1
|
Koelink PJ, Gómez-Mellado VE, Duijst S, van Roest M, Meisner S, Ho-Mok KS, Frank S, Appelman BS, Bloemendaal LT, Vogel GF, van de Graaf SFJ, Bosma PJ, Oude Elferink RPJ, Wildenberg ME, Paulusma CC. The Phospholipid Flippase ATP8B1 is Involved in the Pathogenesis of Ulcerative Colitis via Establishment of Intestinal Barrier Function. J Crohns Colitis 2024; 18:1134-1146. [PMID: 38366839 PMCID: PMC11302967 DOI: 10.1093/ecco-jcc/jjae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/30/2024] [Accepted: 02/15/2024] [Indexed: 02/18/2024]
Abstract
AIMS Patients with mutations in ATP8B1 develop progressive familial intrahepatic cholestasis type 1 [PFIC1], a severe liver disease that requires life-saving liver transplantation. PFIC1 patients also present with gastrointestinal problems, including intestinal inflammation and diarrhoea, which are aggravated after liver transplantation. Here we investigate the intestinal function of ATP8B1 in relation to inflammatory bowel diseases. METHODS ATP8B1 expression was investigated in intestinal samples of patients with Crohn's disease [CD] or ulcerative colitis [UC] as well as in murine models of intestinal inflammation. Colitis was induced in ATP8B1-deficient mice with dextran sodium sulphate [DSS] and intestinal permeability was investigated. Epithelial barrier function was assessed in ATP8B1 knockdown Caco2-BBE cells. Co-immunoprecipitation experiments were performed in Caco2-BBE cells overexpressing ATP8B1-eGFP. Expression and localization of ATP8B1 and tight junction proteins were investigated in cells and in biopsies of UC and PFIC1 patients. RESULTS ATP8B1 expression was decreased in UC and DSS-treated mice, and was associated with a decreased tight junctional pathway transcriptional programme. ATP8B1-deficient mice were extremely sensitive to DSS-induced colitis, as evidenced by increased intestinal barrier leakage. ATP8B1 knockdown cells showed delayed barrier establishment that affected Claudin-4 [CLDN4] levels and localization. CLDN4 immunohistochemistry showed a tight junctional staining in control tissue, whereas in UC and intestinal PFIC1 samples, CLDN4 was not properly localized. CONCLUSION ATP8B1 is important in the establishment of the intestinal barrier. Downregulation of ATP8B1 levels in UC, and subsequent altered localization of tight junctional proteins, including CLDN4, might therefore be an important mechanism in UC pathophysiology.
Collapse
Affiliation(s)
- Pim J Koelink
- Amsterdam University Medical Centers, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Valentina E Gómez-Mellado
- Amsterdam University Medical Centers, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Suzanne Duijst
- Amsterdam University Medical Centers, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Manon van Roest
- Amsterdam University Medical Centers, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Sander Meisner
- Amsterdam University Medical Centers, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Kam S Ho-Mok
- Amsterdam University Medical Centers, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Sabrina Frank
- Amsterdam University Medical Centers, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
| | - Babette S Appelman
- Amsterdam University Medical Centers, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
| | - Lysbeth ten Bloemendaal
- Amsterdam University Medical Centers, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Georg F Vogel
- Department of Paediatrics I, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Stan F J van de Graaf
- Amsterdam University Medical Centers, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Piter J Bosma
- Amsterdam University Medical Centers, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Ronald P J Oude Elferink
- Amsterdam University Medical Centers, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Manon E Wildenberg
- Amsterdam University Medical Centers, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Coen C Paulusma
- Amsterdam University Medical Centers, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Kreimeyer H, Vogt K, Götze T, Best J, Götze O, Weigt J, Kahraman A, Özçürümez M, Kälsch J, Syn WK, Sydor S, Canbay A, Manka P. Influence of the Bile Acid Transporter Genes ABCB4, ABCB8, and ABCB11 and the Farnesoid X Receptor on the Response to Ursodeoxycholic Acid in Patients with Nonalcoholic Steatohepatitis. J Pers Med 2023; 13:1180. [PMID: 37511794 PMCID: PMC10381823 DOI: 10.3390/jpm13071180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The prevalence of NAFLD and NASH is increasing worldwide, and there is no approved medical treatment until now. Evidence has emerged that interfering with bile acid metabolism may lead to improvement in NASH. In this study, 28 patients with elevated cholestatic liver function tests (especially GGT) were screened for bile acid gene polymorphisms and treated with UDCA. All patients had a bile acid gene polymorphism in ABCB4 or ABCB11. Treatment with UDCA for 12 months significantly reduced GGT in all patients and ALT in homozygous patients. No difference in fibrosis was observed using FIb-4, NFS, and transient elastography (TE). PNPLA3 and TM6SF2 were the most common NASH-associated polymorphisms, and patients with TM6SF2 showed a significant reduction in GGT and ALT with the administration of UDCA. In conclusion, NASH patients with elevated GGT should be screened for bile acid gene polymorphisms, as UDCA therapy may improve liver function tests. However, no difference in clinical outcomes, such as progression to cirrhosis, has been observed using non-invasive tests (NITs).
Collapse
Affiliation(s)
- Henriette Kreimeyer
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Katharina Vogt
- Department of Gastroenterology and Hepatology, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Tobias Götze
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Otto-von-Guericke-University Hospital Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Jan Best
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Oliver Götze
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Jochen Weigt
- Department of Gastroenterology and Hepatology, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Alisan Kahraman
- Department of Gastroenterology and Hepatology, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Mustafa Özçürümez
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Julia Kälsch
- Department of Gastroenterology and Hepatology, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Wing-Kin Syn
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
- Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Svenja Sydor
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Ali Canbay
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| | - Paul Manka
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany
| |
Collapse
|
3
|
Gómez-Mellado VE, Chang JC, Ho-Mok KS, Bernardino Morcillo C, Kersten RHJ, Oude Elferink RPJ, Verhoeven AJ, Paulusma CC. ATP8B1 Deficiency Results in Elevated Mitochondrial Phosphatidylethanolamine Levels and Increased Mitochondrial Oxidative Phosphorylation in Human Hepatoma Cells. Int J Mol Sci 2022; 23:ijms232012344. [PMID: 36293199 PMCID: PMC9604224 DOI: 10.3390/ijms232012344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/20/2022] Open
Abstract
ATP8B1 is a phospholipid flippase that is deficient in patients with progressive familial intrahepatic cholestasis type 1 (PFIC1). PFIC1 patients suffer from severe liver disease but also present with dyslipidemia, including low plasma cholesterol, of yet unknown etiology. Here we show that ATP8B1 knockdown in HepG2 cells leads to a strong increase in the mitochondrial oxidative phosphorylation (OXPHOS) without a change in glycolysis. The enhanced OXPHOS coincides with elevated low-density lipoprotein receptor protein and increased mitochondrial fragmentation and phosphatidylethanolamine levels. Furthermore, expression of phosphatidylethanolamine N-methyltransferase, an enzyme that catalyzes the conversion of mitochondrial-derived phosphatidylethanolamine to phosphatidylcholine, was reduced in ATP8B1 knockdown cells. We conclude that ATP8B1 deficiency results in elevated mitochondrial PE levels that stimulate mitochondrial OXPHOS. The increased OXPHOS leads to elevated LDLR levels, which provides a possible explanation for the reduced plasma cholesterol levels in PFIC1 disease.
Collapse
Affiliation(s)
- Valentina E. Gómez-Mellado
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Meibergdreef 69, 1105 BK Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, 1105 AZ Amsterdam, The Netherlands
| | - Jung-Chin Chang
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Meibergdreef 69, 1105 BK Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, 1105 AZ Amsterdam, The Netherlands
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Kam S. Ho-Mok
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Meibergdreef 69, 1105 BK Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, 1105 AZ Amsterdam, The Netherlands
| | - Carmen Bernardino Morcillo
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Meibergdreef 69, 1105 BK Amsterdam, The Netherlands
| | - Remco H. J. Kersten
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Meibergdreef 69, 1105 BK Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, 1105 AZ Amsterdam, The Netherlands
| | - Ronald P. J. Oude Elferink
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Meibergdreef 69, 1105 BK Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, 1105 AZ Amsterdam, The Netherlands
| | - Arthur J. Verhoeven
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Meibergdreef 69, 1105 BK Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, 1105 AZ Amsterdam, The Netherlands
| | - Coen C. Paulusma
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Meibergdreef 69, 1105 BK Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, 1105 AZ Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|
4
|
Structural insights into the activation of autoinhibited human lipid flippase ATP8B1 upon substrate binding. Proc Natl Acad Sci U S A 2022; 119:e2118656119. [PMID: 35349344 PMCID: PMC9168909 DOI: 10.1073/pnas.2118656119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ATP8B1 is a P4 ATPase that maintains membrane asymmetry by transporting phospholipids across the cell membrane. Disturbance of lipid asymmetry will lead to the imbalance of the cell membrane and eventually, cell death. Thus, defects in ATP8B1 are usually associated with severe human diseases, such as intrahepatic cholestasis. The present structures of ATP8B1 complexed with its auxiliary noncatalytic partners CDC50A and CDC50B reveal an autoinhibited state of ATP8B1 that could be released upon substrate binding. Moreover, release of this autoinhibition could be facilitated by the bile acids, which are key factors that alter the membrane asymmetry of hepatocytes. This enabled us to figure out a feedback loop of bile acids and lipids across the cell membrane. The human P4 ATPase ATP8B1 in complex with the auxiliary noncatalytic protein CDC50A or CDC50B mediates the transport of cell-membrane lipids from the outer to the inner membrane leaflet, which is crucial to maintain the asymmetry of membrane lipids. Its dysfunction usually leads to an imbalance of bile-acid circulation and eventually causes intrahepatic cholestasis diseases. Here, we found that both ATP8B1–CDC50A and ATP8B1–CDC50B possess a higher ATPase activity in the presence of the most favored substrate phosphatidylserine (PS), and, moreover, that the PS-stimulated activity could be augmented upon the addition of bile acids. The 3.4-Å cryo-electron microscopy structures of ATP8B1–CDC50A and ATP8B1–CDC50B enabled us to capture a phosphorylated and autoinhibited state, with the N- and C-terminal tails separately inserted into the cytoplasmic interdomain clefts of ATP8B1. The PS-bound ATP8B1–CDC50A structure at 4.0-Å resolution indicated that the autoinhibited state could be released upon PS binding. Structural analysis combined with mutagenesis revealed the residues that determine the substrate specificity and a unique positively charged loop in the phosphorylated domain of ATP8B1 for the recruitment of bile acids. Together, we supplemented the Post–Albers transport cycle of P4 ATPases with an extra autoinhibited state of ATP8B1, which could be activated upon substrate binding. These findings not only provide structural insights into the ATP8B1-mediated restoration of human membrane lipid asymmetry during bile-acid circulation, but also advance our understanding of the molecular mechanism of P4 ATPases.
Collapse
|
5
|
Bakır A, Topçu V, Çavdarlı B. The molecular landscape of progressive familial intrahepatic cholestasis in Turkey: Defining the molecular profiles and expanding the variant spectrum. Ann Hum Genet 2021; 86:119-126. [PMID: 34961929 DOI: 10.1111/ahg.12456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 11/29/2022]
Abstract
Progressive familial intrahepatic cholestasis (PFIC) is a rare genetically heterogeneous group of autosomal recessive liver disorders that manifests as intrahepatic cholestasis during the neonatal period. ATP8B1, ABCB11, and ABCB4 genes are responsible for PFIC type 1, PFIC type 2, and PFIC type 3, respectively. To determine the underlying molecular etiology of PFIC, 80 patients from 77 families were investigated. The molecular genetic diagnosis was applied by using next-generation sequencing (NGS) and revealed 29 different variants from 32 patients. In this study, we evaluated these variants according to mechanisms, clinical sub-groups, and genotype-phenotype correlation.
Collapse
Affiliation(s)
- Abdullatif Bakır
- Department of Medical Genetics, AnkaraTraining and Research Hospital, Ankara, Turkey.,Department of Medical Genetics, University of Health Sciences, Dr. Sami Ulus Maternity and Children's Education and Research Hospital, Ankara, Turkey
| | - Vehap Topçu
- Department of Medical Genetics, Ankara Numune Training and Research Hospital, Ankara, Turkey.,Department of Medical Genetics, Ankara Cıty Hospıtal, Ankara, Turkey
| | - Büşranur Çavdarlı
- Department of Medical Genetics, Ankara Numune Training and Research Hospital, Ankara, Turkey.,Department of Medical Genetics, Ankara Cıty Hospıtal, Ankara, Turkey
| |
Collapse
|
6
|
The transport mechanism of P4 ATPase lipid flippases. Biochem J 2021; 477:3769-3790. [PMID: 33045059 DOI: 10.1042/bcj20200249] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/02/2020] [Accepted: 09/16/2020] [Indexed: 12/18/2022]
Abstract
P4 ATPase lipid flippases are ATP-driven transporters that translocate specific lipids from the exoplasmic to the cytosolic leaflet of biological membranes, thus establishing a lipid gradient between the two leaflets that is essential for many cellular processes. While substrate specificity, subcellular and tissue-specific expression, and physiological functions have been assigned to a number of these transporters in several organisms, the mechanism of lipid transport has been a topic of intense debate in the field. The recent publication of a series of structural models based on X-ray crystallography and cryo-EM studies has provided the first glimpse into how P4 ATPases have adapted the transport mechanism used by the cation-pumping family members to accommodate a substrate that is at least an order of magnitude larger than cations.
Collapse
|
7
|
Itoh M, Terada M, Sugimoto H. The zonula occludens protein family regulates the hepatic barrier system in the murine liver. Biochim Biophys Acta Mol Basis Dis 2020; 1867:165994. [PMID: 33184034 DOI: 10.1016/j.bbadis.2020.165994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/05/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022]
Abstract
The hepatic barrier is indispensable for the physiological functions of the liver and is impaired under various pathological conditions. Tight junctions reportedly play a central role in hepatic barrier regulation; however, there is limited direct evidence supporting this observation, with few in vivo models or confirmations of the implicated molecular mechanisms presented to date. We inactivated the tight junction component gene, Tjp2/ZO-2, and the related molecule, Tjp1/ZO-1, in mouse livers. In humans, TJP2/ZO-2 mutations have been implicated in the development of human progressive familial intrahepatic cholestasis 4 (PFIC4). The mice deficient in either ZO-1 or ZO-2 in the liver did not exhibit major abnormalities. However, the ablation of both molecules impaired the molecular architecture as well as the structure and function of hepatocyte tight junctions, which disrupted the hepatic barrier and was lethal to the mice by 6 weeks of age. In mutant mice, bile canaliculus formation and cellular polarity were compromised; also, transporter expression and localization were deregulated. Moreover, typical hepatic zonation and bile duct formation were inhibited, and sinusoidal vessels were disorganized. These findings clarify the role of tight junctions and polarity in the hepatic barrier as well as the effect that their disruption has on liver tissue. The observations also suggest that liver-specific ZO-1-/- and ZO-2-/- mice could be used as models for PFIC4, and this will provide new insights into liver pathophysiology and clinical applications.
Collapse
Affiliation(s)
- Masahiko Itoh
- Department of Biochemistry, School of Medicine, Dokkyo Medical University, Tochigi, Japan.
| | - Misao Terada
- Laboratory Animal Research Center, Dokkyo Medical University, Tochigi, Japan
| | - Hiroyuki Sugimoto
- Department of Biochemistry, School of Medicine, Dokkyo Medical University, Tochigi, Japan
| |
Collapse
|
8
|
Fukumoto J, Leung J, Cox R, Czachor A, Parthasarathy PT, Lagishetty V, Mandry M, Hosseinian N, Patel P, Perry B, Breitzig MT, Alleyn M, Failla A, Cho Y, Cooke AJ, Galam L, Soundararajan R, Sharma N, Lockey RF, Kolliputi N. Oxidative stress induces club cell proliferation and pulmonary fibrosis in Atp8b1 mutant mice. Aging (Albany NY) 2020; 11:209-229. [PMID: 30636723 PMCID: PMC6339797 DOI: 10.18632/aging.101742] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/19/2018] [Indexed: 12/26/2022]
Abstract
Atp8b1 (ATPase, aminophospholipid transporter, class I, type 8B, member 1) is a cardiolipin transporter in the apical membrane of lung epithelial cells. While the role of Atp8b1 in pneumonia-induced acute lung injury (ALI) has been well studied, its potential role in oxidative stress-induced ALI is poorly understood. We herein show that Atp8b1G308V/G308V mice under hyperoxic conditions display exacerbated cell apoptosis at alveolar epithelium and aberrant proliferation of club cells at bronchiolar epithelium. This hyperoxia-induced ambivalent response in Atp8b1G308V/G308V lungs was followed by patchy distribution of non-uniform interstitial fibrosis at late recovery phase under normoxia. Since this club cell abnormality is commonly observed between Atp8b1G308V/G308V lungs under hyperoxic conditions and IPF lungs, we characterized this mouse fibrosis model focusing on club cells. Intriguingly, subcellular morphological analysis of IPF lungs, using transmission electron microscopy (TEM), revealed that metaplastic bronchiolar epithelial cells in fibrotic lesions and deformed type II alveolar epithelial cells (AECs) in alveoli with mild fibrosis, have common morphological features including cytoplasmic vacuolation and dysmorphic lamellar bodies. In conclusion, the combination of Atp8b1 mutation and hyperoxic insult serves as a novel platform to study unfocused role of club cells in IPF.
Collapse
Affiliation(s)
- Jutaro Fukumoto
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Joseph Leung
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Ruan Cox
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Alexander Czachor
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Prasanna Tamarapu Parthasarathy
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Venu Lagishetty
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Maria Mandry
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Nima Hosseinian
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Priyanshi Patel
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Brittany Perry
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Mason T Breitzig
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Matthew Alleyn
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Athena Failla
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Young Cho
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Andrew J Cooke
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Lakshmi Galam
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Ramani Soundararajan
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Nirmal Sharma
- Advanced Lung Diseases & Lung Transplantation, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Richard F Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
9
|
Shin HW, Takatsu H. Substrates of P4‐ATPases: beyond aminophospholipids (phosphatidylserine and phosphatidylethanolamine). FASEB J 2018; 33:3087-3096. [DOI: 10.1096/fj.201801873r] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hye-Won Shin
- Graduate School of Pharmaceutical SciencesKyoto University Kyoto Japan
| | - Hiroyuki Takatsu
- Graduate School of Pharmaceutical SciencesKyoto University Kyoto Japan
| |
Collapse
|
10
|
Wang J, Molday LL, Hii T, Coleman JA, Wen T, Andersen JP, Molday RS. Proteomic Analysis and Functional Characterization of P4-ATPase Phospholipid Flippases from Murine Tissues. Sci Rep 2018; 8:10795. [PMID: 30018401 PMCID: PMC6050252 DOI: 10.1038/s41598-018-29108-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/05/2018] [Indexed: 01/31/2023] Open
Abstract
P4-ATPases are a subfamily of P-type ATPases that flip phospholipids across membranes to generate lipid asymmetry, a property vital to many cellular processes. Mutations in several P4-ATPases have been linked to severe neurodegenerative and metabolic disorders. Most P4-ATPases associate with one of three accessory subunit isoforms known as CDC50A (TMEM30A), CDC50B (TMEM30B), and CDC50C (TMEM30C). To identify P4-ATPases that associate with CDC50A, in vivo, and determine their tissue distribution, we isolated P4-ATPases-CDC50A complexes from retina, brain, liver, testes, and kidney on a CDC50A immunoaffinity column and identified and quantified P4-ATPases from their tryptic peptides by mass spectrometry. Of the 12 P4-ATPase that associate with CDC50 subunits, 10 P4-ATPases were detected. Four P4-ATPases (ATP8A1, ATP11A, ATP11B, ATP11C) were present in all five tissues. ATP10D was found in low amounts in liver, brain, testes, and kidney, and ATP8A2 was present in significant amounts in retina, brain, and testes. ATP8B1 was detected only in liver, ATP8B3 and ATP10A only in testes, and ATP8B2 primarily in brain. We also show that ATP11A, ATP11B and ATP11C, like ATP8A1 and ATP8A2, selectively flip phosphatidylserine and phosphatidylethanolamine across membranes. These studies provide new insight into the tissue distribution, relative abundance, subunit interactions and substrate specificity of P4-ATPase-CDC50A complexes.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Biochemistry and Molecular Biology, Centre for Macular Research, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
- Laboratory of Molecular Neural Biology, Institute of Systems Biology, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Laurie L Molday
- Department of Biochemistry and Molecular Biology, Centre for Macular Research, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Theresa Hii
- Department of Biochemistry and Molecular Biology, Centre for Macular Research, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Jonathan A Coleman
- Department of Biochemistry and Molecular Biology, Centre for Macular Research, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Tieqiao Wen
- Laboratory of Molecular Neural Biology, Institute of Systems Biology, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Jens P Andersen
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, Bldg. 1160, DK-8000, Aarhus C, Denmark
| | - Robert S Molday
- Department of Biochemistry and Molecular Biology, Centre for Macular Research, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.
| |
Collapse
|
11
|
Dröge C, Bonus M, Baumann U, Klindt C, Lainka E, Kathemann S, Brinkert F, Grabhorn E, Pfister ED, Wenning D, Fichtner A, Gotthardt DN, Weiss KH, McKiernan P, Puri RD, Verma IC, Kluge S, Gohlke H, Schmitt L, Kubitz R, Häussinger D, Keitel V. Sequencing of FIC1, BSEP and MDR3 in a large cohort of patients with cholestasis revealed a high number of different genetic variants. J Hepatol 2017; 67:1253-1264. [PMID: 28733223 DOI: 10.1016/j.jhep.2017.07.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 06/16/2017] [Accepted: 07/07/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS The bile salt export pump (BSEP, ABCB11), multidrug resistance protein 3 (MDR3, ABCB4) and the ATPase familial intrahepatic cholestasis 1 (FIC1, ATP8B1) mediate bile formation. This study aimed to determine the contribution of mutations and common variants in the FIC1, BSEP and MDR3 genes to cholestatic disorders of differing disease onset and severity. METHODS Coding exons with flanking intron regions of ATP8B1, ABCB11, and ABCB4 were sequenced in cholestatic patients with assumed genetic cause. The effects of new variants were evaluated by bioinformatic tools and 3D protein modeling. RESULTS In 427 patients with suspected inherited cholestasis, 149 patients carried at least one disease-causing mutation in FIC1, BSEP or MDR3, respectively. Overall, 154 different mutations were identified, of which 25 were novel. All 13 novel missense mutations were disease-causing according to bioinformatics analyses and homology modeling. Eighty-two percent of patients with at least one disease-causing mutation in either of the three genes were children. One or more common polymorphism(s) were found in FIC1 in 35.3%, BSEP in 64.3% and MDR3 in 72.6% of patients without disease-causing mutations in the respective gene. Minor allele frequencies of common polymorphisms in BSEP and MDR3 varied in our cohort compared to the general population, as described by gnomAD. However, differences in ethnic background may contribute to this effect. CONCLUSIONS In a large cohort of patients, 154 different variants were detected in FIC1, BSEP, and MDR3, 25 of which were novel. In our cohort, frequencies for risk alleles of BSEP (p.V444A) and MDR3 (p.I237I) polymorphisms were significantly overrepresented in patients without disease-causing mutation in the respective gene, indicating that these common variants can contribute to a cholestatic phenotype. LAY SUMMARY FIC1, BSEP, and MDR3 represent hepatobiliary transport proteins essential for bile formation. Genetic variants in these transporters underlie a broad spectrum of cholestatic liver diseases. To confirm a genetic contribution to the patients' phenotypes, gene sequencing of these three major cholestasis-related genes was performed in 427 patients and revealed 154 different variants of which 25 have not been previously reported in a database. In patients without a disease-causing mutation, common genetic variants were detected in a high number of cases, indicating that these common variants may contribute to cholestasis development.
Collapse
Affiliation(s)
- Carola Dröge
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Michele Bonus
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Germany
| | - Ulrich Baumann
- Pediatric Gastroenterology and Hepatology, Department for Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Germany
| | - Caroline Klindt
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Elke Lainka
- Department for Pediatric Nephrology, Gastroenterology, Endocrinology and Transplant Medicine, Clinic for Pediatrics II, University Children's Hospital Essen, University Duisburg-Essen, Germany
| | - Simone Kathemann
- Department for Pediatric Nephrology, Gastroenterology, Endocrinology and Transplant Medicine, Clinic for Pediatrics II, University Children's Hospital Essen, University Duisburg-Essen, Germany
| | - Florian Brinkert
- Pediatric Gastroenterology and Hepatology, University Children's Hospital, University Medical Center Hamburg-Eppendorf, Germany
| | - Enke Grabhorn
- Pediatric Gastroenterology and Hepatology, University Children's Hospital, University Medical Center Hamburg-Eppendorf, Germany
| | - Eva-Doreen Pfister
- Pediatric Gastroenterology and Hepatology, Department for Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Germany
| | - Daniel Wenning
- Department of General Pediatrics, Heidelberg University Hospital, Germany
| | - Alexander Fichtner
- Department of General Pediatrics, Heidelberg University Hospital, Germany
| | - Daniel N Gotthardt
- Department of Internal Medicine IV, University Hospital Heidelberg, Germany
| | - Karl Heinz Weiss
- Department of Internal Medicine IV, University Hospital Heidelberg, Germany
| | - Patrick McKiernan
- Pittsburgh Liver Research Center, University of Pittsburgh and Children's Hospital of Pittsburgh of UPMC, Pittsburgh, USA
| | - Ratna Dua Puri
- Institute of Medical Genetics & Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - I C Verma
- Institute of Medical Genetics & Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Stefanie Kluge
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Germany
| | - Ralf Kubitz
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany.
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany.
| |
Collapse
|
12
|
Torfenejad P, Geramizadeh B, Haghighat M, Dahghani SM, Zahmatkeshan M, Honar N, Imanieh M, Malekhosseini SA. Progressive Familial Intrahepatic Cholestasis and its Subtypes: The First Report From Iran. IRANIAN JOURNAL OF PEDIATRICS 2016; In Press. [DOI: 10.5812/ijp.6497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
13
|
Khalaf R, Phen C, Karjoo S, Wilsey M. Cholestasis beyond the Neonatal and Infancy Periods. Pediatr Gastroenterol Hepatol Nutr 2016; 19:1-11. [PMID: 27066444 PMCID: PMC4821977 DOI: 10.5223/pghn.2016.19.1.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 02/14/2016] [Accepted: 02/16/2016] [Indexed: 02/07/2023] Open
Abstract
Cholestasis results from impairment in the excretion of bile, which may be due to mechanical obstruction of bile flow or impairment of excretion of bile components into the bile canaliculus. When present, cholestasis warrants prompt diagnosis and treatment. The differential diagnosis of cholestasis beyond the neonatal period is broad and includes congenital and acquired etiologies. It is imperative that the clinician differentiates between intrahepatic and extrahepatic origin of cholestasis. Treatment may be supportive or curative and depends on the etiology. Recent literature shows that optimal nutritional and medical support also plays an integral role in the management of pediatric patients with chronic cholestasis. This review will provide a broad overview of the pathophysiology, diagnostic approach, and management of cholestasis beyond the neonatal and infancy periods.
Collapse
Affiliation(s)
- Racha Khalaf
- Department of Medical Education, Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Claudia Phen
- Department of Medical Education, Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Sara Karjoo
- Department of Gastroenterology and Nutrition, Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Michael Wilsey
- Department of Gastroenterology and Nutrition, Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| |
Collapse
|
14
|
Andersen JP, Vestergaard AL, Mikkelsen SA, Mogensen LS, Chalat M, Molday RS. P4-ATPases as Phospholipid Flippases-Structure, Function, and Enigmas. Front Physiol 2016; 7:275. [PMID: 27458383 PMCID: PMC4937031 DOI: 10.3389/fphys.2016.00275] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 06/20/2016] [Indexed: 01/26/2023] Open
Abstract
P4-ATPases comprise a family of P-type ATPases that actively transport or flip phospholipids across cell membranes. This generates and maintains membrane lipid asymmetry, a property essential for a wide variety of cellular processes such as vesicle budding and trafficking, cell signaling, blood coagulation, apoptosis, bile and cholesterol homeostasis, and neuronal cell survival. Some P4-ATPases transport phosphatidylserine and phosphatidylethanolamine across the plasma membrane or intracellular membranes whereas other P4-ATPases are specific for phosphatidylcholine. The importance of P4-ATPases is highlighted by the finding that genetic defects in two P4-ATPases ATP8A2 and ATP8B1 are associated with severe human disorders. Recent studies have provided insight into how P4-ATPases translocate phospholipids across membranes. P4-ATPases form a phosphorylated intermediate at the aspartate of the P-type ATPase signature sequence, and dephosphorylation is activated by the lipid substrate being flipped from the exoplasmic to the cytoplasmic leaflet similar to the activation of dephosphorylation of Na(+)/K(+)-ATPase by exoplasmic K(+). How the phospholipid is translocated can be understood in terms of a peripheral hydrophobic gate pathway between transmembrane helices M1, M3, M4, and M6. This pathway, which partially overlaps with the suggested pathway for migration of Ca(2+) in the opposite direction in the Ca(2+)-ATPase, is wider than the latter, thereby accommodating the phospholipid head group. The head group is propelled along against its concentration gradient with the hydrocarbon chains projecting out into the lipid phase by movement of an isoleucine located at the position corresponding to an ion binding glutamate in the Ca(2+)- and Na(+)/K(+)-ATPases. Hence, the P4-ATPase mechanism is quite similar to the mechanism of these ion pumps, where the glutamate translocates the ions by moving like a pump rod. The accessory subunit CDC50 may be located in close association with the exoplasmic entrance of the suggested pathway, and possibly promotes the binding of the lipid substrate. This review focuses on properties of mammalian and yeast P4-ATPases for which most mechanistic insight is available. However, the structure, function and enigmas associated with mammalian and yeast P4-ATPases most likely extend to P4-ATPases of plants and other organisms.
Collapse
Affiliation(s)
| | | | | | | | - Madhavan Chalat
- Department of Biochemistry and Molecular Biology, University of British ColumbiaVancouver, BC, Canada
| | - Robert S. Molday
- Department of Biochemistry and Molecular Biology, University of British ColumbiaVancouver, BC, Canada
- *Correspondence: Robert S. Molday
| |
Collapse
|
15
|
Li L, Deheragoda M, Lu Y, Gong J, Wang J. Hypothyroidism Associated with ATP8B1 Deficiency. J Pediatr 2015; 167:1334-9.e1. [PMID: 26382629 DOI: 10.1016/j.jpeds.2015.08.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 07/01/2015] [Accepted: 08/13/2015] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To examine whether hypothyroidism is an extrahepatic feature of ATPase, aminophospholipid transporter, class I, type 8B, member 1 (ATP8B1) deficiency. STUDY DESIGN Children with normal γ-glutamyltransferase cholestasis (n = 47; 13 patients with ATP8B1 deficiency, 19 with ATP-binding cassette, subfamily B (MDR/TAP), member 11 (ABCB11) deficiency, and 15 without either ATP8B1 or ABCB11 mutations) were enrolled. Clinical information and thyroid function test results were retrospectively retrieved from clinical records and compared. Hypothyroidism was diagnosed by clinical-biochemistry criteria (thyroid function test results). RESULTS Three out of 13 patients with ATP8B1 deficiency were diagnosed as hypothyroid and 2 as subclinically hypothyroid. The frequency of hypothyroidism and subclinical hypothyroidism was significantly higher than in patients with ABCB11 deficiency (5/13 vs 0/19, P = .006) and in patients without ATP8B1 or ABCB11 mutations (5/13 vs 0/15, P = .013). Thyroid function test results normalized after hormone replacement in all 5 patients, with no relief of cholestasis. CONCLUSIONS As hypothyroidism can be another extrahepatic feature of ATP8B1 deficiency, thyroid function should be monitored in these patients.
Collapse
Affiliation(s)
- Liting Li
- Department of Pediatrics, Shanghai Medical College, Fudan University, Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Maesha Deheragoda
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Yi Lu
- Department of Pediatrics, Shanghai Medical College, Fudan University, Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Jingyu Gong
- Department of Pediatrics, Jinshan Hospital, Fudan University, Shanghai, China
| | - Jianshe Wang
- Department of Pediatrics, Shanghai Medical College, Fudan University, Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China; Department of Pediatrics, Jinshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Korneenko TV, Pestov NB, Okkelman IA, Modyanov NN, Shakhparonov MI. [P4-ATP-ase Atp8b1/FIC1: structural properties and (patho)physiological functions]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2015; 41:3-12. [PMID: 26050466 DOI: 10.1134/s1068162015010070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
P4-ATP-ases comprise an interesting family among P-type ATP-ases, since they are thought to play a major role in the transfer of phospholipids such as phosphatydylserine from the outer leaflet to the inner leaflet. Isoforms of P4-ATP-ases are partially interchangeable but peculiarities of tissue-specific expression of their genes, intracellular localization of proteins, as well as regulatory pathways lead to the fact that, on the organismal level, serious pathologies may develop in the presence of structural abnormalities in certain isoforms. Among P4-ATP-ases a special place is occupied by ATP8B1, for which several mutations are known that lead to serious hereditary diseases: two forms of congenital cholestasis (PFIC1 or Byler disease and benign recurrent intrahepatic cholestasis) with extraliver symptoms such as sensorineural hearing loss. The physiological function of the Atp8b1/FIC1 protein is known in general outline: it is responsible for transport of certain phospholipids (phosphatydylserine, cardiolipin) for the outer monolayer of the plasma membrane to the inner one. It is well known that perturbation of membrane asymmetry, caused by the lack of Atp8B1 activity, leads to death of hairy cells of the inner ear, dysfunction of bile acid transport in liver-cells that causes cirrhosis. It is also probable that insufficient activity of Atp8b1/FIC1 increases susceptibility to bacterial pneumonia.Regulatory pathways of Atp8b1/FIC1 activity in vivo remain to be insufficiently studied and this opens novel perspectives for research in this field that may allow better understanding of molecular processes behind the development of certain pathologies and to reveal novel therapeutical targets.
Collapse
|
17
|
Naik J, de Waart DR, Utsunomiya K, Duijst S, Mok KH, Oude Elferink RPJ, Bosma PJ, Paulusma CC. ATP8B1 and ATP11C: Two Lipid Flippases Important for Hepatocyte Function. Dig Dis 2015; 33:314-8. [PMID: 26045263 DOI: 10.1159/000371665] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
P4 ATPases are lipid flippases and transport phospholipids from the exoplasmic to the cytosolic leaflet of biological membranes. Lipid flipping is important for the biogenesis of transport vesicles. Recently it was shown that loss of the P4 ATPases ATP8B1 and ATP11C are associated with severe Cholestatic liver disease. Mutation of ATP8B1 cause progressive familial Intrahepatic Cholestasis type 1 (PFIC1)and benign recurrent intrahepatic cholestasis type 1 (BRIC 1). From our observations we hypothesized that ATP8B1 deficiency causes a phospholipids randomization at the canalicular membrane, which results in extraction of cholesterol due to increase sensitivity of the canalicular membrane. Deficiency of ATP11C causes conjugated hyperbilirubinemia. In our preliminary result we observed accumulation of unconjugated bile salts in Atp11c deficient mice probably because of regulation in the expression or function of OATP1B2. Similar to ATP8B1, ATP11C have regulation on membrane transporters.
Collapse
Affiliation(s)
- Jyoti Naik
- Academic Medical Center, Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
18
|
P4-ATPases: lipid flippases in cell membranes. Pflugers Arch 2015; 466:1227-40. [PMID: 24077738 PMCID: PMC4062807 DOI: 10.1007/s00424-013-1363-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 09/11/2013] [Accepted: 09/11/2013] [Indexed: 12/13/2022]
Abstract
Cellular membranes, notably eukaryotic plasma membranes, are equipped with special proteins that actively translocate lipids from one leaflet to the other and thereby help generate membrane lipid asymmetry. Among these ATP-driven transporters, the P4 subfamily of P-type ATPases (P4-ATPases) comprises lipid flippases that catalyze the translocation of phospholipids from the exoplasmic to the cytosolic leaflet of cell membranes. While initially characterized as aminophospholipid translocases, recent studies of individual P4-ATPase family members from fungi, plants, and animals show that P4-ATPases differ in their substrate specificities and mediate transport of a broader range of lipid substrates, including lysophospholipids and synthetic alkylphospholipids. At the same time, the cellular processes known to be directly or indirectly affected by this class of transporters have expanded to include the regulation of membrane traffic, cytoskeletal dynamics, cell division, lipid metabolism, and lipid signaling. In this review, we will summarize the basic features of P4-ATPases and the physiological implications of their lipid transport activity in the cell.
Collapse
|
19
|
van der Mark VA, de Waart DR, Ho-Mok KS, Tabbers MM, Voogt HW, Oude Elferink RPJ, Knisely AS, Paulusma CC. The lipid flippase heterodimer ATP8B1-CDC50A is essential for surface expression of the apical sodium-dependent bile acid transporter (SLC10A2/ASBT) in intestinal Caco-2 cells. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2378-86. [PMID: 25239307 DOI: 10.1016/j.bbadis.2014.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 12/12/2022]
Abstract
Deficiency of the phospholipid flippase ATPase, aminophospholipid transporter, class I, type 8B, member 1 (ATP8B1) causes progressive familial intrahepatic cholestasis type 1 (PFIC1) and benign recurrent intrahepatic cholestasis type 1 (BRIC1). Apart from cholestasis, many patients also suffer from diarrhea of yet unknown etiology. Here we have studied the hypothesis that intestinal ATP8B1 deficiency results in bile salt malabsorption as a possible cause of PFIC1/BRIC1 diarrhea. Bile salt transport was studied in ATP8B1-depleted intestinal Caco-2 cells. Apical membrane localization was studied by a biotinylation approach. Fecal bile salt and electrolyte contents were analyzed in stool samples of PFIC1 patients, of whom some had undergone biliary diversion or liver transplantation. Bile salt uptake by the apical sodium-dependent bile salt transporter solute carrier family 10 (sodium/bile acid cotransporter), member 2 (SLC10A2) was strongly impaired in ATP8B1-depleted Caco-2 cells. The reduced SLC10A2 activity coincided with strongly reduced apical membrane localization, which was caused by impaired apical membrane insertion of SLC10A2. Moreover, we show that endogenous ATP8B1 exists in a functional heterodimer with transmembrane protein 30A (CDC50A) in Caco-2 cells. Analyses of stool samples of post-transplant PFIC1 patients demonstrated that bile salt content was not changed, whereas sodium and chloride concentrations were elevated and potassium levels were decreased. The ATP8B1-CDC50A heterodimer is essential for the apical localization of SLC10A2 in Caco-2 cells. Diarrhea in PFIC1/BRIC1 patients has a secretory origin to which SLC10A2 deficiency may contribute. This results in elevated luminal bile salt concentrations and consequent enhanced electrolyte secretion and/or reduced electrolyte resorption.
Collapse
Affiliation(s)
- Vincent A van der Mark
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands.
| | - D Rudi de Waart
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Kam S Ho-Mok
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Merit M Tabbers
- Department of Paediatric Gastroenterology and Nutrition, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands
| | - Heleen W Voogt
- Department of Paediatric Gastroenterology and Nutrition, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands
| | - Ronald P J Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - A S Knisely
- Institute of Liver Studies, King's College Hospital, London, UK
| | - Coen C Paulusma
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
20
|
van der Mark VA, Elferink RPJO, Paulusma CC. P4 ATPases: flippases in health and disease. Int J Mol Sci 2013; 14:7897-922. [PMID: 23579954 PMCID: PMC3645723 DOI: 10.3390/ijms14047897] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 03/28/2013] [Accepted: 04/07/2013] [Indexed: 12/26/2022] Open
Abstract
P4 ATPases catalyze the translocation of phospholipids from the exoplasmic to the cytosolic leaflet of biological membranes, a process termed “lipid flipping”. Accumulating evidence obtained in lower eukaryotes points to an important role for P4 ATPases in vesicular protein trafficking. The human genome encodes fourteen P4 ATPases (fifteen in mouse) of which the cellular and physiological functions are slowly emerging. Thus far, deficiencies of at least two P4 ATPases, ATP8B1 and ATP8A2, are the cause of severe human disease. However, various mouse models and in vitro studies are contributing to our understanding of the cellular and physiological functions of P4-ATPases. This review summarizes current knowledge on the basic function of these phospholipid translocating proteins, their proposed action in intracellular vesicle transport and their physiological role.
Collapse
Affiliation(s)
- Vincent A van der Mark
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Meibergdreef 69-71, 1105 BK Amsterdam, The Netherlands.
| | | | | |
Collapse
|
21
|
Coleman JA, Quazi F, Molday RS. Mammalian P4-ATPases and ABC transporters and their role in phospholipid transport. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:555-74. [PMID: 23103747 DOI: 10.1016/j.bbalip.2012.10.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/16/2012] [Accepted: 10/18/2012] [Indexed: 02/08/2023]
Abstract
Transport of phospholipids across cell membranes plays a key role in a wide variety of biological processes. These include membrane biosynthesis, generation and maintenance of membrane asymmetry, cell and organelle shape determination, phagocytosis, vesicle trafficking, blood coagulation, lipid homeostasis, regulation of membrane protein function, apoptosis, etc. P(4)-ATPases and ATP binding cassette (ABC) transporters are the two principal classes of membrane proteins that actively transport phospholipids across cellular membranes. P(4)-ATPases utilize the energy from ATP hydrolysis to flip aminophospholipids from the exocytoplasmic (extracellular/lumen) to the cytoplasmic leaflet of cell membranes generating membrane lipid asymmetry and lipid imbalance which can induce membrane curvature. Many ABC transporters play crucial roles in lipid homeostasis by actively transporting phospholipids from the cytoplasmic to the exocytoplasmic leaflet of cell membranes or exporting phospholipids to protein acceptors or micelles. Recent studies indicate that some ABC proteins can also transport phospholipids in the opposite direction. The importance of P(4)-ATPases and ABC transporters is evident from the findings that mutations in many of these transporters are responsible for severe human genetic diseases linked to defective phospholipid transport. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.
Collapse
Affiliation(s)
- Jonathan A Coleman
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, B.C., Canada
| | | | | |
Collapse
|
22
|
Stone A, Chau C, Eaton C, Foran E, Kapur M, Prevatt E, Belkin N, Kerr D, Kohlin T, Williamson P. Biochemical characterization of P4-ATPase mutations identified in patients with progressive familial intrahepatic cholestasis. J Biol Chem 2012; 287:41139-51. [PMID: 23060447 DOI: 10.1074/jbc.m112.413039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mutations in the P4-ATPase ATP8B1 cause the inherited liver disease progressive familial intrahepatic cholestasis. Several of these mutations are located in conserved regions of the transmembrane domain associated with substrate binding and transport. Assays for P4-ATPase-mediated transport in living yeast cells were developed and used to characterize the specificity and kinetic parameters of this transport. Progressive familial intrahepatic cholestasis mutations were introduced into the yeast plasma membrane P4-ATPase Dnf2p, and the effect of these mutations on its catalysis of phospholipid transport were determined. The results of these measurements have implications for the basis of the disease and for the mechanism of phospholipid transit through the enzyme during the reaction cycle.
Collapse
Affiliation(s)
- Alex Stone
- Department of Biology, Amherst College, Amherst, Massachusetts 01002, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Folmer DE, Mok KS, de Wee SW, Duijst S, Hiralall JK, Seppen J, Oude Elferink RPJ, Paulusma CC. Cellular localization and biochemical analysis of mammalian CDC50A, a glycosylated β-subunit for P4 ATPases. J Histochem Cytochem 2012; 60:205-18. [PMID: 22253360 DOI: 10.1369/0022155411435705] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CDC50 proteins are β-subunits for P4 ATPases, which upon heterodimerization form a functional phospholipid translocation complex. Emerging evidence in mouse models and men links mutations in P4 ATPase genes with human disease. This study analyzed the tissue distribution and cellular localization of CDC50A, the most abundant and ubiquitously expressed CDC50 homologue in the mouse. The authors have raised antibodies that detect mouse and human CDC50A and studied CDC50A localization and glycosylation status in mouse liver cells. CDC50A is a terminal-glycosylated glycoprotein and is expressed in hepatocytes and liver sinusoidal endothelial cells, where it resides in detergent-resistant membranes. In pancreas and stomach, CDC50A localized to secretory vesicles, whereas in the kidney, CDC50A localized to the apical region of proximal convoluted tubules of the cortex. In WIF-B9 cells, CDC50A partially costains with the trans-Golgi network. Data suggest that CDC50A is present as a fully glycosylated protein in vivo, which presumes interaction with distinct P4 ATPases.
Collapse
Affiliation(s)
- Dineke E Folmer
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Groen A, Romero MR, Kunne C, Hoosdally SJ, Dixon PH, Wooding C, Williamson C, Seppen J, Van den Oever K, Mok KS, Paulusma CC, Linton KJ, Oude Elferink RPJ. Complementary functions of the flippase ATP8B1 and the floppase ABCB4 in maintaining canalicular membrane integrity. Gastroenterology 2011; 141:1927-37.e1-4. [PMID: 21820390 DOI: 10.1053/j.gastro.2011.07.042] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 07/12/2011] [Accepted: 07/27/2011] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Progressive familial intrahepatic cholestasis can be caused by mutations in ABCB4 or ATP8B1; each encodes a protein that translocates phospholipids, but in opposite directions. ABCB4 flops phosphatidylcholine from the inner to the outer leaflet, where it is extracted by bile salts. ATP8B1, in complex with the accessory protein CDC50A, flips phosphatidylserine in the reverse direction. Abcb4(-/-) mice lack biliary secretion of phosphatidylcholine, whereas Atp8b1-deficient mice have increased excretion of phosphatidylserine into bile. Each system is thought to have a role protecting the canalicular membrane from bile salts. METHODS To investigate the relationship between the mechanisms of ABCB4 and ATP8B1, we expressed the transporters separately and together in cultured cells and studied viability and phospholipid transport. We also created mice with disruptions in ABCB4 and ATP8B1 (double knockouts) and studied bile formation and hepatic damage in mice fed bile salts. RESULTS Overexpression of ABCB4 was toxic to HEK293T cells; the toxicity was counteracted by coexpression of the ATP8B1-CDC50A complex. In Atp8b1-deficient mice, bile salts induced extraction of phosphatidylserine and ectoenzymes from the canalicular membrane; this process was not observed in the double-knockout mice. CONCLUSIONS ATP8B1 is required for hepatocyte function, particularly in the presence of ABCB4. This is most likely because the phosphatidylserine flippase complex of ATP8B1-CDC50A counteracts the destabilization of the membrane that occurs when ABCB4 flops phosphatidylcholine. Lipid asymmetry is therefore important for the integrity of the canalicular membrane; ABCB4 and ATP8B1 cooperate to protect hepatocytes from bile salts.
Collapse
Affiliation(s)
- Annemiek Groen
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
de la Garza-Rodea AS, Verweij MC, Boersma H, van der Velde-van Dijke I, de Vries AAF, Hoeben RC, van Bekkum DW, Wiertz EJHJ, Knaän-Shanzer S. Exploitation of herpesvirus immune evasion strategies to modify the immunogenicity of human mesenchymal stem cell transplants. PLoS One 2011; 6:e14493. [PMID: 21253016 PMCID: PMC3017051 DOI: 10.1371/journal.pone.0014493] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 12/06/2010] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are multipotent cells residing in the connective tissue of many organs and holding great potential for tissue repair. In culture, human MSCs (hMSCs) are capable of extensive proliferation without showing chromosomal aberrations. Large numbers of hMSCs can thus be acquired from small samples of easily obtainable tissues like fat and bone marrow. MSCs can contribute to regeneration indirectly by secretion of cytokines or directly by differentiation into specialized cell types. The latter mechanism requires their long-term acceptance by the recipient. Although MSCs do not elicit immune responses in vitro, animal studies have revealed that allogeneic and xenogeneic MSCs are rejected. METHODOLOGY/PRINCIPAL FINDINGS We aim to overcome MSC immune rejection through permanent down-regulation of major histocompatibility complex (MHC) class I proteins on the surface of these MHC class II-negative cells through the use of viral immune evasion proteins. Transduction of hMSCs with a retroviral vector encoding the human cytomegalovirus US11 protein resulted in strong inhibition of MHC class I surface expression. When transplanted into immunocompetent mice, persistence of the US11-expressing and HLA-ABC-negative hMSCs at levels resembling those found in immunodeficient (i.e., NOD/SCID) mice could be attained provided that recipients' natural killer (NK) cells were depleted prior to cell transplantation. CONCLUSIONS/SIGNIFICANCE Our findings demonstrate the potential utility of herpesviral immunoevasins to prevent rejection of xenogeneic MSCs. The observation that down-regulation of MHC class I surface expression renders hMSCs vulnerable to NK cell recognition and cytolysis implies that multiple viral immune evasion proteins are likely required to make hMSCs non-immunogenic and thereby universally transplantable.
Collapse
Affiliation(s)
| | - Marieke C. Verweij
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hester Boersma
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Antoine A. F. de Vries
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rob C. Hoeben
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dirk W. van Bekkum
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Emmanuel J. H. J. Wiertz
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Shoshan Knaän-Shanzer
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
26
|
Abstract
P4 ATPases (subfamily IV P-type ATPases) form a specialized subfamily of P-type ATPases and have been implicated in phospholipid translocation from the exoplasmic to the cytoplasmic leaflet of biological membranes. Pivotal roles of P4 ATPases have been demonstrated in eukaryotes, ranging from yeast, fungi and plants to mice and humans. P4 ATPases might exert their cellular functions by combining enzymatic phospholipid translocation activity with an enzyme-independent action. The latter could be involved in the timely recruitment of proteins involved in cellular signalling, vesicle coat assembly and cytoskeleton regulation. In the present review, we outline the current knowledge of the biochemical and cellular functions of P4 ATPases in the eukaryotic membrane.
Collapse
|
27
|
Bryde S, Hennrich H, Verhulst PM, Devaux PF, Lenoir G, Holthuis JCM. CDC50 proteins are critical components of the human class-1 P4-ATPase transport machinery. J Biol Chem 2010; 285:40562-72. [PMID: 20961850 DOI: 10.1074/jbc.m110.139543] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the P(4) subfamily of P-type ATPases catalyze phospholipid transport and create membrane lipid asymmetry in late secretory and endocytic compartments. P-type ATPases usually pump small cations and the transport mechanism involved appears conserved throughout the family. How this mechanism is adapted to flip phospholipids remains to be established. P(4)-ATPases form heteromeric complexes with CDC50 proteins. Dissociation of the yeast P(4)-ATPase Drs2p from its binding partner Cdc50p disrupts catalytic activity (Lenoir, G., Williamson, P., Puts, C. F., and Holthuis, J. C. (2009) J. Biol. Chem. 284, 17956-17967), suggesting that CDC50 subunits play an intimate role in the mechanism of transport by P(4)-ATPases. The human genome encodes 14 P(4)-ATPases while only three human CDC50 homologues have been identified. This implies that each human CDC50 protein interacts with multiple P(4)-ATPases or, alternatively, that some human P(4)-ATPases function without a CDC50 binding partner. Here we show that human CDC50 proteins each bind multiple class-1 P(4)-ATPases, and that in all cases examined, association with a CDC50 subunit is required for P(4)-ATPase export from the ER. Moreover, we find that phosphorylation of the catalytically important Asp residue in human P(4)-ATPases ATP8B1 and ATP8B2 is critically dependent on their CDC50 subunit. These results indicate that CDC50 proteins are integral part of the P(4)-ATPase flippase machinery.
Collapse
Affiliation(s)
- Susanne Bryde
- Department of Membrane Enzymology, Bijvoet Center and Institute of Biomembranes, Utrecht University, 3584CH Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
28
|
de la Garza-Rodea AS, van der Velde I, Boersma H, Gonçalves MAFV, van Bekkum DW, de Vries AAF, Knaän-Shanzer S. Long-term contribution of human bone marrow mesenchymal stromal cells to skeletal muscle regeneration in mice. Cell Transplant 2010; 20:217-31. [PMID: 20719081 DOI: 10.3727/096368910x522117] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are attractive for cellular therapy of muscular dystrophies as they are easy to procure, can be greatly expanded ex vivo, and contribute to skeletal muscle repair in vivo. However, detailed information about the contribution of bone marrow (BM)-derived human MSCs (BM-hMSCs) to skeletal muscle regeneration in vivo is very limited. Here, we present the results of a comprehensive study of the fate of LacZ-tagged BM-hMSCs following implantation in cardiotoxin (CTX)-injured tibialis anterior muscles (TAMs) of immunodeficient mice. β-Galactosidase-positive (β-gal(+)) human-mouse hybrid myofibers (HMs) were counted in serial cross sections over the full length of the treated TAMs of groups of mice at monthly intervals. The number of human cells was estimated using chemiluminescence assays. While the number of human cells declined gradually to about 10% of the injected cells at 60 days after transplantation, the number of HMs increased from day 10 onwards, reaching 104 ± 39.1 per TAM at 4 months postinjection. β-gal(+) cells and HMs were distributed over the entire muscle, indicating migration of the former from the central injection site to the ends of the TAMs. The identification of HMs that stained positive for human spectrin suggests myogenic reprogramming of hMSC nuclei. In summary, our findings reveal that BM-hMSCs continue to participate in the regeneration/remodeling of CTX-injured TAMs, resulting in ±5% HMs at 4 months after damage induction. Moreover, donor-derived cells were shown to express genetic information, both endogenous and transgenic, in recipient myofibers.
Collapse
Affiliation(s)
- Anabel S de la Garza-Rodea
- Virus and Stem Cell Biology Laboratory, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
29
|
Verhulst PM, van der Velden LM, Oorschot V, van Faassen EE, Klumperman J, Houwen RHJ, Pomorski TG, Holthuis JCM, Klomp LWJ. A flippase-independent function of ATP8B1, the protein affected in familial intrahepatic cholestasis type 1, is required for apical protein expression and microvillus formation in polarized epithelial cells. Hepatology 2010; 51:2049-60. [PMID: 20512993 DOI: 10.1002/hep.23586] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
UNLABELLED Mutations in ATP8B1 cause familial intrahepatic cholestasis type 1, a spectrum of disorders characterized by intrahepatic cholestasis, reduced growth, deafness, and diarrhea. ATP8B1 belongs to the P(4) P-type adenosine triphosphatase (ATPase) family of putative aminophospholipid translocases, and loss of aminophospholipid asymmetry in the canalicular membranes of ATP8B1-deficient liver cells has been proposed as the primary cause of impaired bile salt excretion. To explore the origin of the hepatic and extrahepatic symptoms associated with ATP8B1 deficiency, we investigated the impact of ATP8B1 depletion on the domain-specific aminophospholipid translocase activities and polarized organization of polarized epithelial Caco-2 cells. Caco-2 cells were stably transfected with short hairpin RNA constructs to block ATP8B1 expression. Aminophospholipid translocase activity was assessed using spin-labeled phospholipids. The polarized organization of these cells was determined by pulse-chase analysis, cell-fractionation, immunocytochemistry, and transmission electron microscopy. ATP8B1 was abundantly expressed in the apical membrane of Caco-2 cells, and its expression was markedly induced during differentiation and polarization. Blocking ATP8B1 expression by RNA interference (RNAi) affected neither aminophospholipid transport nor the asymmetrical distribution of aminophospholipids across the apical bilayer. Nonetheless, ATP8B1-depleted Caco-2 cells displayed profound perturbations in apical membrane organization, including a disorganized apical actin cytoskeleton, a loss in microvilli, and a posttranscriptional defect in apical protein expression. CONCLUSION Our findings point to a critical role of ATP8B1 in apical membrane organization that is unrelated to its presumed aminophospholipid translocase activity, yet potentially relevant for the development of cholestasis and the manifestation of extrahepatic features associated with ATP8B1 deficiency.
Collapse
Affiliation(s)
- Patricia M Verhulst
- Department of Membrane Enzymology, Bijvoet Center and Institute of Biomembranes, Utrecht University, the Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Paulusma CC, Oude Elferink RP. P4 ATPases - The physiological relevance of lipid flipping transporters. FEBS Lett 2010; 584:2708-16. [DOI: 10.1016/j.febslet.2010.04.071] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 04/28/2010] [Accepted: 04/28/2010] [Indexed: 11/27/2022]
|
31
|
Klaassen CD, Aleksunes LM. Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol Rev 2010; 62:1-96. [PMID: 20103563 PMCID: PMC2835398 DOI: 10.1124/pr.109.002014] [Citation(s) in RCA: 568] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting beta polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) alpha and beta] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of regulatory factors that influence transporter expression and function, including transcriptional activation and post-translational modifications as well as subcellular trafficking. Sex differences, ontogeny, and pharmacological and toxicological regulation of transporters are also addressed. Transporters are important transmembrane proteins that mediate the cellular entry and exit of a wide range of substrates throughout the body and thereby play important roles in human physiology, pharmacology, pathology, and toxicology.
Collapse
Affiliation(s)
- Curtis D Klaassen
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160-7417, USA.
| | | |
Collapse
|
32
|
Stapelbroek JM, van Erpecum KJ, Klomp LWJ, Houwen RHJ. Liver disease associated with canalicular transport defects: current and future therapies. J Hepatol 2010; 52:258-71. [PMID: 20034695 DOI: 10.1016/j.jhep.2009.11.012] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bile formation at the canalicular membrane is a delicate process. This is illustrated by inherited liver diseases due to mutations in ATP8B1, ABCB11, ABCB4, ABCC2 and ABCG5/8, all encoding hepatocanalicular transporters. Effective treatment of these canalicular transport defects is a clinical and scientific challenge that is still ongoing. Current evidence indicates that ursodeoxycholic acid (UDCA) can be effective in selected patients with PFIC3 (ABCB4 deficiency), while rifampicin reduces pruritus in patients with PFIC1 (ATP8B1 deficiency) and PFIC2 (ABCB11 deficiency), and might abort cholestatic episodes in BRIC (mild ATP8B1 or ABCB11 deficiency). Cholestyramine is essential in the treatment of sitosterolemia (ABCG5/8 deficiency). Most patients with PFIC1 and PFIC2 will benefit from partial biliary drainage. Nevertheless liver transplantation is needed in a substantial proportion of these patients, as it is in PFIC3 patients. New developments in the treatment of canalicular transport defects by using nuclear receptors as a target, enhancing the expression of the mutated transporter protein by employing chaperones, or by mutation specific therapy show substantial promise. This review will focus on the therapy that is currently available as well as on those developments that are likely to influence clinical practice in the near future.
Collapse
Affiliation(s)
- Janneke M Stapelbroek
- Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
33
|
Characterization of ATP8B1 gene mutations and a hot-linked mutation found in Chinese children with progressive intrahepatic cholestasis and low GGT. J Pediatr Gastroenterol Nutr 2010; 50:179-83. [PMID: 20038848 DOI: 10.1097/mpg.0b013e3181c1b368] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The aim of the study was to elucidate the role and characteristics of ATP8B1 gene mutations in mainland Chinese children with progressive intrahepatic cholestasis and low gamma-glutamyltransferase (GGT). PATIENTS AND METHODS Twenty-four children who presented with progressive intrahepatic cholestasis and low GGT were admitted to a tertiary pediatric hospital in eastern China from January 2004 to July 2007. Five children with homozygous or compound heterozygous ABCB11 gene mutations were excluded from the study. All encoding exons and their flanking areas of ATP8B1 gene were sequenced in the remaining 19 patients, in whom only 1 or no mutation of ABCB11 was found. Clinical features and liver histology obtained by reviewing the medical records were compared among patients with different genotypes. RESULTS Nine mutations of ATP8B1 gene were found in 9 patients. All of them were novel except for mutations I694N and R952X. A linked P209T and IVS6+5G>T mutation was found in 4 of 9 patients, including 2 homozygotes and 2 heterozygotes. Giant cell transformation of hepatocytes was demonstrated in 1 of 6 patients with ATP8B1 mutations and 4 of 5 patients with ABCB11 mutations. CONCLUSIONS ATP8B1 gene mutations play an important role in Chinese patients with progressive intrahepatic cholestasis and low GGT. The linked mutation P209T and IVS6+5G>T is a hot mutation in the Chinese population. Histological examination may be helpful in differentiating familial intrahepatic cholestasis type 1 from bile salt export pump-related disease.
Collapse
|
34
|
van der Velden LM, Stapelbroek JM, Krieger E, van den Berghe PVE, Berger R, Verhulst PM, Holthuis JCM, Houwen RHJ, Klomp LWJ, van de Graaf SFJ. Folding defects in P-type ATP 8B1 associated with hereditary cholestasis are ameliorated by 4-phenylbutyrate. Hepatology 2010; 51:286-96. [PMID: 19918981 DOI: 10.1002/hep.23268] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED Deficiency in P-type ATP8B1 is a severe and clinically highly variable hereditary disorder that is primarily characterized by intrahepatic cholestasis. It presents either as a progressive (progressive familial intrahepatic cholestasis type 1 [PFIC1]) or intermittent (benign recurrent intrahepatic cholestasis type 1 [BRIC1]) disease. ATP8B1 deficiency is caused by autosomal recessive mutations in the gene encoding ATP8B1, a putative aminophospholipid-translocating P-type adenosine triphosphatase. The exact pathogenesis of the disease is elusive, and no effective pharmacological therapy is currently available. Here, the molecular consequences of six distinct ATP8B1 missense mutations (p.L127P, p.G308V, p.D454G, p.D554N, p.I661T, and p.G1040R) and one nonsense mutation (p.R1164X) associated with PFIC1 and/or BRIC1 were systematically characterized. Except for the p.L127P mutation, all mutations resulted in markedly reduced ATP8B1 protein expression, whereas messenger RNA expression was unaffected. Five of seven mutations resulted in (partial) retention of ATP8B1 in the endoplasmic reticulum. Reduced protein expression was partially restored by culturing the cells at 30 degrees C and by treatment with proteasomal inhibitors, indicating protein misfolding and subsequent proteosomal degradation. Protein misfolding was corroborated by predicting the consequences of most mutations onto a homology model of ATP8B1. Treatment with 4-phenylbutyrate, a clinically approved pharmacological chaperone, partially restored defects in expression and localization of ATP8B1 substitutions G308V, D454G, D554N, and in particular I661T, which is the most frequently identified mutation in BRIC1. CONCLUSION A surprisingly large proportion of ATP8B1 mutations resulted in aberrant folding and decreased expression at the plasma membrane. These effects were partially restored by treatment with 4-phenylbutyrate. We propose that treatment with pharmacological chaperones may represent an effective therapeutic strategy to ameliorate the recurrent attacks of cholestasis in patients with intermittent (BRIC1) disease.
Collapse
Affiliation(s)
- Lieke M van der Velden
- Department of Metabolic and Endocrine Diseases, University Medical Center (UMC) Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Folmer DE, van der Mark VA, Ho-Mok KS, Oude Elferink RPJ, Paulusma CC. Differential effects of progressive familial intrahepatic cholestasis type 1 and benign recurrent intrahepatic cholestasis type 1 mutations on canalicular localization of ATP8B1. Hepatology 2009; 50:1597-605. [PMID: 19731236 DOI: 10.1002/hep.23158] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
UNLABELLED Mutations in ATP8B1 cause progressive familial intrahepatic cholestasis type 1 (PFIC1) and benign recurrent intrahepatic cholestasis type 1 (BRIC1), forming a spectrum of cholestatic disease. Whereas PFIC1 is a progressive, endstage liver disease, BRIC1 patients suffer from episodic periods of cholestasis that resolve spontaneously. At present it is not clear how the type and location of the mutations relate to the clinical manifestations of PFIC1 and BRIC1. ATP8B1 localizes to the canalicular membrane of hepatocytes where it mediates the inward translocation of phosphatidylserine. ATP8B1 interacts with CDC50A, which is required for endoplasmic reticulum exit and plasma membrane localization. In this study we analyzed a panel of missense mutations causing PFIC1 (G308V, D554N, G1040R) or BRIC1 (D70N, I661T). In addition, we included two mutations that have been associated with intrahepatic cholestasis of pregnancy (ICP) (D70N, R867C). We examined the effect of these mutations on protein stability and interaction with CDC50A in Chinese hamster ovary cells, and studied the subcellular localization in WIF-B9 cells. Protein stability was reduced for three out of six mutations studied. Two out of three PFIC1 mutant proteins did not interact with CDC50A, whereas BRIC1/ICP mutants displayed reduced interaction. Importantly, none of the PFIC1 mutants were detectable in the canalicular membrane of WIF-B9 cells, whereas all BRIC1/ICP mutants displayed the same cellular staining pattern as wild-type ATP8B1. Our data indicate that PFIC1 mutations lead to the complete absence of canalicular expression, whereas in BRIC1/ICP residual protein is expressed in the canalicular membrane. CONCLUSION These data provide an explanation for the difference in severity between the phenotypes of PFIC1 and BRIC1.
Collapse
Affiliation(s)
- Dineke E Folmer
- AMC Liver Center, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
36
|
Koh S, Takada T, Kukuu I, Suzuki H. FIC1-mediated stimulation of FXR activity is decreased with PFIC1 mutations in HepG2 cells. J Gastroenterol 2009; 44:592-600. [PMID: 19381753 DOI: 10.1007/s00535-009-0041-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 01/09/2009] [Indexed: 02/04/2023]
Abstract
PURPOSE Progressive familial intrahepatic cholestasis type 1 (PFIC1) is a specific form of genetic cholestasis caused by functional defects in FIC1/ATP8B1. Although the way FIC1 deficiency leads to PFIC1 remains unclear, some reports suggest that the loss of FIC1 function results in decreased activity of the farnesoid X receptor (FXR) in PFIC1 patients. In this study, in order to elucidate the molecular mechanism of the pathogenesis of PFIC1, we constructed an experimental system for the evaluation of FIC1-mediated stimulatory effects on FXR activity. METHODS AND RESULTS Luciferase assays revealed that FIC1 expression increased FXR-dependent transcription and that the effects of three PFIC1 mutants (G308V, T456M and D554N) were smaller than that of wild-type FIC1. In addition, the PFIC1 mutants could not locate to the plasma membrane even in the presence of CDC50A, which brings wild-type FIC1 to the plasma membrane. The results of coprecipitation assays suggested a defect in the ability of the PFIC1 mutants to interact with CDC50A. Furthermore, it was revealed that the expression of CDC50A elevated the FIC1-mediated transcriptional stimulation when coexpressed with wild-type FIC1, but not with mutated FIC1. CONCLUSIONS These results suggest that the PFIC1 mutants have a lower stimulatory effect on FXR activity and cannot interact with CDC50A, which may lead to the development of the features of PFIC1.
Collapse
Affiliation(s)
- Saori Koh
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | |
Collapse
|
37
|
Miyagawa-Hayashino A, Egawa H, Yorifuji T, Hasegawa M, Haga H, Tsuruyama T, Wen MC, Sumazaki R, Manabe T, Uemoto S. Allograft steatohepatitis in progressive familial intrahepatic cholestasis type 1 after living donor liver transplantation. Liver Transpl 2009; 15:610-8. [PMID: 19479804 DOI: 10.1002/lt.21686] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We studied histological features and long-term outcomes in patients with progressive familial intrahepatic cholestasis type 1 (PFIC1) after liver transplantation (LT). Histological findings were correlated with the post-LT course and treatment in 11 recipients with PFIC1. Ages at LT varied from 1 to 18 years (median, 4 years). Macrovesicular steatosis was observed in 8 patients at a median of 60 days post-LT (range, 21-191 days). Severe steatosis progressed to steatohepatitis in 7 patients at a median of 161 days (range, 116-932 days). The patients were followed up for a median of 7.3 years (range, 2.3-16.1 years). Six showed bridging fibrosis, with 2 progressing to cirrhosis. One patient with cirrhosis died because of the rupture of a splenic artery aneurysm 13.6 years post-LT. Post-LT refractory diarrhea was present in all 8 having steatosis. Three without post-LT diarrhea showed no allograft steatosis. Bile adsorptive resin therapy reduced the diarrhea and steatosis. Patients with posttransplant steatosis typically had more severe mutations of the ATPase class I type 8B member 1 (ATP8B1) gene and were more likely to have systemic complications such as pancreatitis. In conclusion, allograft steatosis was present in patients with PFIC1, progressing to steatohepatitis and cirrhosis. Because expression of the familial intrahepatic cholestasis 1 gene occurs in several organs, including the small intestine, pancreas, and liver, and it is involved in enterohepatic bile acid circulation, post-LT steatosis may be due to a malfunction of the ATP8B1 product.
Collapse
|
38
|
Abstract
ATP8B1 deficiency is caused by autosomal recessive mutations in ATP8B1, which encodes the putative phospatidylserine flippase ATP8B1 (formerly called FIC1). ATP8B1 deficiency is primarily characterized by cholestasis, but extrahepatic symptoms are also found. Because patients sometimes report reduced hearing capability, we investigated the role of ATP8B1 in auditory function. Here we show that ATP8B1/Atp8b1 deficiency, both in patients and in Atp8b1(G308V/G308V) mutant mice, causes hearing loss, associated with progressive degeneration of cochlear hair cells. Atp8b1 is specifically localized in the stereocilia of these hair cells. This indicates that the mechanosensory function and integrity of the cochlear hair cells is critically dependent on ATP8B1 activity, possibly through maintaining lipid asymmetry in the cellular membranes of stereocilia.
Collapse
|
39
|
Cai SY, Gautam S, Nguyen T, Soroka CJ, Rahner C, Boyer JL. ATP8B1 deficiency disrupts the bile canalicular membrane bilayer structure in hepatocytes, but FXR expression and activity are maintained. Gastroenterology 2009; 136:1060-9. [PMID: 19027009 PMCID: PMC3439851 DOI: 10.1053/j.gastro.2008.10.025] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2008] [Revised: 09/29/2008] [Accepted: 10/09/2008] [Indexed: 01/28/2023]
Abstract
BACKGROUND & AIMS Progressive familial intrahepatic cholestasis 1 (PFIC1) results from mutations in ATP8B1, a putative aminophospholipid flippase. Conflicting hypotheses have been proposed for the pathogenesis of PFIC1. The aim of this study was to determine whether ATP8B1 deficiency produces cholestasis by altering the activity of the farnesoid X receptor (FXR) or by impairing the structure of the canalicular membrane. METHODS ATP8B1/Atp8b1 was knocked down in human and rat hepatocytes and Caco2 cells using adenoviral and oligonucleotide small interfering RNAs. RESULTS ATP8B1 messenger RNA and protein expression was greatly reduced in human and rat cells. In contrast, FXR expression and several FXR-dependent membrane transporters (bile salt export pump [BSEP], multidrug resistance-associated protein [MRP] 2) were unchanged at messenger RNA or protein levels in ATP8B1-deficient cells, whereas Mrp3 and Mrp4 were up-regulated in rat hepatocytes. FXR activity remained intact in these cells, as evidenced by 6alpha-ethyl chenodeoxycholic acid-mediated induction of small heterodimer partner, BSEP, and multidrug-resistant protein (MDR) 3/Mdr2. Fluorescent substrate excretion assays indicate that Bsep function was significantly reduced in Atp8b1-deficient rat hepatocytes, although Bsep remained localized to the canalicular membrane. Exposure to the hydrophobic bile acid CDCA resulted in focal areas of canalicular membrane disruption by electron microscopy and luminal accumulation of NBD-phosphatidylserine, consistent with the function of Atp8b1 as an aminophospholipid flippase. CONCLUSIONS ATP8B1 deficiency predisposes to cholestasis by favoring bile acid-induced injury in the canalicular membrane but does not directly affect FXR expression, which may occur in PFIC1 as a secondary phenomenon associated with cholestasis.
Collapse
Affiliation(s)
- Shi-Ying Cai
- Department of Internal Medicine and Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA
| | - Samir Gautam
- Department of Internal Medicine and Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA
| | - Trong Nguyen
- Department of Internal Medicine and Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA
| | - Carol J. Soroka
- Department of Internal Medicine and Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA
| | - Christoph Rahner
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - James L. Boyer
- Department of Internal Medicine and Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
40
|
Folmer DE, Elferink RPJO, Paulusma CC. P4 ATPases - lipid flippases and their role in disease. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:628-35. [PMID: 19254779 DOI: 10.1016/j.bbalip.2009.02.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 02/12/2009] [Accepted: 02/12/2009] [Indexed: 12/11/2022]
Abstract
P4 ATPases (type 4 P-type ATPases) are multispan transmembrane proteins that have been implicated in phospholipid translocation from the exoplasmic to the cytoplasmic leaflet of biological membranes. Studies in Saccharomyces cerevisiae have indicated that P4 ATPases are important in vesicle biogenesis and are required for vesicular trafficking along several intracellular vesicular transport routes. Although little is known about mammalian P4 ATPases, some members of this subfamily appear to be associated with human disease or mouse pathophysiology. ATP8B1, a phosphatidylserine translocase, is the most extensively studied mammalian P4 ATPase. This protein is important for maintaining the detergent resistant properties of the apical membrane of the hepatocyte. Mutations in ATP8B1 give rise to severe liver disease. Furthermore, a role for Atp8b3 in mouse sperm cell capacitation has been suggested, whereas deficiency of Atp10a and Atp10d leads to insulin resistance and obesity in mice. Here we review the present status on the pathophysiological consequences of P4 ATPase deficiency.
Collapse
Affiliation(s)
- Dineke E Folmer
- AMC Liver Center, Academic Medical Center, University of Amsterdam, Meibergdreef 69-71, 1105BK Amsterdam, The Netherlands
| | | | | |
Collapse
|
41
|
Davit-Spraul A, Gonzales E, Baussan C, Jacquemin E. Progressive familial intrahepatic cholestasis. Orphanet J Rare Dis 2009; 4:1. [PMID: 19133130 PMCID: PMC2647530 DOI: 10.1186/1750-1172-4-1] [Citation(s) in RCA: 228] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 01/08/2009] [Indexed: 12/13/2022] Open
Abstract
Progressive familial intrahepatic cholestasis (PFIC) refers to heterogeneous group of autosomal recessive disorders of childhood that disrupt bile formation and present with cholestasis of hepatocellular origin. The exact prevalence remains unknown, but the estimated incidence varies between 1/50,000 and 1/100,000 births. Three types of PFIC have been identified and related to mutations in hepatocellular transport system genes involved in bile formation. PFIC1 and PFIC2 usually appear in the first months of life, whereas onset of PFIC3 may also occur later in infancy, in childhood or even during young adulthood. Main clinical manifestations include cholestasis, pruritus and jaundice. PFIC patients usually develop fibrosis and end-stage liver disease before adulthood. Serum gamma-glutamyltransferase (GGT) activity is normal in PFIC1 and PFIC2 patients, but is elevated in PFIC3 patients. Both PFIC1 and PFIC2 are caused by impaired bile salt secretion due respectively to defects in ATP8B1 encoding the FIC1 protein, and in ABCB11 encoding the bile salt export pump protein (BSEP). Defects in ABCB4, encoding the multi-drug resistant 3 protein (MDR3), impair biliary phospholipid secretion resulting in PFIC3. Diagnosis is based on clinical manifestations, liver ultrasonography, cholangiography and liver histology, as well as on specific tests for excluding other causes of childhood cholestasis. MDR3 and BSEP liver immunostaining, and analysis of biliary lipid composition should help to select PFIC candidates in whom genotyping could be proposed to confirm the diagnosis. Antenatal diagnosis can be proposed for affected families in which a mutation has been identified. Ursodeoxycholic acid (UDCA) therapy should be initiated in all patients to prevent liver damage. In some PFIC1 or PFIC2 patients, biliary diversion can also relieve pruritus and slow disease progression. However, most PFIC patients are ultimately candidates for liver transplantation. Monitoring of hepatocellular carcinoma, especially in PFIC2 patients, should be offered from the first year of life. Hepatocyte transplantation, gene therapy or specific targeted pharmacotherapy may represent alternative treatments in the future.
Collapse
Affiliation(s)
- Anne Davit-Spraul
- Biochemistry, Bicêtre Hospital, University of Paris-sud XI, Assistance Publique-Hôpitaux de Paris, Paris, France.
| | | | | | | |
Collapse
|
42
|
Flucloxacillin-induced liver injury. Toxicology 2008; 254:158-63. [DOI: 10.1016/j.tox.2008.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 08/15/2008] [Accepted: 08/15/2008] [Indexed: 01/28/2023]
|
43
|
Lyssenko NN, Miteva Y, Gilroy S, Hanna-Rose W, Schlegel RA. An unexpectedly high degree of specialization and a widespread involvement in sterol metabolism among the C. elegans putative aminophospholipid translocases. BMC DEVELOPMENTAL BIOLOGY 2008; 8:96. [PMID: 18831765 PMCID: PMC2572054 DOI: 10.1186/1471-213x-8-96] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 10/02/2008] [Indexed: 12/17/2022]
Abstract
Background P-type ATPases in subfamily IV are exclusively eukaryotic transmembrane proteins that have been proposed to directly translocate the aminophospholipids phosphatidylserine and phosphatidylethanolamine from the exofacial to the cytofacial monolayer of the plasma membrane. Eukaryotic genomes contain many genes encoding members of this subfamily. At present it is unclear why there are so many genes of this kind per organism or what individual roles these genes perform in organism development. Results We have systematically investigated expression and developmental function of the six, tat-1 through 6, subfamily IV P-type ATPase genes encoded in the Caenorhabditis elegans genome. tat-5 is the only ubiquitously-expressed essential gene in the group. tat-6 is a poorly-transcribed recent duplicate of tat-5. tat-2 through 4 exhibit tissue-specific developmentally-regulated expression patterns. Strong expression of both tat-2 and tat-4 occurs in the intestine and certain other cells of the alimentary system. The two are also expressed in the uterus, during spermatogenesis and in the fully-formed spermatheca. tat-2 alone is expressed in the pharyngeal gland cells, the excretory system and a few cells of the developing vulva. The expression pattern of tat-3 is almost completely different from those of tat-2 and tat-4. tat-3 expression is detectable in the steroidogenic tissues: the hypodermis and the XXX cells, as well as in most cells of the pharynx (except gland), various tissues of the reproductive system (except uterus and spermatheca) and seam cells. Deletion of tat-1 through 4 individually interferes little or not at all with the regular progression of organism growth and development under normal conditions. However, tat-2 through 4 become essential for reproductive growth during sterol starvation. Conclusion tat-5 likely encodes a housekeeping protein that performs the proposed aminophospholipid translocase function routinely. Although individually dispensable, tat-1 through 4 seem to be at most only partly redundant. Expression patterns and the sterol deprivation hypersensitivity deletion phenotype of tat-2 through 4 suggest that these genes carry out subtle metabolic functions, such as fine-tuning sterol metabolism in digestive or steroidogenic tissues. These findings uncover an unexpectedly high degree of specialization and a widespread involvement in sterol metabolism among the genes encoding the putative aminophospholipid translocases.
Collapse
Affiliation(s)
- Nicholas N Lyssenko
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | | | | | | | |
Collapse
|
44
|
Groen A, Kunne C, Jongsma G, van den Oever K, Mok KS, Petruzzelli M, Vrins CLJ, Bull L, Paulusma CC, Oude Elferink RPJ. Abcg5/8 independent biliary cholesterol excretion in Atp8b1-deficient mice. Gastroenterology 2008; 134:2091-100. [PMID: 18466903 DOI: 10.1053/j.gastro.2008.02.097] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 02/22/2008] [Accepted: 02/29/2008] [Indexed: 12/24/2022]
Abstract
BACKGROUNDS & AIMS ATP8B1 is a phosphatidylserine flippase in the canalicular membrane; patients with mutations in ATP8B1 develop severe chronic (PFIC1) or periodic (BRIC1) cholestatic liver disease. We have observed that Atp8b1 deficiency leads to enhanced biliary cholesterol excretion. It has been established that biliary cholesterol excretion depends on transport by the heterodimer Abcg5/Abcg8. We hypothesized that the increased cholesterol output was due to enhanced extraction from the altered canalicular membrane rather than to higher Abcg5/Abcg8 activity. We therefore studied the relation between Abcg5/Abcg8 expression and biliary cholesterol excretion in mice lacking Atp8b1, Abcg8, or both (GF mice). METHODS Bile formation was studied in LXR agonist-fed wild-type mice as well as mice lacking Atp8b1 or Abcg8, or in GF mice upon infusion of taurocholate. Bile samples were analyzed for cholesterol, bile salt, phospholipids, and ectoenzyme content. RESULTS LXR agonist increased Abcg5/8 expression, and this was accompanied by increased biliary cholesterol output in both wild-type and Atp8b1(G308V/G308V) mice. However, Atp8b1(G308V/G308V) mice maintained higher cholesterol output. Although in Abcg8(-/-) mice biliary cholesterol output was severely reduced, GF mice displayed high biliary cholesterol output, which was comparable with wild-type mice. Bile of both Atp8b1(G308V/G308V) and GF mice displayed elevated levels of phosphatidylserine and sphingomyelin, indicating membrane stress. CONCLUSIONS Our data demonstrate that the increased biliary cholesterol excretion in Atp8b1-deficient mice is independent of Abcg5/8 activity. This implicates that Atp8b1 deficiency leads to a decrease in the detergent resistance and subsequent nonspecific extraction of cholesterol from the canalicular membrane by bile salts.
Collapse
Affiliation(s)
- Annemiek Groen
- AMC Liver Center, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The aim of this article is to provide essential information for hepatologists, who primarily care for adults, regarding liver-based inborn errors of metabolism with particular reference to those that may be treatable with liver transplantation and to provide adequate references for more in-depth study should one of these disease states be encountered.
Collapse
Affiliation(s)
- Keli Hansen
- Division of Transplant Surgery and Division of Gastroenterology, Children's Hospital and Regional Medical Center, Seattle, WA 98105, USA
| | | |
Collapse
|
46
|
Abstract
The aim of this article is to provide essential information for hepatologists, who primarily care for adults, regarding liver-based inborn errors of metabolism with particular reference to those that may be treatable with liver transplantation and to provide adequate references for more in-depth study should one of these disease states be encountered.
Collapse
Affiliation(s)
- Keli Hansen
- Children's Hospital and Regional Medical Center, Seattle, WA 98105, USA.
| | | |
Collapse
|
47
|
Abstract
Intrahepatic cholestasis of pregnancy (ICP) occurs mainly in the third trimester and is characterised by pruritus and elevated serum bile acid levels. ICP is associated with an increased perinatal risk and higher rates of foetal morbidity and mortality. Although the pathogenesis of this disease is unknown, a genetic hypersensitivity to female hormones (oestrogen and/or progesterone) or their metabolites is thought to impair bile secretory function. Recent data suggest that mutations or polymorphisms of genes expressing hepatobiliary transport proteins or their nuclear regulators may contribute to the development and/or severity of ICP. Unidentified environmental factors may also influence pathogenesis of the disease. This review summarises current knowledge on the potential mechanisms involved in ICP at the molecular level.
Collapse
|
48
|
Abstract
Three distinct forms of familial intrahepatic cholestasis are the result of mutations in the ATP8B1, ABCB11, and ABCB4 genes. The pathophysiologies of the latter 2 of these diseases are well characterized and are the result of abnormalities in canalicular excretion of bile acids and phospholipids, respectively. The molecular pathophysiology of the systemic disease associated with mutations in ATP8B1 remains unclear. In all of these diseases, wide variations in clinical phenotypes have been observed. The variability can be ascribed at least in part to predicted genotype:phenotype correlations. Disease- and genotype-specific prognoses and therapeutic approaches may exist, although much more information needs to be ascertained before clinicians can confidently make decisions based on genetic information.
Collapse
|
49
|
Paulusma CC, Folmer DE, Ho-Mok KS, de Waart DR, Hilarius PM, Verhoeven AJ, Oude Elferink RPJ. ATP8B1 requires an accessory protein for endoplasmic reticulum exit and plasma membrane lipid flippase activity. Hepatology 2008; 47:268-78. [PMID: 17948906 DOI: 10.1002/hep.21950] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
UNLABELLED Mutations in ATP8B1 cause progressive familial intrahepatic cholestasis type 1 and benign recurrent intrahepatic cholestasis type 1. Previously, we have shown in mice that Atp8b1 deficiency leads to enhanced biliary excretion of phosphatidylserine, and we hypothesized that ATP8B1 is a flippase for phosphatidylserine. However, direct evidence for this function is still lacking. In Saccharomyces cerevisiae, members of the Cdc50p/Lem3p family are essential for proper function of the ATP8B1 homologs. We have studied the role of two human members of this family, CDC50A and CDC50B, in the routing and activity of ATP8B1. When only ATP8B1 was expressed in Chinese hamster ovary cells, the protein localized to the endoplasmic reticulum. Coexpression with CDC50 proteins resulted in relocalization of ATP8B1 from the endoplasmic reticulum to the plasma membrane. Only when ATP8B1 was coexpressed with CDC50 proteins was a 250%-500% increase in the translocation of fluorescently labeled phosphatidylserine observed. Importantly, natural phosphatidylserine exposure in the outer leaflet of the plasma membrane was reduced by 17%-25% in cells coexpressing ATP8B1 and CDC50 proteins in comparison with cells expressing ATP8B1 alone. The coexpression of ATP8B1 and CDC50A in WIF-B9 cells resulted in colocalization of both proteins in the canalicular membrane. CONCLUSION Our data indicate that CDC50 proteins are pivotal factors in the trafficking of ATP8B1 to the plasma membrane and thus may be essential determinants of ATP8B1-related disease. In the plasma membrane, ATP8B1 functions as a flippase for phosphatidylserine. Finally, CDC50A may be the potential beta-subunit or chaperone for ATP8B1 in hepatocytes.
Collapse
Affiliation(s)
- Coen C Paulusma
- AMC Liver Center, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
50
|
Groen A, Kunne C, Paulusma CC, Kramer W, Agellon LB, Bull LN, Oude Elferink RPJ. Intestinal bile salt absorption in Atp8b1 deficient mice. J Hepatol 2007; 47:114-22. [PMID: 17448567 DOI: 10.1016/j.jhep.2007.02.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 02/04/2007] [Accepted: 02/12/2007] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Mutations in the ATP8B1 gene can cause Progressive Familial Intrahepatic Cholestasis type 1. We have previously reported that Atp8b1(G308V/G308V) mice, a model for PFIC1, have slightly, but significantly, higher baseline serum bile salt (BS) concentrations compared to wt mice. Upon BS feeding, serum BS concentrations strongly increased in Atp8b1-deficient mice. Despite these findings, we observed only mildly impaired canalicular BS transport. In the present report we tested the hypothesis that Atp8b1(G308V/G308V) mice hyperabsorb BS in the intestine during BS feeding. METHODS Intestinal BS absorption was measured in intestinal perfusion and in intestinal explants. In addition, we measured BS concentrations in portal blood. Ileal expression of the Fxr-targets Asbt, Ilbp and Shp was assessed. RESULTS In wt and Atp8b1(G308V/G308V) mice, intestinal taurocholate absorption is primarily mediated by the ileal bile salt transporter Asbt. Neither of the experimental systems revealed enhanced absorption of BS in Atp8b1(G308V/G308V) mice compared to wt mice. In line with these observations, we found no difference in the ileal protein expression of Asbt. Induction of Shp expression during BS feeding also demonstrated that Fxr signalling is intact in Atp8b1(G308V/G308V) mice. CONCLUSIONS The accumulation of BS in plasma of Atp8b1(G308V/G308V) mice during BS feeding is not caused by increased intestinal BS absorption.
Collapse
Affiliation(s)
- Annemiek Groen
- AMC Liver Center, Academic Medical Center, Room S1-166, Meibergdreef 69-71, 1105 BK Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|