1
|
James S, Maniam J, Cheung PT, Urakami T, von Oettingen J, Likitmaskul S, Ogle G. Epidemiology and phenotypes of diabetes in children and adolescents in non-European-origin populations in or from Western Pacific region. World J Clin Pediatr 2022; 11:173-195. [PMID: 35433305 PMCID: PMC8985498 DOI: 10.5409/wjcp.v11.i2.173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/09/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) incidence varies substantially between countries/ territories, with most studies indicating increasing incidence. In Western Pacific region (WPR), reported rates are much lower than European-origin populations. In contrast, there are reports of substantial numbers of young people with type 2 diabetes (T2D). A deeper understanding of T1D and T2D in the WPR may illuminate factors important in pathogenesis of these conditions. Furthermore, with varying resources and funding for diabetes treatment in this region, there is a need to more clearly determine the current burden of disease and also any gaps in knowledge. AIM To compile and summarise published epidemiologic and phenotypic data on childhood diabetes in non-European populations in and from WPR. METHODS Research articles were systematically searched from PubMed (MEDLINE), Embase, Cochrane library, and gray literature. Primary outcome measures were incidence and prevalence, with secondary measures including phenotypic descriptions of diabetes, including diabetes type categorization, presence of diabetic ketoacidosis (DKA) at onset, autoantibody positivity, C-peptide levels, and human leucocyte antigen phenotype. Extracted data were collected using a customized template. Three hundred and thirty relevant records were identified from 16 countries/territories, with analysis conducted on 265 (80.3%) records published from the year 2000. RESULTS T1D incidence ranged from < 1-7.3/100000 individuals/year, rates were highest in emigrant/ mixed populations and lowest in South-East Asia, with most countries/territories (71.4%) having no data since 1999. Incidence was increasing in all six countries/territories with data (annual increases 0.5%-14.2%, highest in China). Peak age-of-onset was 10-14 years, with a female case excess. Rate of DKA at onset varied from 19.3%-70%. Pancreatic autoantibodies at diagnosis were similar to European-origin populations, with glutamic acid decarboxylase-65 autoantibody frequency of 44.1%-64.5%, insulinoma-associated 2 autoantibody 43.5%-70.7%, and zinc transporter-8 autoantibody frequency 54.3% (one study). Fulminant T1D also occurs. T2D was not uncommon, with incidence in Japan and one Chinese study exceeding T1D rates. Monogenic forms also occurred in a number of countries. CONCLUSION T1D is less common, but generally has a classic phenotype. Some countries/ territories have rapidly increasing incidence. T2D is relatively common. Registries and studies are needed to fill many information gaps.
Collapse
Affiliation(s)
- Steven James
- School of Nursing, Midwifery and Paramedicine, University of the Sunshine Coast, Petrie 4502, Queensland, Australia
| | - Jayanthi Maniam
- Life for a Child Program, Diabetes NSW & ACT, Glebe 2017, New South Wales, Australia
| | - Pik-To Cheung
- Department of Paediatric Endocrinology, Genetics and Metabolism, Virtus Medical Group, Hong Kong, China
| | - Tatsuhiko Urakami
- Department of Pediatrics, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Julia von Oettingen
- Research Institute, McGill University Health Centre, Montreal H4A 3JI, Quebec, Canada
| | - Supawadee Likitmaskul
- Siriraj Diabetes Center, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Graham Ogle
- Life for a Child Program, Diabetes NSW & ACT, Glebe 2017, New South Wales, Australia
| |
Collapse
|
2
|
Billings LK, Jablonski KA, Warner AS, Cheng YC, McAteer JB, Tipton L, Shuldiner AR, Ehrmann DA, Manning AK, Dabelea D, Franks PW, Kahn SE, Pollin TI, Knowler WC, Altshuler D, Florez JC. Variation in Maturity-Onset Diabetes of the Young Genes Influence Response to Interventions for Diabetes Prevention. J Clin Endocrinol Metab 2017; 102:2678-2689. [PMID: 28453780 PMCID: PMC5546852 DOI: 10.1210/jc.2016-3429] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 04/21/2017] [Indexed: 11/19/2022]
Abstract
Context Variation in genes that cause maturity-onset diabetes of the young (MODY) has been associated with diabetes incidence and glycemic traits. Objectives This study aimed to determine whether genetic variation in MODY genes leads to differential responses to insulin-sensitizing interventions. Design and Setting This was a secondary analysis of a multicenter, randomized clinical trial, the Diabetes Prevention Program (DPP), involving 27 US academic institutions. We genotyped 22 missense and 221 common variants in the MODY-causing genes in the participants in the DPP. Participants and Interventions The study included 2806 genotyped DPP participants randomized to receive intensive lifestyle intervention (n = 935), metformin (n = 927), or placebo (n = 944). Main Outcome Measures Association of MODY genetic variants with diabetes incidence at a median of 3 years and measures of 1-year β-cell function, insulinogenic index, and oral disposition index. Analyses were stratified by treatment group for significant single-nucleotide polymorphism × treatment interaction (Pint < 0.05). Sequence kernel association tests examined the association between an aggregate of rare missense variants and insulinogenic traits. Results After 1 year, the minor allele of rs3212185 (HNF4A) was associated with improved β-cell function in the metformin and lifestyle groups but not the placebo group; the minor allele of rs6719578 (NEUROD1) was associated with an increase in insulin secretion in the metformin group but not in the placebo and lifestyle groups. Conclusions These results provide evidence that genetic variation among MODY genes may influence response to insulin-sensitizing interventions.
Collapse
Affiliation(s)
- Liana K. Billings
- Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02114
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114
- Department of Medicine, NorthShore University HealthSystem, Evanston, Illinois 60201
- Department of Medicine, Pritzker School of Medicine, University of Chicago, Chicago, Illinois 60637
| | | | - A. Sofia Warner
- Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Yu-Chien Cheng
- Department of Medicine, NorthShore University HealthSystem, Evanston, Illinois 60201
- Department of Medicine, Pritzker School of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Jarred B. McAteer
- Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Laura Tipton
- Biostatistics Center, George Washington University, Rockville, Maryland 20852
| | - Alan R. Shuldiner
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - David A. Ehrmann
- Department of Medicine, Pritzker School of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Alisa K. Manning
- Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02114
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, University of Colorado, Denver, Colorado 80045
| | - Paul W. Franks
- Department of Clinical Sciences, Genetic, and Molecular Epidemiology Unit, Lund University Diabetes Center, Skåne University Hospital Malmö, SE-205 02 Malmö, Sweden
| | - Steven E. Kahn
- Division of Metabolism, Endocrinology, and Nutrition, VA Puget Sound Health Care System and University of Washington, Seattle, Washington 98195
| | - Toni I. Pollin
- Departments of Medicine (Division of Endocrinology, Diabetes, and Nutrition) and Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - William C. Knowler
- Diabetes Epidemiology and Clinical Research Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona 85014
| | - David Altshuler
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02114
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
- Vertex Pharmaceuticals, Boston, Massachusetts 02210
| | - Jose C. Florez
- Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02114
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
| | - for the Diabetes Prevention Program Research Group
- Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02114
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114
- Department of Medicine, NorthShore University HealthSystem, Evanston, Illinois 60201
- Department of Medicine, Pritzker School of Medicine, University of Chicago, Chicago, Illinois 60637
- Biostatistics Center, George Washington University, Rockville, Maryland 20852
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
- Department of Epidemiology, Colorado School of Public Health, University of Colorado, Denver, Colorado 80045
- Department of Clinical Sciences, Genetic, and Molecular Epidemiology Unit, Lund University Diabetes Center, Skåne University Hospital Malmö, SE-205 02 Malmö, Sweden
- Division of Metabolism, Endocrinology, and Nutrition, VA Puget Sound Health Care System and University of Washington, Seattle, Washington 98195
- Departments of Medicine (Division of Endocrinology, Diabetes, and Nutrition) and Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Diabetes Epidemiology and Clinical Research Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona 85014
- Vertex Pharmaceuticals, Boston, Massachusetts 02210
| |
Collapse
|
3
|
Shalabi A, Fischer C, Korf HW, von Gall C. Melatonin-receptor-1-deficiency affects neurogenic differentiation factor immunoreaction in pancreatic islets and enteroendocrine cells of mice. Cell Tissue Res 2013; 353:483-91. [PMID: 23700151 DOI: 10.1007/s00441-013-1647-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/24/2013] [Indexed: 10/26/2022]
Abstract
Neurogenic differentiation factor (NeuroD) is a transcription factor involved in the differentiation of neurons and in the control of energy balance and metabolism. It plays a key role in type 1 and type 2 diabetes. Melatonin is an important rhythmic endocrine signal within the circadian system of mammals and modulates insulin secretion and glucose metabolism. In the mouse pars tuberalis, NeuroD mRNA levels show day/night variation, which is independent of the molecular clock gene mPER1 but depends on the functional melatonin receptor 1 (MT1). So far, little is known about the effect of melatonin on NeuroD synthesis in the gastrointestinal tract. Thus, NeuroD protein levels and cellular localization were analyzed by immunohistochemistry in pancreatic islets and duodenal enteroendocrine cells of MT1- and mPER1-deficienct mice. In addition, the localization of NeuroD-positive cells was analyzed by double-immunofluorescence and confocal laser microscopy. In duodenal enteroendocrine cells and pancreatic islets of WT and PER1-deficient mice, NeuroD immunoreaction showed a peak during the early subjective night. In contrast, this peak was absent in MT1-deficent mice. These data suggest that melatonin, by acting on MT1 receptors, affects NeuroD expression in the gastrointestinal tract and thus might contribute to circadian regulation in metabolic functions.
Collapse
Affiliation(s)
- Andree Shalabi
- Dr. Senckenbergische Anatomie, Institut für Anatomie II, Johann-Wolfgang-Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt/M, Germany
| | | | | | | |
Collapse
|
4
|
Abstract
Production and secretion of insulin from the β-cells of the pancreas is very crucial in maintaining normoglycaemia. This is achieved by tight regulation of insulin synthesis and exocytosis from the β-cells in response to changes in blood glucose levels. The synthesis of insulin is regulated by blood glucose levels at the transcriptional and post-transcriptional levels. Although many transcription factors have been implicated in the regulation of insulin gene transcription, three β-cell-specific transcriptional regulators, Pdx-1 (pancreatic and duodenal homeobox-1), NeuroD1 (neurogenic differentiation 1) and MafA (V-maf musculoaponeurotic fibrosarcoma oncogene homologue A), have been demonstrated to play a crucial role in glucose induction of insulin gene transcription and pancreatic β-cell function. These three transcription factors activate insulin gene expression in a co-ordinated and synergistic manner in response to increasing glucose levels. It has been shown that changes in glucose concentrations modulate the function of these β-cell transcription factors at multiple levels. These include changes in expression levels, subcellular localization, DNA-binding activity, transactivation capability and interaction with other proteins. Furthermore, all three transcription factors are able to induce insulin gene expression when expressed in non-β-cells, including liver and intestinal cells. The present review summarizes the recent findings on how glucose modulates the function of the β-cell transcription factors Pdx-1, NeuroD1 and MafA, and thereby tightly regulates insulin synthesis in accordance with blood glucose levels.
Collapse
|
5
|
Sagen JV, Baumann ME, Salvesen HB, Molven A, Søvik O, Njølstad PR. Diagnostic screening of NEUROD1 (MODY6) in subjects with MODY or gestational diabetes mellitus. Diabet Med 2005; 22:1012-5. [PMID: 16026366 DOI: 10.1111/j.1464-5491.2005.01565.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Diagnostic screening of NEUROD1 in patients with maturity-onset diabetes of the young (MODY) without mutations in the known MODY-genes (MODYX) and in subjects diagnosed with gestational diabetes mellitus. METHODS Direct sequencing of NEUROD1 was performed in (i) 73 probands with clinical MODY without mutations in hepatocyte nuclear factor (HNF)-4alpha (MODY1), glucokinase (MODY2) and hepatocyte nuclear factor (HNF)-1alpha (MODY3), and (ii) 51 subjects diagnosed with gestational diabetes. Control material consisted of 105 anonymous blood donors. RESULTS Mean age at diagnosis of diabetes was 22 and 30 years in the MODYX patients and gestational diabetes mellitus subjects, respectively. Mean fasting blood glucose (9.6 +/- 4.3 vs. 5.7 +/- 1.0 mml/l) as well as glycosylated haemoglobin (8.2 +/- 2.4 vs. 6.0 +/- 0.6%) were higher in the MODYX patients than subjects with gestational diabetes. NEUROD1 mutations were not detected in our two study groups. Three previously reported polymorphisms were found: Ala45Thr, Pro197His and IVS1 -32 nt C>T. The amino acid substitution serine to cysteine in codon 29 (designated Ser29Cys) was detected in one out of 105 control subjects. As the control material consisted of anonymous blood donors, we were prevented from investigation of possible co-segregation between the sequence variant Ser29Cys and diabetes mellitus. CONCLUSIONS As we found no NEUROD1 mutations, diagnostic screening for this gene is not warranted in Norwegian MODYX patients. Our study also suggests that NEUROD1 is not a candidate gene in gestational diabetes mellitus (GDM). The sequence variant Ser29Cys was identified in one anonymous DNA sample, but we were prevented from studying possible co-segregation with diabetes mellitus.
Collapse
Affiliation(s)
- J V Sagen
- Section of Paediatrics, Institute of Clinical Medicine, University of Bergen, Bergen, Norway.
| | | | | | | | | | | |
Collapse
|
6
|
Kavvoura FK, Ioannidis JPA. Ala45Thr polymorphism of the NEUROD1 gene and diabetes susceptibility: a meta-analysis. Hum Genet 2004; 116:192-9. [PMID: 15592940 DOI: 10.1007/s00439-004-1224-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Accepted: 10/03/2004] [Indexed: 01/17/2023]
Abstract
A meta-analysis assessed whether the Ala45Thr polymorphism of the neurogenic differentiation 1 (NEUROD1) gene is associated with increased risk of diabetes mellitus type 1 (T1D) or type 2 (T2D). Fourteen case-control studies were analyzed, including genotype data on 3,057 patients with diabetes (T1D n=1,213, T2D n=1,844) and 2,446 controls. Overall and race-specific summary odds ratios (ORs) were obtained with fixed and random effects models. The Thr allele did not significantly increase the overall risk for T1D (OR 1.27 [0.94-1.71], P=0.12) or T2D (OR 1.07 [0.90-1.28], P=0.46). The Thr allele conferred increased susceptibility in subjects of Asian racial descent to T1D (OR 1.88 [1.10-3.21], P=0.020), but not to T2D (OR 1.08 [0.74-1.56], P=0.70). There was no association in subjects of European descent (OR 0.97 [0.76-1.23], P=0.80 for T1D; OR 1.03 [0.88-1.21], P=0.68 for T2D). Larger studies seemed to show more conservative estimates for the association with T1D (P=0.083). The Ala45Thr polymorphism of the NEUROD1 gene has no effect on susceptibility to T2D. It may however be a risk factor for susceptibility to T1D, in particular for subjects of Asian descent, although bias cannot be totally excluded.
Collapse
Affiliation(s)
- Fotini K Kavvoura
- Clinical and Molecular Epidemiology Unit, Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, 45110, Greece
| | | |
Collapse
|
7
|
Cinek O, Drevínek P, Sumník Z, Bendlová B, Sedláková P, Kolousková S, Snajderová M, Vavrinec J. NEUROD polymorphism Ala45Thr is associated with Type 1 diabetes mellitus in Czech children. Diabetes Res Clin Pract 2003; 60:49-56. [PMID: 12639765 DOI: 10.1016/s0168-8227(02)00251-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Association of the NEUROD Ala45Thr polymorphism with Type 1 diabetes mellitus (DM) has been found in some but not all populations. We performed a study on the association of two NEUROD exon 2 polymorphisms, the Ala45Thr and the Pro197His, with childhood-onset Type 1 DM in the Czech population. We compared 285 children with Type 1 DM diagnosed under the age of 15 years with 289 non-diabetic control children. The genotypes were determined using novel real-time allele-specific PCR assays in the TaqMan format, and data were analysed using logistic regression. The numbers of subjects with codon 45 genotypes Ala/Ala, Ala/Thr, Thr/Thr were 95, 145, 45 among cases and 117, 130, 42 among controls. Thr45 phenotypic positivity was associated with a significant risk of Type 1 DM (OR=2.01, CI 95% 1.25-3.24) in a multivariate logistic regression model involving also the insulin gene -23HphI genotype and the presence of Type 1 DM-associated HLA-DQB1*0302-DQA1*03 (DQ8) and DQB1*0201-DQA1*05 (DQ2) molecules. No association was observed for the Pro197His mutation which was carried by 5.3% cases and 5.9% controls. Our results confirm that the NEUROD Ala45Thr polymorphism is associated with childhood-onset Type 1 DM.
Collapse
Affiliation(s)
- Ondrej Cinek
- Second Department of Paediatrics, Second Faculty of Medicine, Charles University, V Uvalu 84, Prague 5 CZ-150 06, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Mochizuki M, Amemiya S, Kobayashi K, Kobayashi K, Shimura Y, Ishihara T, Nakagomi Y, Onigata K, Tamai S, Kasuga A, Nanazawa S. Association of the CTLA-4 gene 49 A/G polymorphism with type 1 diabetes and autoimmune thyroid disease in Japanese children. Diabetes Care 2003; 26:843-7. [PMID: 12610047 DOI: 10.2337/diacare.26.3.843] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To clarify the role of the T-lymphocyte-associated-4 (CTLA-4) polymorphism in the susceptibility to child-onset type 1 diabetes with regard to its clinical characteristics and complications with autoimmune thyroid disease (AITD) in the Japanese population. RESEARCH DESIGN AND METHODS The CTLA-4 49 A/G polymorphism was detected by the PCR-restriction fragment-length polymorphism (RFLP) method in 97 type 1 diabetic subjects and 20 patients with Graves' disease, a cohort which included 4 patients who also had type 1 diabetes. RESULTS The genotypes and allele frequencies of this polymorphism did not differ between the type 1 diabetic subjects and the control subjects. The G allele frequency was 63.9% in the type 1 diabetic subjects. The G allele frequency in the subgroup of patients with a high titer of autoantibodies to the GAD antibody (Ab) was 72.9% (P = 0.0499 vs. control subjects); in the subgroup of patients without HLA DRB1*0405, it was 72.6% (P = 0.0271 vs. control subjects); and in the subgroup of patients with a residual beta-cell function, it was 78.6% (P = 0.0391 vs. control subjects). The G allele frequency in the patients with Graves' disease was also significantly higher at 78.1% (P = 0.0405 vs. control subjects). Furthermore, the frequency in our diabetic subjects complicated with Graves' disease was even higher (87.5%). CONCLUSIONS We have demonstrated that a distinct association exists between the G allele of CTLA-4 and high values of GAD Ab, residual beta-cell function, and the absence of HLA-DRB1*0405.
Collapse
Affiliation(s)
- Mie Mochizuki
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|