d to 28 d. ABTS+ radical scavenging activity was increased just like DPPH as the ripening period passed, 0.10% treatment was highest at from 7 d to 21 d. 0.15% RGP was contents of ginsenosides : 10,999.7 ppm. The Free fatty acids (FFA), controls with 0.15% treatment, while the total fat (TF) and monounsaturated fat (MuSF) were higher in the control than the 0.15% RGP group (p<0.05). The total free amino acid (FAA) was increased in the control, and 0.15% RGP, and control was highest at then 0.15% RGP. The samples had average contents of fat and protein were 29% and 18-20% respectively. Additionally, the L* value decreased, while the a* and b* values increased as the amount of RGP added increased. Sensory evaluation revealed that texture and total acceptability were higher in the control group at 12 d. Although the addition of RGP did not exert a better effect on the ripening of the camembert cheese, but the ripening grade was similar to that of the common camembert cheese, and the additional function of the cheese was reinforced. Functional cheese could be developed.
Collapse
Affiliation(s)
- Jai-Sung Lee
- Research and Development Center, Dongwon F&B, Seongnam-si 13212, Korea
| | - Inhyu Bae
- Department of Animal Science and Technology, Sunchon National University, Suncheon-si 57922, Korea
| |
Collapse
|
8
|
Fungal networks shape dynamics of bacterial dispersal and community assembly in cheese rind microbiomes. Nat Commun 2018; 9:336. [PMID: 29362365 PMCID: PMC5780524 DOI: 10.1038/s41467-017-02522-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 12/07/2017] [Indexed: 11/29/2022] Open
Abstract
Most studies of bacterial motility have examined small-scale (micrometer–centimeter) cell dispersal in monocultures. However, bacteria live in multispecies communities, where interactions with other microbes may inhibit or facilitate dispersal. Here, we demonstrate that motile bacteria in cheese rind microbiomes use physical networks created by filamentous fungi for dispersal, and that these interactions can shape microbial community structure. Serratia proteamaculans and other motile cheese rind bacteria disperse on fungal networks by swimming in the liquid layers formed on fungal hyphae. RNA-sequencing, transposon mutagenesis, and comparative genomics identify potential genetic mechanisms, including flagella-mediated motility, that control bacterial dispersal on hyphae. By manipulating fungal networks in experimental communities, we demonstrate that fungal-mediated bacterial dispersal can shift cheese rind microbiome composition by promoting the growth of motile over non-motile community members. Our single-cell to whole-community systems approach highlights the interactive dynamics of bacterial motility in multispecies microbiomes. Interactions with other microbes may inhibit or facilitate the dispersal of bacteria. Here, Zhang et al. use cheese rind microbiomes as a model to show that physical networks created by filamentous fungi can affect the dispersal of motile bacteria and thus shape the diversity of microbial communities.
Collapse
|
9
|
|
10
|
Biodiversity of the Surface Microbial Consortia from Limburger, Reblochon, Livarot, Tilsit, and Gubbeen Cheeses. Microbiol Spectr 2015; 2:CM-0010-2012. [PMID: 26082119 DOI: 10.1128/microbiolspec.cm-0010-2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Comprehensive collaborative studies from our laboratories reveal the extensive biodiversity of the microflora of the surfaces of smear-ripened cheeses. Two thousand five hundred ninety-seven strains of bacteria and 2,446 strains of yeasts from the surface of the smear-ripened cheeses Limburger, Reblochon, Livarot, Tilsit, and Gubbeen, isolated at three or four times during ripening, were identified; 55 species of bacteria and 30 species of yeast were found. The microfloras of the five cheeses showed many similarities but also many differences and interbatch variation. Very few of the commercial smear microorganisms, deliberately inoculated onto the cheese surface, were reisolated and then mainly from the initial stages of ripening, implying that smear cheese production units must have an adventitious "house" flora. Limburger cheese had the simplest microflora, containing two yeasts, Debaryomyces hansenii and Geotrichum candidum, and two bacteria, Arthrobacter arilaitensis and Brevibacterium aurantiacum. The microflora of Livarot was the most complicated, comprising 10 yeasts and 38 bacteria, including many gram-negative organisms. Reblochon also had a very diverse microflora containing 8 yeasts and 13 bacteria (excluding gram-negative organisms which were not identified), while Gubbeen had 7 yeasts and 18 bacteria and Tilsit had 5 yeasts and 9 bacteria. D. hansenii was by far the dominant yeast, followed in order by G. candidum, Candida catenulata, and Kluyveromyces lactis. B. aurantiacum was the dominant bacterium and was found in every batch of the 5 cheeses. The next most common bacteria, in order, were Staphylococcus saprophyticus, A. arilaitensis, Corynebacterium casei, Corynebacterium variabile, and Microbacterium gubbeenense. S. saprophyticus was mainly found in Gubbeen, and A. arilaitensis was found in all cheeses but not in every batch. C. casei was found in most batches of Reblochon, Livarot, Tilsit, and Gubbeen. C. variabile was found in all batches of Gubbeen and Reblochon but in only one batch of Tilsit and in no batch of Limburger or Livarot. Other bacteria were isolated in low numbers from each of the cheeses, suggesting that each of the 5 cheeses has a unique microflora. In Gubbeen cheese, several different strains of the dominant bacteria were present, as determined by pulsed-field gel electrophoresis, and many of the less common bacteria were present as single clones. The culture-independent method, denaturing gradient gel electrophoresis, resulted in identification of several bacteria which were not found by the culture-dependent (isolation and rep-PCR identification) method. It was thus a useful complementary technique to identify other bacteria in the cheeses. The gross composition, the rate of increase in pH, and the indices of proteolysis were different in most of the cheeses.
Collapse
|
11
|
Irlinger F, Layec S, Hélinck S, Dugat-Bony E. Cheese rind microbial communities: diversity, composition and origin. FEMS Microbiol Lett 2014; 362:1-11. [DOI: 10.1093/femsle/fnu015] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
12
|
Arthrobacter arilaitensis strains isolated from ripened cheeses: Characterization of their pigmentation using spectrocolorimetry. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Genotypic and technological diversity of Brevibacterium linens strains for use as adjunct starter cultures in 'Pecorino di Filiano' cheese ripened in two different environments. Folia Microbiol (Praha) 2014; 60:61-7. [PMID: 25147054 DOI: 10.1007/s12223-014-0341-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 08/06/2014] [Indexed: 10/24/2022]
Abstract
Twenty-two Brevibacterium linens strains isolated from 'Pecorino di Filiano' cheese ripened in two different environments (natural cave and storeroom) were characterized and differentiated for features of technological interest and by genotypic methods, in order to select strains with specific features to be used as surface starter cultures. Results showed significant differences among strains on the basis of physiological and technological features, indicating heterogeneity within the species. A middle-low level of proteolytic activity was observed in 27.3 % of strains, while a small group (9.1 %) showed a high ability. Lipolytic activity was observed at three different temperatures and the highest value was detected at 20 °C with 13.6 % of strains, while an increase in temperature produced a slightly lower lipolysis in all strains. The evaluation of diacetyl production revealed that only 22.8 % of strains showed this ability, and most of them were isolated from product ripened in the natural cave. All strains exhibited only leu-aminopeptidase activity, with values more elevated in strains coming from the natural cave product. The combined analysis of genotypic results with the data obtained by the features of technological interest study established that the random amplified polymorphic DNA (RAPD) clusters obtained were composed not only of different genotypes but of different profiles based on technological properties too. This study demonstrated the importance of the ripening environment that affects the typical features of the artisanal product, leading to the selection of a specific surface microflora. Characterized strains could be associated within surface starters to standardize the production process of cheese, but preserving its typical organoleptic and sensory characteristics and improving the quality of the final product.
Collapse
|
14
|
Ordiales E, Benito MJ, Martín A, Casquete R, Serradilla MJ, de Guía Córdoba M. Bacterial communities of the traditional raw ewe's milk cheese “Torta del Casar” made without the addition of a starter. Food Control 2013. [DOI: 10.1016/j.foodcont.2013.03.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Hatoum R, Labrie S, Fliss I. Antimicrobial and probiotic properties of yeasts: from fundamental to novel applications. Front Microbiol 2012; 3:421. [PMID: 23267352 PMCID: PMC3525881 DOI: 10.3389/fmicb.2012.00421] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 11/21/2012] [Indexed: 12/11/2022] Open
Abstract
The yeasts constitute a large and heterogeneous group of microorganisms that are currently attracting increased attention from scientists and industry. Numerous and diverse biological activities make them promising candidates for a wide range of applications not limited to the food sector. In addition to their major contribution to flavor development in fermented foods, their antagonistic activities toward undesirable bacteria, and fungi are now widely known. These activities are associated with their competitiveness for nutrients, acidification of their growth medium, their tolerance of high concentrations of ethanol, and release of antimicrobial compounds such as antifungal killer toxins or "mycocins" and antibacterial compounds. While the design of foods containing probiotics (microorganisms that confer health benefits) has focused primarily on Lactobacillus and Bifidobacterium, the yeast Saccharomyces cerevisiae var. boulardii has long been known effective for treating gastroenteritis. In this review, the antimicrobial activities of yeasts are examined. Mechanisms underlying this antagonistic activity as well as recent applications of these biologically active yeasts in both the medical and veterinary sectors are described.
Collapse
Affiliation(s)
- Rima Hatoum
- Nutraceuticals and Functional Foods Institute, STELA Dairy Research Centre, Université LavalQuébec, QC, Canada
| | - Steve Labrie
- Nutraceuticals and Functional Foods Institute, STELA Dairy Research Centre, Université LavalQuébec, QC, Canada
| | - Ismail Fliss
- Nutraceuticals and Functional Foods Institute, STELA Dairy Research Centre, Université LavalQuébec, QC, Canada
| |
Collapse
|
16
|
Microbial composition of defect smear – A problem evolving during foil-prepacked storage of red-smear cheeses. Int Dairy J 2012. [DOI: 10.1016/j.idairyj.2012.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
|
18
|
Coton M, Delbés-Paus C, Irlinger F, Desmasures N, Le Fleche A, Stahl V, Montel MC, Coton E. Diversity and assessment of potential risk factors of Gram-negative isolates associated with French cheeses. Food Microbiol 2012; 29:88-98. [DOI: 10.1016/j.fm.2011.08.020] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 08/14/2011] [Accepted: 08/26/2011] [Indexed: 11/24/2022]
|
19
|
Schröder J, Maus I, Trost E, Tauch A. Complete genome sequence of Corynebacterium variabile DSM 44702 isolated from the surface of smear-ripened cheeses and insights into cheese ripening and flavor generation. BMC Genomics 2011; 12:545. [PMID: 22053731 PMCID: PMC3219685 DOI: 10.1186/1471-2164-12-545] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 11/03/2011] [Indexed: 11/14/2022] Open
Abstract
Background Corynebacterium variabile is part of the complex microflora on the surface of smear-ripened cheeses and contributes to the development of flavor and textural properties during cheese ripening. Still little is known about the metabolic processes and microbial interactions during the production of smear-ripened cheeses. Therefore, the gene repertoire contributing to the lifestyle of the cheese isolate C. variabile DSM 44702 was deduced from the complete genome sequence to get a better understanding of this industrial process. Results The chromosome of C. variabile DSM 44702 is composed of 3, 433, 007 bp and contains 3, 071 protein-coding regions. A comparative analysis of this gene repertoire with that of other corynebacteria detected 1, 534 predicted genes to be specific for the cheese isolate. These genes might contribute to distinct metabolic capabilities of C. variabile, as several of them are associated with metabolic functions in cheese habitats by playing roles in the utilization of alternative carbon and sulphur sources, in amino acid metabolism, and fatty acid degradation. Relevant C. variabile genes confer the capability to catabolize gluconate, lactate, propionate, taurine, and gamma-aminobutyric acid and to utilize external caseins. In addition, C. variabile is equipped with several siderophore biosynthesis gene clusters for iron acquisition and an exceptional repertoire of AraC-regulated iron uptake systems. Moreover, C. variabile can produce acetoin, butanediol, and methanethiol, which are important flavor compounds in smear-ripened cheeses. Conclusions The genome sequence of C. variabile provides detailed insights into the distinct metabolic features of this bacterium, implying a strong adaption to the iron-depleted cheese surface habitat. By combining in silico data obtained from the genome annotation with previous experimental knowledge, occasional observations on genes that are involved in the complex metabolic capacity of C. variabile were integrated into a global view on the lifestyle of this species.
Collapse
Affiliation(s)
- Jasmin Schröder
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 27, D-33615 Bielefeld, Germany
| | | | | | | |
Collapse
|
20
|
Larpin-Laborde S, Imran M, Bonaïti C, Bora N, Gelsomino R, Goerges S, Irlinger F, Goodfellow M, Ward AC, Vancanneyt M, Swings J, Scherer S, Guéguen M, Desmasures N. Surface microbial consortia from Livarot, a French smear-ripened cheese. Can J Microbiol 2011; 57:651-60. [PMID: 21815832 DOI: 10.1139/w11-050] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The surface microflora (902 isolates) of Livarot cheeses from three dairies was investigated during ripening. Yeasts were mainly identified by Fourier transform infrared spectroscopy. Geotrichum candidum was the dominating yeast among 10 species. Bacteria were identified using Biotype 100 strips, dereplicated by repetitive extragenic palindromic PCR (rep-PCR); 156 representative strains were identified by either BOX-PCR or (GTG)(5)-PCR, and when appropriate by 16S rDNA sequencing and SDS-PAGE analysis. Gram-positive bacteria accounted for 65% of the isolates and were mainly assigned to the genera Arthrobacter , Brevibacterium , Corynebacterium , and Staphylococcus . New taxa related to the genera Agrococcus and Leucobacter were found. Yeast and Gram-positive bacteria strains deliberately added as smearing agents were sometimes undetected during ripening. Thirty-two percent of the isolates were Gram-negative bacteria, which showed a high level of diversity and mainly included members of the genera Alcaligenes , Hafnia , Proteus , Pseudomonas , and Psychrobacter . Whatever the milk used (pasteurized or unpasteurized), similar levels of biodiversity were observed in the three dairies, all of which had efficient cleaning procedures and good manufacturing practices. It appears that some of the Gram-negative bacteria identified should now be regarded as potentially useful in some cheese technologies. The assessment of their positive versus negative role should be objectively examined.
Collapse
Affiliation(s)
- Sandra Larpin-Laborde
- Université de Caen Basse-Normandie, Unité des Microorganismes d'Intérêt Laitier et Alimentaire, E.A. 3213, IFR 146 ICORE, 14032 Caen CEDEX, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
|
23
|
Growth and aroma contribution of Microbacterium foliorum, Proteus vulgaris and Psychrobacter sp. during ripening in a cheese model medium. Appl Microbiol Biotechnol 2009; 82:169-77. [DOI: 10.1007/s00253-008-1805-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 11/18/2008] [Accepted: 11/18/2008] [Indexed: 10/21/2022]
|
24
|
Bora N, Vancanneyt M, Gelsomino R, Snauwaert C, Swings J, Jones AL, Ward AC, Chamba JF, Kroppenstedt RM, Schumann P, Goodfellow M. Mycetocola reblochoni sp. nov., isolated from the surface microbial flora of Reblochon cheese. Int J Syst Evol Microbiol 2008; 58:2687-93. [DOI: 10.1099/ijs.0.64201-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
25
|
Dolci P, Barmaz A, Zenato S, Pramotton R, Alessandria V, Cocolin L, Rantsiou K, Ambrosoli R. Maturing dynamics of surface microflora in Fontina PDO cheese studied by culture-dependent and -independent methods. J Appl Microbiol 2008; 106:278-87. [PMID: 19054234 DOI: 10.1111/j.1365-2672.2008.04001.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To study the evolution of rind microbial communities in Fontina PDO cheese. METHODS AND RESULTS Four batches were examined for their surface microflora during ripening, carried out in two different maturing caves, at Ollomont and Pré-Saint-Didier, Aosta Valley region, Northwest of Italy. Culture-dependent methodologies were combined with culture-independent analysis (PCR-DGGE). Yeasts were found to increase from 10(3) to 10(6) CFU cm(-2) in 28 days, with consequent rise of surface pH, which allowed the growth of salt-tolerant bacteria, in particular coryneforms which reached 10(9) CFU cm(-2) at the end of 3 months. Coagulase-negative cocci and lactic acid bacteria reached 10(7) CFU cm(-2) in the same period. Debaryomyces hansenii and Candida sake were the species more constantly present throughout the whole maturing process. As early as after 1 day since manufacture, Lactococcus lactis subsp. lactis and Streptococcus thermophilus were detected on cheese rinds. Arthrobacter nicotianae, Brevibacterium casei and Corynebacterium glutamicum were found after 7-28 days. CONCLUSIONS According to cluster analysis of DGGE profiles, the maturing environment seemed to influence the dynamics of microbial groups on Fontina surfaces. SIGNIFICANCE AND IMPACT OF THE STUDY These results represent a first picture of micro-organisms colonizing Fontina PDO rinds. Further studies are in progress to better understand the origin of this surface microflora and to formulate surface starters.
Collapse
Affiliation(s)
- P Dolci
- University of Turin, DIVAPRA, Grugliasco, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Gori K, Mortensen HD, Arneborg N, Jespersen L. Ammonia production and its possible role as a mediator of communication for Debaryomyces hansenii and other cheese-relevant yeast species. J Dairy Sci 2008; 90:5032-41. [PMID: 17954742 DOI: 10.3168/jds.2006-750] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ammonia production by yeasts may contribute to an increase in pH during the ripening of surface-ripened cheeses. The increase in pH has a stimulatory effect on the growth of secondary bacterial flora. Ammonia production of single colonies of Debaryomyces hansenii, Saccharomyces cerevisiae, Yarrowia lipolytica, and Geotrichum candidum was determined on glycerol medium (GM) agar and cheese agar. The ammonia production was found to vary, especially among yeast species, but also within strains of D. hansenii. In addition, variations in ammonia production were found between GM agar and cheese agar. Ammonia production was positively correlated to pH measured around colonies, which suggests ammonia production as an additional technological parameter for selection of secondary starter cultures for cheese ripening. Furthermore, ammonia appeared to act as a signaling molecule in D. hansenii as reported for other yeasts. On GM agar and cheese agar, D. hansenii showed ammonia production oriented toward neighboring colonies when colonies were grown close to other colonies of the same species; however, the time to oriented ammonia production differed among strains and media. In addition, an increase of ammonia production was determined for double colonies compared with single colonies of D. hansenii on GM agar. In general, similar levels of ammonia production were determined for both single and double colonies of D. hansenii on cheese agar.
Collapse
Affiliation(s)
- K Gori
- Department of Food Science, Food Microbiology, The Faculty of Life Sciences, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark.
| | | | | | | |
Collapse
|
27
|
Rea MC, Görges S, Gelsomino R, Brennan NM, Mounier J, Vancanneyt M, Scherer S, Swings J, Cogan TM. Stability of the biodiversity of the surface consortia of Gubbeen, a red-smear cheese. J Dairy Sci 2008; 90:2200-10. [PMID: 17430918 DOI: 10.3168/jds.2006-377] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A total of 1,052 bacteria and 828 yeasts were isolated from the surface flora of 6 batches of Gubbeen cheese made in 1996-1997 and 2002-2003. Stability of the microflora was evaluated over time and also during ripening at 4, 10, and 16 d (batches 4, 5, and 6) or at 4, 16, 23, and 37 d (batches 1, 2, and 3). Bacteria were identified using pulsed-field gel electrophoresis, repetitive extragenic palindromic-PCR, and 16S rRNA gene sequencing, and yeasts were identified by Fourier transform infrared spectroscopy. The bacteria included at least 17 species, of which the most common were Staphylococcus saprophyticus (316 isolates), Corynebacterium casei (248 isolates), Brevibacterium aurantiacum (187 isolates), Corynebacterium variabile (146 isolates), Microbacterium gubbeenense (55 isolates), Staphylococcus equorum/cohnii (31 isolates), and Psychrobacter spp. (26 isolates). The most common yeasts were Debaryomyces hansenii (624 isolates), Candida catenulata (135 isolates), and Candida lusitaniae (62 isolates). In all batches of cheese except batch 2, a progression of bacteria was observed, with staphylococci dominating the early stages of ripening and coryneforms the later stages. No progression of yeast was found. Pulsed-field gel electrophoresis showed that several different strains of the 5 important species of bacteria were present, but generally only one predominated. The commercial strains used for smearing the cheese were recovered, but only in very small numbers early in ripening. Four species, B. aurantiacum, C. casei, C. variabile, and Staph. saprophyticus, were found on all batches of cheese, but their relative importance varied considerably. The results imply that significant variation occurs in the surface microflora of cheese.
Collapse
Affiliation(s)
- M C Rea
- Moorepark Food Research Centre, Teagasc, Fermoy, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Siafaras G, Hatzikamari M, Litopoulou-Tzanetaki E, Tzanetakis N. Antibacterial activities of the surface microflora of Kefalograviera cheese. Food Control 2008. [DOI: 10.1016/j.foodcont.2007.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
In situ gene expression in cheese matrices: application to a set of enterococcal genes. J Microbiol Methods 2008; 75:485-90. [PMID: 18727939 DOI: 10.1016/j.mimet.2008.07.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 07/24/2008] [Accepted: 07/25/2008] [Indexed: 11/23/2022]
Abstract
Transcriptional approaches are increasingly used to compare the behaviour of pathogenic and non-pathogenic bacteria in different culture conditions. The purpose of this study was to apply these methods in cheese to better characterize food and clinical Enterococcus faecalis isolates during cheese processing. Because of the complex biochemical composition of the cheese matrix, e.g. the presence of casein and fat, we developed an efficient method to recover total RNA from bacteria in a semi-hard cheese model. To validate the RNA extraction method, we analysed expression of 7 genes from two E. faecalis strains (one clinical and one food isolate) in both cheese and culture medium by semi-quantitative RT-PCR. We then used PCR-based DNA macro-arrays to compare expression of 154 genes from two E. faecalis strains in both cheese and culture medium. The food strain isolated from cheese is transcriptionally active in cheese, as reflected by the higher transcript levels of various genes. Conversely, overall transcript levels of the V583 clinical isolate were lower in cheese, suggesting that the food strain may be more adapted to a dairy environment than the clinical strain. The method described here constitutes a very promising tool for future transcriptomic studies in cheese matrices. Global profiling in foods may prove to be a valid criterion for differentiating food from clinical isolates.
Collapse
|
30
|
Properties and antimicrobial activity of the smear surface cheese coryneform bacterium Brevibacterium linens. Eur Food Res Technol 2008. [DOI: 10.1007/s00217-008-0856-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Commercial ripening starter microorganisms inoculated into cheese milk do not successfully establish themselves in the resident microbial ripening consortia of a South german red smear cheese. Appl Environ Microbiol 2008; 74:2210-7. [PMID: 18281427 DOI: 10.1128/aem.01663-07] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Production of smear-ripened cheese critically depends on the surface growth of multispecies microbial consortia comprising bacteria and yeasts. These microorganisms often originate from the cheese-making facility and, over many years, have developed into rather stable, dairy-specific associations. While commercial smear starters are frequently used, it is unclear to what degree these are able to establish successfully within the resident microbial consortia. Thus, the fate of the smear starters of a German Limburger cheese subjected to the "old-young" smearing technique was investigated during ripening. The cheese milk was supplemented with a commercial smear starter culture containing Debaryomyces hansenii, Galactomyces geotrichum, Arthrobacter arilaitensis, and Brevibacterium aurantiacum. Additionally, the cheese surface was inoculated with an extremely stable in-house microbial consortium. A total of 1,114 yeast and 1,201 bacterial isolates were identified and differentiated by Fourier transform infrared spectroscopy. Furthermore, mitochondrial DNA restriction fragment length polymorphism, random amplified polymorphic DNA, repetitive PCR, and pulsed field gel electrophoresis analyses were used to type selected isolates below the species level. The D. hansenii starter strain was primarily found early in the ripening process. The G. geotrichum starter strain in particular established itself after relocation to a new ripening room. Otherwise, it occurred at low frequencies. The bacterial smear starters could not be reisolated from the cheese surface at all. It is concluded that none of the smear starter strains were able to compete significantly and in a stable fashion against the resident microbial consortia, a result which might have been linked to the method of application. This finding raises the issue of whether addition of starter microorganisms during production of this type of cheese is actually necessary.
Collapse
|
32
|
Microbial interactions within a cheese microbial community. Appl Environ Microbiol 2007; 74:172-81. [PMID: 17981942 DOI: 10.1128/aem.01338-07] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interactions that occur during the ripening of smear cheeses are not well understood. Yeast-yeast interactions and yeast-bacterium interactions were investigated within a microbial community composed of three yeasts and six bacteria found in cheese. The growth dynamics of this community was precisely described during the ripening of a model cheese, and the Lotka-Volterra model was used to evaluate species interactions. Subsequently, the effects on ecosystem functioning of yeast omissions in the microbial community were evaluated. It was found both in the Lotka-Volterra model and in the omission study that negative interactions occurred between yeasts. Yarrowia lipolytica inhibited mycelial expansion of Geotrichum candidum, whereas Y. lipolytica and G. candidum inhibited Debaryomyces hansenii cell viability during the stationary phase. However, the mechanisms involved in these interactions remain unclear. It was also shown that yeast-bacterium interactions played a significant role in the establishment of this multispecies ecosystem on the cheese surface. Yeasts were key species in bacterial development, but their influences on the bacteria differed. It appeared that the growth of Arthrobacter arilaitensis or Hafnia alvei relied less on a specific yeast function because these species dominated the bacterial flora, regardless of which yeasts were present in the ecosystem. For other bacteria, such as Leucobacter sp. or Brevibacterium aurantiacum, growth relied on a specific yeast, i.e., G. candidum. Furthermore, B. aurantiacum, Corynebacterium casei, and Staphylococcus xylosus showed reduced colonization capacities in comparison with the other bacteria in this model cheese. Bacterium-bacterium interactions could not be clearly identified.
Collapse
|
33
|
Growth characteristics of Brevibacterium, Corynebacterium, Microbacterium, and Staphylococcus spp. isolated from surface-ripened cheese. Appl Environ Microbiol 2007; 73:7732-9. [PMID: 17921266 DOI: 10.1128/aem.01260-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The growth characteristics of five bacteria, Brevibacterium aurantiacum 1-16-58, Corynebacterium casei DPC 5298(T), Corynebacterium variabile DPC 5310, Microbacterium gubbeenense DPC 5286(T), and Staphylococcus saprophyticus 4E61, all of which were isolated from the surface of smear cheese, were studied in complex and chemically defined media. All of the coryneforms, except M. gubbeenense, grew in 12% salt, while B. aurantiacum and S. saprophyticus grew in 15% salt. All five bacteria assimilated lactate in a semisynthetic medium, and none of the coryneform bacteria assimilated lactose. Glucose assimilation was poor, except by S. saprophyticus and C. casei. Five to seven amino acids were assimilated by the coryneforms and 12 by S. saprophyticus. Glutamate, phenylalanine, and proline were utilized by all five bacteria, whereas utilization of serine, threonine, aspartate, histidine, alanine, arginine, leucine, isoleucine, and glycine depended on the organism. Growth of C. casei restarted after addition of glutamate, proline, serine, and lactate at the end of the exponential phase, indicating that these amino acids and lactate can be used as energy sources. Pantothenic acid was essential for the growth of C. casei and M. gubbeenense. Omission of biotin reduced the growth of B. aurantiacum, C. casei, and M. gubbeenense. All of the bacteria contained lactate dehydrogenase activity (with both pyruvate and lactate as substrates) and glutamate pyruvate transaminase activity but not urease activity.
Collapse
|
34
|
First pigment fingerprints from the rind of French PDO red-smear ripened soft cheeses Epoisses, Mont d'Or and Maroilles. INNOV FOOD SCI EMERG 2007. [DOI: 10.1016/j.ifset.2007.03.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Putnam ML, Miller ML. Rhodococcus fascians in Herbaceous Perennials. PLANT DISEASE 2007; 91:1064-1076. [PMID: 30780643 DOI: 10.1094/pdis-91-9-1064] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
|
36
|
Deetae P, Bonnarme P, Spinnler HE, Helinck S. Production of volatile aroma compounds by bacterial strains isolated from different surface-ripened French cheeses. Appl Microbiol Biotechnol 2007; 76:1161-71. [PMID: 17701035 DOI: 10.1007/s00253-007-1095-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2007] [Revised: 06/17/2007] [Accepted: 06/18/2007] [Indexed: 10/23/2022]
Abstract
Twelve bacterial strains belonging to eight taxonomic groups: Brevibacterium linens, Microbacterium foliorum, Arthrobacter arilaitensis, Staphylococcus cohnii, Staphylococcus equorum, Brachybacterium sp., Proteus vulgaris and Psychrobacter sp., isolated from different surface-ripened French cheeses, were investigated for their abilities to generate volatile aroma compounds. Out of 104 volatile compounds, 54 volatile compounds (identified using dynamic headspace technique coupled with gas chromatography-mass spectrometry [GC-MS]) appeared to be produced by the different bacteria on a casamino acid medium. Four out of eight species used in this study: B. linens, M. foliorum, P. vulgaris and Psychrobacter sp. showed a high flavouring potential. Among these four bacterial species, P. vulgaris had the greatest capacity to produce not only the widest varieties but also the highest quantities of volatile compounds having low olfactive thresholds such as sulphur compounds. Branched aldehydes, alcohols and esters were produced in large amounts by P. vulgaris and Psychrobacter sp. showing their capacity to breakdown the branched amino acids. This investigation shows that some common but rarely mentioned bacteria present on the surface of ripened cheeses could play a major role in cheese flavour formation and could be used to produce cheese flavours.
Collapse
Affiliation(s)
- Pawinee Deetae
- UMR782 Génie et Microbiologie des Procédés Alimentaires, AgroParisTech-INRA, 78850 Thiverval-Grignon, France
| | | | | | | |
Collapse
|
37
|
Mounier J, Goerges S, Gelsomino R, Vancanneyt M, Vandemeulebroecke K, Hoste B, Brennan NM, Scherer S, Swings J, Fitzgerald GF, Cogan TM. Sources of the adventitious microflora of a smear-ripened cheese. J Appl Microbiol 2007; 101:668-81. [PMID: 16907817 DOI: 10.1111/j.1365-2672.2006.02922.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To determine the relationships between the major organisms from the cheese-making personnel and environment and the surface of a smear cheese. METHODS AND RESULTS 360 yeast and 593 bacteria from the cheese surface, the dairy environment and the hands and arms of personnel were collected. Pulsed-field gel electrophoresis, repetitive sequence-based polymerase chain reaction and 16S rDNA sequencing were used for typing and identifying the bacteria, and mitochondrial DNA restriction fragment length polymorphism and Fourier-transform infrared spectroscopy for typing and identifying the yeast. The three most dominant bacteria were Corynebacterium casei, Corynebacterium variabile and Staphylococcus saprophyticus, which were divided into three, five and seven clusters, respectively, by macrorestriction analysis. The same clones from these organisms were isolated on the cheese surface, the dairy environment and the skin of the cheese personnel. Debaryomyces hansenii was the most dominant yeast. CONCLUSIONS A 'house' microflora exists in the cheese plant. Although the original source of the micro-organisms was not identified, the brines were an important source of S. saprophyticus and D. hansenii and, additionally, the arms and hands of the workers the sources of C. casei and C. variabile. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first time that the major contribution of the house microflora to the ripening of a smear-ripened cheese has been demonstrated.
Collapse
Affiliation(s)
- J Mounier
- Moorepark Food Research Centre, Teagasc, Fermoy, Ireland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Di Giacomo M, Paolino M, Silvestro D, Vigliotta G, Imperi F, Visca P, Alifano P, Parente D. Microbial community structure and dynamics of dark fire-cured tobacco fermentation. Appl Environ Microbiol 2007; 73:825-37. [PMID: 17142368 PMCID: PMC1800767 DOI: 10.1128/aem.02378-06] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Accepted: 11/20/2006] [Indexed: 11/20/2022] Open
Abstract
The Italian Toscano cigar production includes a fermentation step that starts when dark fire-cured tobacco leaves are moistened and mixed with ca. 20% prefermented tobacco to form a 500-kg bulk. The dynamics of the process, lasting ca. 18 days, has never been investigated in detail, and limited information is available on microbiota involved. Here we show that Toscano fermentation is invariably associated with the following: (i) an increase in temperature, pH, and total microbial population; (ii) a decrease in reducing sugars, citric and malic acids, and nitrate content; and (iii) an increase in oxalic acid, nitrite, and tobacco-specific nitrosamine content. The microbial community structure and dynamics were investigated by culture-based and culture-independent approaches, including denaturing gradient gel electrophoresis and single-strand conformational polymorphism. Results demonstrate that fermentation is assisted by a complex microbial community, changing in structure and composition during the process. During the early phase, the moderately acidic and mesophilic environment supports the rapid growth of a yeast population predominated by Debaryomyces hansenii. At this stage, Staphylococcaceae (Jeotgalicoccus and Staphylococcus) and Lactobacillales (Aerococcus, Lactobacillus, and Weissella) are the most commonly detected bacteria. When temperature and pH increase, endospore-forming low-G+C content gram-positive bacilli (Bacillus spp.) become evident. This leads to a further pH increase and promotes growth of moderately halotolerant and alkaliphilic Actinomycetales (Corynebacterium and Yania) during the late phase. To postulate a functional role for individual microbial species assisting the fermentation process, a preliminary physiological and biochemical characterization of representative isolates was performed.
Collapse
|
39
|
Bora N, Vancanneyt M, Gelsomino R, Swings J, Brennan N, Cogan TM, Larpin S, Desmasures N, Lechner FE, Kroppenstedt RM, Ward AC, Goodfellow M. Agrococcus casei sp. nov., isolated from the surfaces of smear-ripened cheeses. Int J Syst Evol Microbiol 2007; 57:92-97. [PMID: 17220448 DOI: 10.1099/ijs.0.64270-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Seven Gram-positive, coryneform bacteria with virtually identical whole-organism protein patterns were isolated from the surface of smear-ripened cheeses. Representatives of these strains were the subject of a polyphasic study designed to establish their taxonomic status. The organisms formed a distinct branch in the Microbacteriaceae 16S rRNA gene tree and were most closely related to members of the genus Agrococcus, sharing sequence similarities of 95.4–98.7 %. The chemotaxonomic profiles of the strains were consistent with their classification in the genus Agrococcus. The combined genotypic and phenotypic data show that the isolates should be classified in the genus Agrococcus as representatives of a novel species. The name Agrococcus casei sp. nov. is proposed for this taxon. Isolate R-17892t2T (=DSM 18061T=LMG 22410T) is the type strain of Agrococcus casei sp. nov.
Collapse
Affiliation(s)
- Nagamani Bora
- Division of Biology, King George VIth Building, University of Newcastle, Newcastle upon Tyne NE1 7RU, UK
| | - Marc Vancanneyt
- BCCM/LMG Bacteria Collection, Faculteit Wetenschappen, Ghent University, B-9000 Ghent, Belgium
| | - Roberto Gelsomino
- BCCM/LMG Bacteria Collection, Faculteit Wetenschappen, Ghent University, B-9000 Ghent, Belgium
| | - Jean Swings
- Laboratorium voor Microbiologie, Faculteit Wetenschappen, Ghent University, B-9000 Ghent, Belgium
- BCCM/LMG Bacteria Collection, Faculteit Wetenschappen, Ghent University, B-9000 Ghent, Belgium
| | - Noelle Brennan
- Moorepark Food Research Centre, Teagasc, Fermoy, County Cork, Ireland
| | - Timothy M Cogan
- Moorepark Food Research Centre, Teagasc, Fermoy, County Cork, Ireland
| | - Sandra Larpin
- Laboratoire de Microbiologie Alimentaire, Université de Caen Basse - Normandie, esplanade de-la-paix, 14032 Caen cedex, France
| | - Nathalie Desmasures
- Laboratoire de Microbiologie Alimentaire, Université de Caen Basse - Normandie, esplanade de-la-paix, 14032 Caen cedex, France
| | | | | | - Alan C Ward
- Division of Biology, King George VIth Building, University of Newcastle, Newcastle upon Tyne NE1 7RU, UK
| | - Michael Goodfellow
- Division of Biology, King George VIth Building, University of Newcastle, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
40
|
Monnet C, Correia K, Sarthou AS, Irlinger F. Quantitative detection of Corynebacterium casei in cheese by real-time PCR. Appl Environ Microbiol 2006; 72:6972-9. [PMID: 16950905 PMCID: PMC1636138 DOI: 10.1128/aem.01303-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The flora on the surface of smear-ripened cheeses is composed of numerous species of bacteria and yeasts that contribute to the production of the desired organoleptic properties. Due to the absence of selective media, it is very difficult to quantify cheese surface bacteria, and, consequently, the ecology of the cheese surface microflora has not been extensively investigated. We developed a SYBR green I real-time PCR method to quantify Corynebacterium casei, a major species of smear-ripened cheeses, using primers designed to target the 16S rRNA gene. It was possible to recover C. casei genomic DNA from the cheese matrix with nearly the same yield that C. casei genomic DNA is recovered from cells recovered by centrifugation from liquid cultures. Quantification was linear over a range from 10(5) to 10(10) CFU per g of cheese. The specificity of the assay was demonstrated with DNA from species related to C. casei and from other bacteria and yeasts belonging to the cheese flora. Nine commercial cheeses were analyzed by real-time PCR, and six of them were found to contain more than 10(5) CFU equivalents of C. casei per g. In two of them, the proportion of C. casei in the total bacterial flora was nearly 40%. The presence of C. casei in these samples was further confirmed by single-strand conformation polymorphism analysis and by a combined approach consisting of plate counting and 16S rRNA gene sequencing. We concluded that SYBR green I real-time PCR may be used as a reliable species-specific method for quantification of bacteria from the surface of cheeses.
Collapse
Affiliation(s)
- Christophe Monnet
- Unité Mixte de Recherche Génie et Microbiologie des Procédés Alimentaires, Institut National de la Recherche Agronomique, 78850 Thiverval-Grignon, France.
| | | | | | | |
Collapse
|
41
|
Mounier J, Fitzgerald GF, Cogan TM. Survival of surface ripening cultures during storage and monitoring their development on cheese. Lett Appl Microbiol 2006; 42:425-31. [PMID: 16599999 DOI: 10.1111/j.1472-765x.2006.01836.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To study the survival of bacteria isolated from the surface of smear cheese and monitor their development during cheese ripening. METHODS AND RESULTS The storage of five potential bacterial surface-ripening cheese cultures, Brevibacterium aurantiacum, Corynebacterium casei, Corynebacterium variable, Microbacterium gubbeenense and Staphylococcus saprophyticus, in maximum recovery diluent (MRD), containing 0.85% w/v or 5% w/v NaCl, at 21 or 4 degrees C for 40 days, was investigated. All five strains studied survived well with a maximum decrease of c. 2.5 log(10) CFU ml(-1) after storage for 40 days at 4 degrees C in 0.85% or 5% w/v NaCl. Survival, especially of C. variable, was less at 21 degrees C. The development of defined ripening cultures containing C. casei and Debaryomyces hansenii on two farmhouse cheeses was also evaluated. Using pulsed-field gel electrophoresis (PFGE) for the bacteria and mitochondrial DNA restriction fragment length polymorphism (mtDNA-RFLP) for the yeast, it was shown that the ripening cultures could be re-isolated in high numbers, 10(8) CFU cm(-2) for C. casei and 10(6) CFU cm(-2) for D. hansenii, from the cheese surface after 2.5 weeks of ripening. CONCLUSIONS Ripening strains of surface ripening cultures can be stored in MRD containing 5% w/v salt at 4 degrees C for at least 40 days. Such cultures are recovered in high numbers from the cheese during ripening. SIGNIFICANCE AND IMPACT OF STUDY This study has provided a low-cost and efficient way to store bacteria that could be used as ripening cultures for smear cheese. Such cultures can be recovered in high numbers from the cheese surface during ripening.
Collapse
Affiliation(s)
- J Mounier
- Dairy Products Research Centre, Teagasc, Fermoy, Ireland
| | | | | |
Collapse
|
42
|
Goerges S, Aigner U, Silakowski B, Scherer S. Inhibition of Listeria monocytogenes by food-borne yeasts. Appl Environ Microbiol 2006; 72:313-8. [PMID: 16391059 PMCID: PMC1352201 DOI: 10.1128/aem.72.1.313-318.2006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Accepted: 10/12/2005] [Indexed: 11/20/2022] Open
Abstract
Many bacteria are known to inhibit food pathogens, such as Listeria monocytogenes, by secreting a variety of bactericidal and bacteriostatic substances. In sharp contrast, it is unknown whether yeast has an inhibitory potential for the growth of pathogenic bacteria in food. A total of 404 yeasts were screened for inhibitory activity against five Listeria monocytogenes strains. Three hundred and four of these yeasts were isolated from smear-ripened cheeses. Most of the yeasts were identified by Fourier transform infrared spectroscopy. Using an agar-membrane screening assay, a fraction of approximately 4% of the 304 red smear cheese isolates clearly inhibited growth of L. monocytogenes. Furthermore, 14 out of these 304 cheese yeasts were cocultivated with L. monocytogenes WSLC 1364 on solid medium to test the antilisterial activity of yeast in direct cell contact with Listeria. All yeasts inhibited L. monocytogenes to a low degree, which is most probably due to competition for nutrients. However, one Candida intermedia strain was able to reduce the listerial cell count by 4 log units. Another four yeasts, assigned to C. intermedia (three strains) and Kluyveromyces marxianus (one strain), repressed growth of L. monocytogenes by 3 log units. Inhibition of L. monocytogenes was clearly pronounced in the cocultivation assay, which simulates the conditions and contamination rates present on smear cheese surfaces. We found no evidence that the unknown inhibitory molecule is able to diffuse through soft agar.
Collapse
Affiliation(s)
- Stefanie Goerges
- Abteilung Mikrobiologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, D-85350 Freising, Germany
| | | | | | | |
Collapse
|
43
|
O'Sullivan L, O'connor EB, Ross RP, Hill C. Evaluation of live-culture-producing lacticin 3147 as a treatment for the control of Listeria monocytogenes on the surface of smear-ripened cheese. J Appl Microbiol 2006; 100:135-43. [PMID: 16405693 DOI: 10.1111/j.1365-2672.2005.02747.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS A live Lactococcus lactis culture, producing the two-component broad spectrum bacteriocin lacticin 3147, was assessed for ability to inhibit the food pathogen Listeria monocytogenes on the surface of smear-ripened cheese. METHODS AND RESULTS In initial experiments, the addition of Listeria to a lacticin 3147-containing fermentate produced with L. lactis DPC4275 (a transconjugant strain derived from L. lactis DPC3147) resulted in at least a 4 log reduction of the pathogen in 30 min. Two separate trials were performed in order to assess the most suitable method for application of the potential protective culture to smear-ripened cheese. In the initial trial, the L. lactis was sprayed onto the surface of the cheese either before or after Listeria was deliberately applied. Application of the culture following Listeria challenge, yielded up to a 1000-fold reduction of the pathogen in contrast to the pretreatment where Listeria numbers were unaffected. In a further trial, three applications of the live lacticin 3147-producing culture was used on a cheese surface containing Listeria. Listeria numbers were found to be up to 100-fold lower than in the cheese treated with L. lactis DPC4268 (control). CONCLUSION While application of the live lacticin 3147 producer did not give complete elimination of the pathogen the results nonetheless demonstrate the potential of the bioprotectant for improving the safety of smear-ripened cheeses and particularly those that contain low level contamination with Listeria. SIGNIFICANCE AND IMPACT OF THE STUDY The application of lacticin 3147 as a live-culture can serve as a bioprotectant for the control of L. monocytogenes on the surface of smear-ripened cheese.
Collapse
Affiliation(s)
- L O'Sullivan
- Teagasc, Dairy Products Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | | | | | | |
Collapse
|
44
|
Mounier J, Gelsomino R, Goerges S, Vancanneyt M, Vandemeulebroecke K, Hoste B, Scherer S, Swings J, Fitzgerald GF, Cogan TM. Surface microflora of four smear-ripened cheeses. Appl Environ Microbiol 2005; 71:6489-500. [PMID: 16269673 PMCID: PMC1287636 DOI: 10.1128/aem.71.11.6489-6500.2005] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The microbial composition of smear-ripened cheeses is not very clear. A total of 194 bacterial isolates and 187 yeast isolates from the surfaces of four Irish farmhouse smear-ripened cheeses were identified at the midpoint of ripening using pulsed-field gel electrophoresis (PFGE), repetitive sequence-based PCR, and 16S rRNA gene sequencing for identifying and typing the bacteria and Fourier transform infrared spectroscopy and mitochondrial DNA restriction fragment length polymorphism (mtDNA RFLP) analysis for identifying and typing the yeast. The yeast microflora was very uniform, and Debaryomyces hansenii was the dominant species in the four cheeses. Yarrowia lipolytica was also isolated in low numbers from one cheese. The bacteria were highly diverse, and 14 different species, Corynebacterium casei, Corynebacterium variabile, Arthrobacter arilaitensis, Arthrobacter sp., Microbacterium gubbeenense, Agrococcus sp. nov., Brevibacterium linens, Staphylococcus epidermidis, Staphylococcus equorum, Staphylococcus saprophyticus, Micrococcus luteus, Halomonas venusta, Vibrio sp., and Bacillus sp., were identified on the four cheeses. Each cheese had a more or less unique microflora with four to nine species on its surface. However, two bacteria, C. casei and A. arilaitensis, were found on each cheese. Diversity at the strain level was also observed, based on the different PFGE patterns and mtDNA RFLP profiles of the dominant bacterial and yeast species. None of the ripening cultures deliberately inoculated onto the surface were reisolated from the cheeses. This study confirms the importance of the adventitious, resident microflora in the ripening of smear cheeses.
Collapse
Affiliation(s)
- Jérôme Mounier
- Dairy Products Research Centre, Teagasc, Moorepark, Fermoy, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Bonaïti C, Parayre S, Irlinger F. Novel extraction strategy of ribosomal RNA and genomic DNA from cheese for PCR-based investigations. Int J Food Microbiol 2005; 107:171-9. [PMID: 16269194 DOI: 10.1016/j.ijfoodmicro.2005.08.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 07/13/2005] [Accepted: 08/17/2005] [Indexed: 10/25/2022]
Abstract
Cheese microorganisms, such as bacteria and fungi, constitute a complex ecosystem that plays a central role in cheeses ripening. The molecular study of cheese microbial diversity and activity is essential but the extraction of high quality nucleic acid may be problematic: the cheese samples are characterised by a strong buffering capacity which negatively influenced the yield of the extracted rRNA. The objective of this study is to develop an effective method for the direct and simultaneous isolation of yeast and bacterial ribosomal RNA and genomic DNA from the same cheese samples. DNA isolation was based on a protocol used for nucleic acids isolation from anaerobic digestor, without preliminary washing step with the combined use of the action of chaotropic agent (acid guanidinium thiocyanate), detergents (SDS, N-lauroylsarcosine), chelating agent (EDTA) and a mechanical method (bead beating system). The DNA purification was carried out by two washing steps of phenol-chloroform. RNA was isolated successfully after the second acid extraction step by recovering it from the phenolic phase of the first acid extraction. The novel method yielded pure preparation of undegraded RNA accessible for reverse transcription-PCR. The extraction protocol of genomic DNA and rRNA was applicable to complex ecosystem of different cheese matrices.
Collapse
Affiliation(s)
- Catherine Bonaïti
- UMR INRA/INA P-G Génie et Microbiologie des Procédés Alimentaires, INRA, 78850 Thiverval-Grignon, France
| | | | | |
Collapse
|
46
|
HPLC analysis of the pigments produced by the microflora isolated from the ‘Protected Designation of Origin’ French red-smear soft cheeses Munster, Epoisses, Reblochon and Livarot. Food Res Int 2005. [DOI: 10.1016/j.foodres.2005.01.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Duthoit F, Tessier L, Montel MC. Diversity, dynamics and activity of bacterial populations in 'Registered Designation of Origin' Salers cheese by single-strand conformation polymorphism analysis of 16S rRNA genes. J Appl Microbiol 2005; 98:1198-208. [PMID: 15836490 DOI: 10.1111/j.1365-2672.2005.02575.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS The aim of this work was to measure the dynamic global metabolic activities of the microbial community during ripening of RDO Salers cheese by using a direct molecular approach. METHODS AND RESULTS A culture-independent approach including PCR, reverse transcriptase PCR (RT-PCR) and single strand conformation polymorphism (SSCP) analysis of 16S rRNA genes was applied on 'Registered Designation of Origin' Salers cheese samples collected in three farms. The evolution of the global structure of the microbial community in terms of structure or global activities was assessed using ecological indices. The diversity of the global population was higher on RNA patterns than on DNA patterns, because of less dominance and greater richness. Comparison of the SSCP patterns derived from RNA and DNA analysis indicated that the dominant population was not necessarily the most active. The metabolic activities of each bacterial group changed significantly during ripening. Besides lactic acid bacteria that were dominant on both DNA and RNA patterns, the dynamics of the presence and activity of microbial groups rarely studied in the core of cheese, such as corynebacteria, or of unidentified peaks were reported. CONCLUSIONS By using SSCP RNA analysis, we were able to obtain information about the activity of bacterial population in cheese, which varied a lot between cheeses and was changing perpetually during ripening. SIGNIFICANCE AND IMPACT OF THE STUDY Double DNA-RNA SSCP analysis opens up future prospects in the microbial ecology of cheeses. It will have many applications for controlling of microbial community during cheese processing.
Collapse
Affiliation(s)
- F Duthoit
- Unité de Recherches Fromagères, Aurillac, France
| | | | | |
Collapse
|
48
|
Boutrou R, Guéguen M. Interests in Geotrichum candidum for cheese technology. Int J Food Microbiol 2005; 102:1-20. [PMID: 15924999 DOI: 10.1016/j.ijfoodmicro.2004.12.028] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Revised: 08/02/2004] [Accepted: 12/11/2004] [Indexed: 11/19/2022]
Abstract
The wide genotypic and phenotypic diversity of Geotrichum candidum strains does not facilitate its classification as yeast or a yeast-like fungus that is still a matter of debate. Whatever its classification, G. candidum possesses many different metabolic pathways that are of particular interest to the dairy industry. G. candidum is of importance in the maturation of cheese, and much is known about its direct contribution to cheese ripening and flavour formation. Its diverse metabolic potential means that G. candidum can play an important role in the ripening of many soft and semi-hard cheeses and make a positive contribution to the development of taste and aroma. It may also influence the growth of other microorganisms, both valuable and detrimental. The significance of the presence of G. candidum in cheese depends on the particular type of production and on the presence of biotypes featuring specific types of metabolism. However, in situ metabolic pathways involved in cheese ripening and their regulations are mainly unknown. The information available provides a good understanding of the potential of G. candidum strains that are used in cheese manufacture, and permits a better choice of strain depending on the characteristics required. The biochemical activities of G. candidum and its application in the dairy industry are presented in this review.
Collapse
Affiliation(s)
- R Boutrou
- Unité Mixte de Recherche INRA-Agrocampus, Sciences et Technologie du Lait et de l'Oeuf, 65 rue de Saint Brieuc, 32042 Rennes cedex, France.
| | | |
Collapse
|
49
|
Müller-Hellwig S, Groschup MH, Pichner R, Gareis M, Märtlbauer E, Scherer S, Loessner MJ. Biochemical evidence for the proteolytic degradation of infectious prion protein PrPsc in hamster brain homogenates by foodborne bacteria. Syst Appl Microbiol 2005; 29:165-71. [PMID: 16464698 DOI: 10.1016/j.syapm.2005.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Indexed: 11/24/2022]
Abstract
PrP(Sc) is a general term to describe the infectious agent causing transmissible spongiform encephalopathy (TSE), and the protease-resistant form of cellular PrP(C). In this study, we have identified several protease-secreting bacteria able to degrade PrP(Sc) under more or less native conditions (30 degrees C, pH 8), focusing on strains isolated mainly from cheese. One hundred and ninty-nine protease-secreting isolates belonging to the Actinomycetales and Bacillales were screened for the expression of PrP(Sc) degrading activity by a Western blot procedure. Only 6 strains belonging to the following species were found to exhibit such an activity: Arthrobacter nicotianae, Bacillus licheniformis, Brachybacterium conglomeratum, Brachybacterium tyrofermentans and Staphylococcus sciuri and Serratia spp. As revealed by a general protease assay based on dye-labeled Azocoll substrate, the PrP(Sc) degrading activity was not directly correlated to the total level of secreted proteolytic activity of these organisms. This indicates that specific proteases are required for the degradation of PrP(Sc). Our study also suggests the potential use of such starter bacteria or their proteases for application in PrP(Sc) degradation and decontamination under native conditions.
Collapse
Affiliation(s)
- Simone Müller-Hellwig
- Abteilung Mikrobiologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung, Technische Universität München, D-85350 Freising-Weihenstephan, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
Rademaker J, Peinhopf M, Rijnen L, Bockelmann W, Noordman W. The surface microflora dynamics of bacterial smear-ripened Tilsit cheese determined by T-RFLP DNA population fingerprint analysis. Int Dairy J 2005. [DOI: 10.1016/j.idairyj.2004.08.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|