1
|
Labetoulle M, Garhöfer G, Ismail D, Garrigue JS, Amrane M, Guillon M, Aragona P, Baudouin C. Review of clinical outcomes of a cationic emulsion tear substitute in patients with dry eye disease. Acta Ophthalmol 2024. [PMID: 38294079 DOI: 10.1111/aos.16629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/01/2024]
Abstract
First-line options for the treatment of dry eye disease (DED) rely on artificial tears (ATs), among which cationic emulsion (CE)-based ATs have been developed in order to mimic the healthy tear film for an improved restoration of the ocular surface homeostasis. In this review, we describe the outcomes reported in several studies, assessing the mode of action, ocular tolerance and clinical performance of a CE-based AT. Pilot studies have revealed that CE-based ATs can increase the volume and stability of the tear film while limiting its evaporation rate. Larger studies have demonstrated that CE-based ATs play a significant role in the improvement of both objective and subjective DED parameters, including superior efficacy on DED symptoms compared to several other available AT formulation types. Concomitantly, CE-based ATs have been shown to help patients to prevent or recover from corneal defects associated with refractive surgery. These positive outcomes on ocular surface epithelia are likely due to the combination of unique rheological behaviour and intrinsic anti-inflammatory properties. Based on all clinical findings, CE-based ATs represent a valuable treatment option for patients with various etiologies of DED including evaporative forms and would deserve evaluation of benefits in other surgical intervention types triggering DED.
Collapse
Affiliation(s)
- Marc Labetoulle
- Ophthalmology, South Paris University Hospital-APHP, Le Kremlin-Bicêtre, France
- IDMIT Infrastructure, Inserm, Cedex, France
| | - Gerhard Garhöfer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | - Pasquale Aragona
- Eye Clinic, Department of Biomedical Sciences, University of Messina, Messina, Italy
| | - Christophe Baudouin
- Department of Ophthalmology, Quinze-Vingts Hospital, IHU FOReSIGHT, Paris, France
- University Paris Saclay, Versailles Saint-Quentin en Yvelines, Paris, France
| |
Collapse
|
2
|
Reimondez-Troitiño S, Alcalde I, Csaba N, Íñigo-Portugués A, de la Fuente M, Bech F, Riestra AC, Merayo-Lloves J, Alonso MJ. Polymeric nanocapsules: a potential new therapy for corneal wound healing. Drug Deliv Transl Res 2017; 6:708-721. [PMID: 27392604 DOI: 10.1007/s13346-016-0312-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Corneal injuries are one of the most frequently observed ocular diseases, leading to permanent damage and impaired vision if they are not treated properly. In this sense, adequate wound healing after injury is critical for keeping the integrity and structure of the cornea. The goal of this work was to assess the potential of polymeric nanocapsules, either unloaded or loaded with cyclosporine A or vitamin A, alone or in combination with mitomycin C, for the treatment of corneal injuries induced by photorefractive keratectomy surgery. The biopolymers selected for the formation of the nanocapsules were polyarginine and protamine, which are known for their penetration enhancement effect. The results showed that, following topical instillation to a mouse model of corneal injury, all the nanocapsule formulations, either unloaded or loaded with cyclosporine A or vitamin A, were able to stimulate corneal wound healing. In addition, the healing rate observed for the combination of unloaded protamine nanocapsules with mitomycin C was comparable to the one observed for the positive control Cacicol®, a biopolymer known as a corneal wound healing enhancer. Regarding the corneal opacity, the initial grade of corneal haze (>3) induced by the photorefractive keratectomy was more rapidly reduced in the case of the positive control, Cacicol®, than in corneas treated with the nanocapsules. In conclusion, this work shows that drug-free arginine-rich (polyarginine, protamine) nanocapsules exhibit a positive behavior with regard to their potential use for corneal wound healing.
Collapse
Affiliation(s)
- Sonia Reimondez-Troitiño
- Nanobiofar Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Campus Vida, Santiago de Compostela, Spain.,Translational Medical Oncology Group, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital of Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - Ignacio Alcalde
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Oviedo, Spain
| | - Noemi Csaba
- Nanobiofar Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Campus Vida, Santiago de Compostela, Spain
| | - Almudena Íñigo-Portugués
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Oviedo, Spain
| | - María de la Fuente
- Translational Medical Oncology Group, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital of Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - Federico Bech
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Oviedo, Spain
| | - Ana C Riestra
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Oviedo, Spain
| | - Jesús Merayo-Lloves
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Oviedo, Spain.
| | - María J Alonso
- Nanobiofar Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Campus Vida, Santiago de Compostela, Spain.
| |
Collapse
|
3
|
Reimondez-Troitiño S, Csaba N, Alonso MJ, de la Fuente M. Nanotherapies for the treatment of ocular diseases. Eur J Pharm Biopharm 2015; 95:279-93. [PMID: 25725262 DOI: 10.1016/j.ejpb.2015.02.019] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/09/2015] [Accepted: 02/16/2015] [Indexed: 10/23/2022]
Abstract
The topical route is the most frequent and preferred way to deliver drugs to the eye. Unfortunately, the very low ocular drug bioavailability (less than 5%) associated with this modality of administration, makes the efficient treatment of several ocular diseases a significant challenge. In the last decades, it has been shown that specific nanocarriers can interact with the ocular mucosa, thereby increasing the retention time of the associated drug onto the eye, as well as its permeability across the corneal and conjunctival epithelium. In this review, we comparatively analyze the mechanism of action and specific potential of the most studied nano-drug delivery carriers. In addition, we present the success achieved until now using a number of nanotherapies for the treatment of the most prevalent ocular pathologies, such as infections, inflammation, dry eye, glaucoma, and retinopathies.
Collapse
Affiliation(s)
- S Reimondez-Troitiño
- Nano-oncologicals Lab, Translational Medical Oncology Group, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital of Santiago de Compostela (CHUS), Santiago de Compostela, Spain; Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Dept. of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Univ. of Santiago de Compostela, Santiago de Compostela, Spain
| | - N Csaba
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Dept. of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Univ. of Santiago de Compostela, Santiago de Compostela, Spain
| | - M J Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Dept. of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Univ. of Santiago de Compostela, Santiago de Compostela, Spain
| | - M de la Fuente
- Nano-oncologicals Lab, Translational Medical Oncology Group, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital of Santiago de Compostela (CHUS), Santiago de Compostela, Spain.
| |
Collapse
|
4
|
Sharma G, Beg S, Thanki K, Katare OP, Jain S, Kohli K, Singh B. Systematic development of novel cationic self-nanoemulsifying drug delivery systems of candesartan cilexetil with enhanced biopharmaceutical performance. RSC Adv 2015. [DOI: 10.1039/c5ra11687b] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The current studies entail systematic development, optimization and evaluation of cationic self-nanoemulsifying drug delivery systems (C-SNEDDS) for enhancing the oral bioavailability of candesartan cilexetil.
Collapse
Affiliation(s)
- Gajanand Sharma
- University Institute of Pharmaceutical Sciences
- UGC Centre of Advanced Studies
- Panjab University
- Chandigarh
- India 160 014
| | - Sarwar Beg
- University Institute of Pharmaceutical Sciences
- UGC Centre of Advanced Studies
- Panjab University
- Chandigarh
- India 160 014
| | - Kaushik Thanki
- Centre for Pharmaceutical Nanotechnology
- National Institute of Pharmaceutical Education and Research (NIPER)
- Mohali
- India 160 062
| | - O. P. Katare
- University Institute of Pharmaceutical Sciences
- UGC Centre of Advanced Studies
- Panjab University
- Chandigarh
- India 160 014
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology
- National Institute of Pharmaceutical Education and Research (NIPER)
- Mohali
- India 160 062
| | - Kanchan Kohli
- Department of Pharmaceutics
- Faculty of Pharmacy
- Hamdard University
- New Delhi
- India 110 062
| | - Bhupinder Singh
- University Institute of Pharmaceutical Sciences
- UGC Centre of Advanced Studies
- Panjab University
- Chandigarh
- India 160 014
| |
Collapse
|
5
|
Chaudhary H, Rohilla A, Rathee P, Kumar V. Optimization and formulation design of carbopol loaded Piroxicam gel using novel penetration enhancers. Int J Biol Macromol 2013; 55:246-53. [DOI: 10.1016/j.ijbiomac.2013.01.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/08/2013] [Accepted: 01/14/2013] [Indexed: 10/27/2022]
|
6
|
Achouri D, Alhanout K, Piccerelle P, Andrieu V. Recent advances in ocular drug delivery. Drug Dev Ind Pharm 2012; 39:1599-617. [PMID: 23153114 DOI: 10.3109/03639045.2012.736515] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Amongst the various routes of drug delivery, the field of ocular drug delivery is one of the most interesting and challenging endeavors facing the pharmaceutical scientist. Recent research has focused on the characteristic advantages and limitations of the various drug delivery systems, and further research will be required before the ideal system can be developed. Administration of drugs to the ocular region with conventional delivery systems leads to short contact time of the formulations on the epithelium and fast elimination of drugs. This transient residence time involves poor bioavailability of drugs which can be explained by the tear production, non-productive absorption and impermeability of corneal epithelium. Anatomy of the eye is shortly presented and is connected with ophthalmic delivery and bioavailability of drugs. In the present update on ocular dosage forms, chemical delivery systems such as prodrugs, the use of cyclodextrins to increase solubility of various drugs, the concept of penetration enhancers and other ocular drug delivery systems such as polymeric gels, bioadhesive hydrogels, in-situ forming gels with temperature-, pH-, or osmotically induced gelation, combination of polymers and colloidal systems such as liposomes, niosomes, cubosomes, microemulsions, nanoemulsions and nanoparticles are discussed. Novel ophthalmic delivery systems propose the use of many excipients to increase the viscosity or the bioadhesion of the product. New formulations like gels or colloidal systems have been tested with numerous active substances by in vitro and in vivo studies. Sustained drug release and increase in drug bioavailability have been obtained, offering the promise of innovation in drug delivery systems for ocular administration. Combining different properties of pharmaceutical formulations appears to offer a genuine synergy in bioavailability and sustained release. Promising results are obtained with colloidal systems which present very comfortable conditions of use and prolonged action.
Collapse
Affiliation(s)
- Djamila Achouri
- IMBE, UMR CNRS 7263 IRD 237, Aix-Marseille Université , Marseille , France
| | | | | | | |
Collapse
|
7
|
Hagigit T, Abdulrazik M, Valamanesh F, Behar-Cohen F, Benita S. Ocular antisense oligonucleotide delivery by cationic nanoemulsion for improved treatment of ocular neovascularization: an in-vivo study in rats and mice. J Control Release 2011; 160:225-31. [PMID: 22138070 DOI: 10.1016/j.jconrel.2011.11.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 11/15/2011] [Accepted: 11/18/2011] [Indexed: 10/15/2022]
Abstract
The efficacy of an antisense oligonucleotide (ODN17) cationic nanoemulsion directed at VEGF-R2 to reduce neovascularization was evaluated using rat corneal neovascularization and retinopathy of prematurity (ROP) mouse models. Application of saline solution or scrambled ODN17 solution on eyes of rats led to the highest extent of corneal neovascularization. The groups treated with blank nanoemulsion or scrambled ODN17 nanoemulsion showed moderate inhibition in corneal neovascularization with no significant difference with the saline and scrambled ODN17 control solution groups, while the groups treated with ODN17 solution or Avastin® (positive ODN17 control) clearly elicited marked significant inhibition in corneal neovascularization confirming the results reported in the literature. The highest significant corneal neovascularization inhibition efficiency was noted in the groups treated with ODN17 nanoemulsion (topical and subconjunctivally). However, in the ROP mouse model, the ODN17 in PBS induced a 34% inhibition of retinal neovascularization when compared to the aqueous-vehicle-injected eyes. A significantly higher inhibition of vitreal neovascularization (64%) was observed in the group of eyes treated with ODN17 nanoemulsion. No difference in extent of neovascularization was observed between blank nanoemulsion, scrambled ODN17 nanoemulsion, vehicle or non-treated eyes. The overall results indicate that cationic nanoemulsion can be considered a promising potential ocular delivery system and an effective therapeutic tool of high clinical significance in the prevention and forthcoming treatment of ocular neovascular diseases.
Collapse
Affiliation(s)
- Tal Hagigit
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
8
|
Ciprofloxacin surf-plexes in sub-micron emulsions: a novel approach to improve payload efficiency and antimicrobial efficacy. Int J Pharm 2011; 409:237-44. [PMID: 21356290 DOI: 10.1016/j.ijpharm.2011.02.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 02/14/2011] [Accepted: 02/17/2011] [Indexed: 11/21/2022]
Abstract
The aim of this study was to investigate antimicrobial efficacy and pharmacokinetic profile of ciprofloxacin (CFn) loaded oil-in-water (o/w) submicron emulsion (SE-CFn). This study emphasized on development of hydrophobic ion-pair complexes of CFn with sodium deoxycholate (SDC) [CFn-SDC], which was incorporated in the core of SE (SE-CFn-SDC). SE-CFn-SDC was characterized for globulet size (278±12 nm), zeta potential (-25.3±1 mV), viscosity (2.6±0.3 cP), transmission electron microscopy (TEM), drug entrapment and for in vitro release profile. The entrapment efficiency (EE) was significantly improved (≥80%; p≤0.05) on ion-pairing while it was merely 27.2±3.1% for free CFn. The cytotoxicity studies of formulations on J774 macrophage cells showed that more than 90±3% of cells were viable, even at high concentration (100 μg/ml). SE-CFn-SDC was further modified with cationic inducer chitosan (SE-CH-CFn-SDC), which showed almost twofold and fourfold enhancement in antimicrobial efficacy as compared to SE-CFn-SDC and SE-CFn, respectively when tested in vitro against E. coli, S. aureus, and P. aeruginosa. When tested in male Balb/c mice, the AUC(0-24h) of SE-CH-CFn-SDC (23.27±2.8 h μg/ml) was found to be 1.7-fold and 5-fold higher as compared to SE-CFn-SDC (13.17±0.88 h μg/ml) and CFn solution (4.70±0.77 h μg/ml), respectively. The study demonstrates that surfactant based ionic complex formation incorporated in surface modified submicron emulsion is a promising approach to improve payload efficiency of poorly water soluble drugs with improved antimicrobial efficacy and pharmacokinetic profile.
Collapse
|
9
|
Liu Y, Lin X, Tang X. Lipid emulsions as a potential delivery system for ocular use of azithromycin. Drug Dev Ind Pharm 2011; 35:887-96. [PMID: 19466890 DOI: 10.1080/03639040802680271] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To obtain stable positively charged Azithromycin (AZI) emulsions with a mean droplet size of 120 nm for the treatment of eye diseases. METHODS The emulsions were obtained by using a suitable homogenization process. The physical stability was monitored by measuring the particle size, zeta potential, and visible appearance. The drug entrapment efficiency was measured by both ultracentrifugation and ultrafiltration methods. Compared with a phosphate solution of AZI, the stability profiles of AZI in lipid emulsions at various pH values were monitored by high-performance liquid chromatography. A pharmacokinetic study was performed to determine the drug levels in rabbit tear fluid using Ultra-performance liquid Chromatography-mass spectrometry. RESULTS Almost all the AZI in the lipid emulsion was distributed in the oil phase and small unilamellar liposomes without contact with water, thereby avoiding hydrolysis. The elimination of the AZI lipid emulsions in tear fluid was consistent with the basic linear pharmacokinetic characteristics. The AUC(0-t) of the AZI lipid emulsion (1%, w/v) and aqueous solution drops (1%, w/v) was 1873.58 +/- 156.87 and 1082.46 +/- 179.06 mugh/ml respectively. CONCLUSIONS This study clearly describes a new formulation of AZI lipid emulsion for ocular administration, and lipid emulsions are promising vehicles for ophthalmic drug delivery.
Collapse
Affiliation(s)
- Yan Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | | | | |
Collapse
|
10
|
|
11
|
Wang YJ, Wang J, Zhang HY, He HB, Tang X. Formulation, preparation and evaluation of flunarizine-loaded lipid microspheres. J Pharm Pharmacol 2010; 59:351-7. [PMID: 17331337 DOI: 10.1211/jpp.59.3.0003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
The aim of this study was to investigate the feasibility of preparing flunarizine-loaded lipid microspheres. Lipid microspheres (LMs) are excellent drug carriers for drug delivery systems (DDS) and are relatively stable and easily mass-produced. They have no particular adverse effects. LMs have been widely studied as drug carriers for water-soluble drugs, lipid-soluble drugs and inadequately soluble (in water or in lipid) drugs, in that they have a lipid layer, a water layer and an emulsifier layer. Flunarizine (FZ), a poorly water-soluble drug, was incorporated in lipid microspheres to reduce side effects by avoiding the use of supplementary agents, compared with solution injection. After investigation, the final formulation was as follows: 10% oil phase (long-chain triglyceride (LCT); medium-chain fatty acid (MCT) = 50:50); 1.2% egg lecithin; 0.2% Tween-80; 2.5% glycerin; 0.3% dl-α-tocopherol; 0.02% EDTA; 0.03% sodium oleate; 0.1% FZ and double-distilled water to give a total volume of 100 mL. Homogenization was the main method of preparation and the best conditions were a temperature of 40°C, a pressure of 700–800 bar and a suitable cycle frequency of about 10. The particle size distribution, zeta-potential and entrapment efficacy were found to be 198.7 ± 54.0 nm, −26.4mV and 96.2%, respectively. Its concentration in the preparation was 1.0mg mL−1. The lipid microspheres were stable during storage at 4°C, 25°C and 37°C for 3 months. Pharmacokinetic studies were performed in rats using a dose of 1.0 mg kg−1. The pharmacokinetic parameters were as follows: AUC0-t 6.13 μg h mL−1, t½ 5.32 h and Ke 0.16 Lh−1. The preparation data fitted a two-compartment model estimated by using 3p87 analysis software. From the observed data, FZ encapsulated in LMs did not significantly alter the pharmacokinetic characteristic compared with the FZ solution injection and did not produce a delayed release effect, when it was released in-vivo in rats. However, the availability of the drug was increased. These results suggested that this LM system is a promising option for the preparation of the liquid form of FZ for intravenous administration.
Collapse
Affiliation(s)
- Yan Jiao Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | | | | | | | | |
Collapse
|
12
|
Jachowicz R, Czech A. Preparation and Evaluation of Piroxicam–HPMCAS Solid Dispersions for Ocular Use. Pharm Dev Technol 2008; 13:495-504. [DOI: 10.1080/10837450802282462] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Chitosan based nanocarriers for indomethacin ocular delivery. Arch Pharm Res 2008; 31:1040-9. [DOI: 10.1007/s12272-001-1266-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 03/25/2008] [Accepted: 05/13/2008] [Indexed: 10/21/2022]
|
14
|
Tamilvanan S, Benita S. The potential of lipid emulsion for ocular delivery of lipophilic drugs. Eur J Pharm Biopharm 2005; 58:357-68. [PMID: 15296961 DOI: 10.1016/j.ejpb.2004.03.033] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Revised: 03/29/2004] [Accepted: 03/29/2004] [Indexed: 10/26/2022]
Abstract
For nearly a decade, oil-in-water lipid emulsions containing either anionic or cationic droplets have been recognized as an interesting and promising ocular topical delivery vehicle for lipophilic drugs. The aim of this review is to present the potential of lipid emulsions for ocular delivery of lipophilic drugs. The review covers an update on the state of the art of incorporating the lipophilic drugs, a brief description concerning the components and the classification of lipid emulsions. The ocular fate following topical instillation, safety evaluation experiments and the applications of lipid emulsions are thoroughly discussed.
Collapse
|
15
|
Rabinovich-Guilatt L, Couvreur P, Lambert G, Dubernet C. Cationic vectors in ocular drug delivery. J Drug Target 2005; 12:623-33. [PMID: 15621688 DOI: 10.1080/10611860400015910] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Despite extensive research in the field, the major problem in the ocular drug delivery domain still is rapid precorneal drug loss and poor corneal permeability. One of the approaches recently developed is the drug incorporation into cationic submicronic vectors which exploit the negative charges present at the corneal surface for increased residence time and penetration. This review will focus on the formulation of three main representative cationic colloids developed for ophthalmic delivery: liposomes, emulsions and nanoparticles (NP). Parameters such as choice of the vector type and size, nature of the cationic molecule, pH and ionic strength of the external phase and characteristics of the encapsulated drug will be discussed with accent on the relevance of the positive charge.
Collapse
|
16
|
|
17
|
Klang S, Abdulrazik M, Benita S. Influence of emulsion droplet surface charge on indomethacin ocular tissue distribution. Pharm Dev Technol 2001; 5:521-32. [PMID: 11109251 DOI: 10.1081/pdt-100102035] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The aim of this study was to compare the corneal penetration of indomethacin from Indocollyre [a marketed hydro-poly(ethylene glycol) (PEG) ocular solution] to that of a negatively and a positively charged submicron emulsion. Male albino rabbits were separated randomly into three groups and each group (N = 15) was treated with either one drop of radiolabeled 0.1% Indocollyre, or 0.1% indomethacin positively or negatively charged submicron emulsion, respectively. The rabbits were sacrificed at selected time points and the eyes were enucleated. The eyes were dissected into the different tissues: cornea, conjunctiva, aqueous humor, iris, lens, vitreous, sclera, and retina. The samples were weighed before radioactivity counting. Regardless of the preparation instilled, the highest concentration of indomethacin was achieved in the cornea followed by conjunctiva, sclera retina, and aqueous humor. However, the positively charged emulsion provided significantly higher drug levels than the control solution and negatively charged emulsion only in the aqueous humor and sclera-retina. Furthermore, the spreading coefficient of the positively charged emulsion on cornea is four times higher than that of the negatively charged emulsion. It was therefore deduced that the positively charged submicron emulsions have better wettability properties on the cornea compared to either saline or the negatively charged emulsion. The positive charge may prolong the residence time of the drop on the epithelial layer of the cornea and thus enable better drug penetration through the cornea to the internal tissues of the eye, as confirmed by the animal studies.
Collapse
Affiliation(s)
- S Klang
- Department of Pharmaceutics, School of Pharmacy, Hebrew University of Jerusalem, Israel
| | | | | |
Collapse
|
18
|
|
19
|
Benita S. Prevention of topical and ocular oxidative stress by positively charged submicron emulsion. Biomed Pharmacother 1999; 53:193-206. [PMID: 10392291 DOI: 10.1016/s0753-3322(99)80088-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A positively charged submicron emulsion with zeta potential values ranging from 35 to 45 mV and mean droplet size around 150-250 nm has recently been developed and characterized. This formulation is based on three surface-active agents, an egg yolk phospholipid mixture, poloxamer 188, and stearylamine, a cationic lipid with a pKa of 10.6. The emulsion toxicity was evaluated in three animal studies. The results of the ocular tolerance study in the rabbit eye indicated that hourly administration of one droplet of the positively charged emulsion vehicle was well tolerated without any toxic or inflammatory response to the ocular surface during the five days of the study. No marked acute toxicity was observed when 0.6 mL of positively charged emulsion was injected intravenously to BALB/c mice. Furthermore, no difference was noted between this group of animals and the group injected with the marketed and clinically well accepted negatively charged Intralipid emulsion. These observations were further confirmed in a four week toxicity study following intravenous administration to rats of 1 mL/kg of the positively charged emulsion as compared to Intralipid. No toxic effect was noted in any of the various organs examined, whereas the results of the hematological and blood chemistry tests remained in the normal range for both emulsions, confirming the preliminary safety study findings. In addition, it was demonstrated by means of a non-invasive technique that alpha-tocopherol positively charged emulsions prevented oxidative damage in rat skin subjected to UVA irradiation. The intrinsic ability of positively charged emulsified oil droplets to protect against reactive oxygen species cannot be excluded, and could act synergistically with the antioxidant alpha-tocopherol itself. The effect of blank and piroxicam positively charged emulsions on rabbit eye following alkali burn was also evaluated. The blank emulsion showed a very rapid healing rate during the first three days with a breakdown in day 14. Complete re-epithelialization was observed in day 28. The same behavior (albeit less pronounced), was noted in piroxicam emulsion, although piroxicam is known to inhibit the epithelial healing process. It can therefore be deduced that the positively charged emulsion vehicle prevented piroxicam from interfering with the epithelial healing process due to the intrinsic free radical scavenger ability of the positively charged submicron emulsion previously demonstrated. Finally, the efficacy of this promising emulsion vehicle containing effective cosmetic ingredients in preventing skin damage and aging following oxidative stress is evaluated.
Collapse
Affiliation(s)
- S Benita
- School of Pharmacy, Hebrew University of Jerusalem, Israel
| |
Collapse
|