1
|
Kumar A, Pecquenard F, Baydoun M, Quilbé A, Moralès O, Leroux B, Aoudjehane L, Conti F, Boleslawski E, Delhem N. An Efficient 5-Aminolevulinic Acid Photodynamic Therapy Treatment for Human Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:10426. [PMID: 37445603 DOI: 10.3390/ijms241310426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Photodynamic therapy (PDT) is a two-stage treatment relying on cytotoxicity induced by photoexcitation of a nontoxic dye, called photosensitizer (PS). Using 5-aminolevulinic acid (5-ALA), the pro-drug of PS protoporphyrin IX, we investigated the impact of PDT on hepatocellular carcinoma (HCC). Optimal 5-ALA PDT dose was determined on three HCC cell lines by analyzing cell death after treatment with varying doses. HCC-patient-derived tumor hepatocytes and healthy donor liver myofibroblasts were treated with optimal 5-ALA PDT doses. The proliferation of cancer cells and healthy donor immune cells cultured with 5-ALA-PDT-treated conditioned media was analyzed. Finally, therapy efficacy on humanized SCID mice model of HCC was investigated. 5-ALA PDT induced a dose-dependent decrease in viability, with an up-to-four-fold reduction in viability of patient tumor hepatocytes. The 5-ALA PDT treated conditioned media induced immune cell clonal expansion. 5-ALA PDT has no impact on myofibroblasts in terms of viability, while their activation decreased cancer cell proliferation and reduced the tumor growth rate of the in vivo model. For the first time, 5-ALA PDT has been validated on primary patient tumor hepatocytes and donor healthy liver myofibroblasts. 5-ALA PDT may be an effective anti-HCC therapy, which might induce an anti-tumor immune response.
Collapse
Affiliation(s)
- Abhishek Kumar
- Univ. Lille, Inserm, CHU Lille, U1189-ONCO-THAI-Assisted Laser Therapy and Immunotherapy for Oncology, F-59000 Lille, France
| | - Florian Pecquenard
- Univ. Lille, Inserm, CHU Lille, U1189-ONCO-THAI-Assisted Laser Therapy and Immunotherapy for Oncology, F-59000 Lille, France
- CHU Lille, Service de Chirurgie Digestive et Transplantations, Université de Lille, F-59037 Lille, France
| | - Martha Baydoun
- Univ. Lille, Inserm, CHU Lille, U1189-ONCO-THAI-Assisted Laser Therapy and Immunotherapy for Oncology, F-59000 Lille, France
| | - Alexandre Quilbé
- Univ. Lille, Inserm, CHU Lille, U1189-ONCO-THAI-Assisted Laser Therapy and Immunotherapy for Oncology, F-59000 Lille, France
| | - Olivier Moralès
- Univ. Lille, Inserm, CHU Lille, U1189-ONCO-THAI-Assisted Laser Therapy and Immunotherapy for Oncology, F-59000 Lille, France
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Bertrand Leroux
- Univ. Lille, Inserm, CHU Lille, U1189-ONCO-THAI-Assisted Laser Therapy and Immunotherapy for Oncology, F-59000 Lille, France
| | - Lynda Aoudjehane
- INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, F-75013 Paris, France
- INSERM, Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, F-75012 Paris, France
| | - Filomena Conti
- INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, F-75013 Paris, France
- INSERM, Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, F-75012 Paris, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière Hospital, Department of Medical Liver Transplantation, F-75013 Paris, France
| | - Emmanuel Boleslawski
- Univ. Lille, Inserm, CHU Lille, U1189-ONCO-THAI-Assisted Laser Therapy and Immunotherapy for Oncology, F-59000 Lille, France
- CHU Lille, Service de Chirurgie Digestive et Transplantations, Université de Lille, F-59037 Lille, France
| | - Nadira Delhem
- Univ. Lille, Inserm, CHU Lille, U1189-ONCO-THAI-Assisted Laser Therapy and Immunotherapy for Oncology, F-59000 Lille, France
| |
Collapse
|
2
|
Wang K, Wang C, Jiang H, Zhang Y, Lin W, Mo J, Jin C. Combination of Ablation and Immunotherapy for Hepatocellular Carcinoma: Where We Are and Where to Go. Front Immunol 2022; 12:792781. [PMID: 34975896 PMCID: PMC8714655 DOI: 10.3389/fimmu.2021.792781] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide and is increasing in incidence. Local ablative therapy plays a leading role in HCC treatment. Radiofrequency (RFA) is one of the first-line therapies for early local ablation. Other local ablation techniques (e.g., microwave ablation, cryoablation, irreversible electroporation, phototherapy.) have been extensively explored in clinical trials or cell/animal studies but have not yet been established as a standard treatment or applied clinically. On the one hand, single treatment may not meet the needs. On the other hand, ablative therapy can stimulate local and systemic immune effects. The combination strategy of immunotherapy and ablation is reasonable. In this review, we briefly summarized the current status and progress of ablation and immunotherapy for HCC. The immune effects of local ablation and the strategies of combination therapy, especially synergistic strategies based on biomedical materials, were discussed. This review is hoped to provide references for future researches on ablative immunotherapy to arrive to a promising new era of HCC treatment.
Collapse
Affiliation(s)
- Kunpeng Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Cong Wang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Hao Jiang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Yaqiong Zhang
- Department of Clinical Laboratory, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Weidong Lin
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Jinggang Mo
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Chong Jin
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
3
|
Zhu F, Wang BR, Zhu ZF, Wang SQ, Chai CX, Shang D, Li M. Photodynamic therapy: A next alternative treatment strategy for hepatocellular carcinoma? World J Gastrointest Surg 2021; 13:1523-1535. [PMID: 35070061 PMCID: PMC8727193 DOI: 10.4240/wjgs.v13.i12.1523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/20/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is one of the most common cancers in the world. Of all types of liver cancer, hepatocellular carcinoma (HCC) is known to be the most frequent primary liver malignancy and has seriously compromised the health status of the general population. Locoregional thermal ablation techniques such as radiofrequency and microwave ablation, have attracted attention in clinical practice as an alternative strategy for HCC treatment. However, their aggressive thermal effect may cause undesirable complications such as hepatic decompensation, hemorrhage, bile duct injury, extrahepatic organ injuries, and skin burn. In recent years, photodynamic therapy (PDT), a gentle locoregional treatment, has attracted attention in ablation therapy for patients with superficial or luminal tumors as an alternative treatment strategy. However, some inherent defects and extrinsic factors of PDT have limited its use in clinical practice for deep-seated HCC. In this contribution, the aim is to summarize the current status and challenges of PDT in HCC treatment and provide potential strategies to overcome these deficiencies in further clinical translational practice.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Bi-Rong Wang
- Department of Breast and Thyroid Surgery, Wuhan Fourth Hospital (Puai Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zheng-Feng Zhu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Si-Qin Wang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Chu-Xing Chai
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Dan Shang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Min Li
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|
4
|
Benoit C, Rodrigues A, Calderaro J, Charpy C, Simonin S, Deybach JC, Gouya L, Puy H, Schmitt C, Farcy R, Vilgrain V, Paradis V, Pote N, Lafdil F, Mule S, Itti E, Luciani A. Autofluorescence imaging within the liver: a promising tool for the detection and characterization of primary liver tumors. Eur Radiol 2021; 32:2481-2491. [PMID: 34694452 DOI: 10.1007/s00330-021-08307-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To assess the performance of 405 nm-induced autofluorescence for the characterization of primary liver nodules on ex vivo resected specimens. MATERIALS AND METHODS Forty resected liver specimens bearing 53 primary liver nodules were included in this IRB-approved prospective study. Intratissular spectroscopic measurements were performed using a 25-G fibered-needle on all ex vivo specimens: 5 autofluorescence measurements were performed in both nodules and adjacent parenchyma. The spectra derivatives of the 635 and 670 nm autofluorescence peaks observed in nodules and in adjacent liver parenchyma were compared (Kruskal-Wallis and Mann-Whitney when appropriate). RESULTS A total of 42 potentially evolutive primary liver nodules-34 hepatocellular carcinomas, 4 intrahepatic cholangiocarcinomas, 4 hepatocellular adenomas-and 11 benign nodules-5 focal nodular hyperplasias, 6 regenerative nodules-were included. Both 635 and 670 nm Δderivatives were significantly higher in benign as compared to potentially evolutive (PEV) nodules (respectively 32.9 ± 4.5 vs 15.3 ± 1.4; p < 0.0001 and 5.7 ± 0.6 vs 2.5 ± 0.1; p < 0.0001) with respective sensitivity and specificity of 78% and 91% for distinguishing PEV from benign nodules. CONCLUSION 405 nm-induced autofluorescence enables the discrimination of benign from PEV primary liver nodules, suggesting that autofluorescence imaging could be used to optimize US targeted liver biopsies. KEY POINTS • 405 nm-induced autofluorescence can distinguish liver tumors from the adjacent liver parenchyma. • The analysis of autofluorescence imaging observed within primary liver tumors can discriminate benign tumors from those requiring follow-up or targeted liver biopsy. • In current practice, autofluorescence imaging could be embedded within biopsy needle, to enable, in addition to ultrasound guidance, optimal targeting of liver nodules which could optimize tissue sampling.
Collapse
Affiliation(s)
- Charlotte Benoit
- Nodea Medical, 1 mail du Pr Georges Mathé, 94800, Villejuif, France
| | - Aurélie Rodrigues
- Nodea Medical, 1 mail du Pr Georges Mathé, 94800, Villejuif, France.,INSERM IMRB U955, Equipe 18, Créteil, France
| | - Julien Calderaro
- Faculté de Santé de Créteil, UPEC, Créteil, France.,Département de Pathologie, Hôpitaux Universitaires Henri Mondor, AP-HP, 51 Avenue du Marechal de Lattre de Tassigny, 94010, Créteil Cedex, France
| | - Cécile Charpy
- Département de Pathologie, Hôpitaux Universitaires Henri Mondor, AP-HP, 51 Avenue du Marechal de Lattre de Tassigny, 94010, Créteil Cedex, France
| | - Sylvie Simonin
- Centre Français Des Porphyries, Hôpital Louis Mourier, Assistance Publique-Hôpitaux de Paris, Colombes, France
| | - Jean-Charles Deybach
- Centre Français Des Porphyries, Hôpital Louis Mourier, Assistance Publique-Hôpitaux de Paris, Colombes, France.,UMR1149 INSERM, Centre de Recherche Sur L'Inflammation (CRI), Université Paris Diderot, Site Bichat, Laboratory of Excellence, GR-Ex, Paris, France
| | - Laurent Gouya
- Centre Français Des Porphyries, Hôpital Louis Mourier, Assistance Publique-Hôpitaux de Paris, Colombes, France.,UMR1149 INSERM, Centre de Recherche Sur L'Inflammation (CRI), Université Paris Diderot, Site Bichat, Laboratory of Excellence, GR-Ex, Paris, France
| | - Hervé Puy
- Centre Français Des Porphyries, Hôpital Louis Mourier, Assistance Publique-Hôpitaux de Paris, Colombes, France.,UMR1149 INSERM, Centre de Recherche Sur L'Inflammation (CRI), Université Paris Diderot, Site Bichat, Laboratory of Excellence, GR-Ex, Paris, France
| | - Caroline Schmitt
- Centre Français Des Porphyries, Hôpital Louis Mourier, Assistance Publique-Hôpitaux de Paris, Colombes, France.,UMR1149 INSERM, Centre de Recherche Sur L'Inflammation (CRI), Université Paris Diderot, Site Bichat, Laboratory of Excellence, GR-Ex, Paris, France
| | - René Farcy
- Laboratoire Aimé Cotton, Université Paris-Sud, ENS Cachan, CNRS, Université Paris-Saclay, 91405, Orsay Cedex, France
| | | | | | - Nicolas Pote
- Anatomopathologie, Hôpital Beaujon, APHP, Clichy, France
| | - Fouad Lafdil
- INSERM IMRB U955, Equipe 18, Créteil, France.,Faculté de Santé de Créteil, UPEC, Créteil, France.,Institut Universitaire de France (IUF), Cedex 05 75231, Paris, France
| | - Sébastien Mule
- INSERM IMRB U955, Equipe 18, Créteil, France.,Faculté de Santé de Créteil, UPEC, Créteil, France.,Service d'Imagerie Médicale, Hôpitaux Universitaires Henri Mondor, AP-HP, Créteil, France
| | - Emmanuel Itti
- Faculté de Santé de Créteil, UPEC, Créteil, France.,Service de Médecine Nucléaire, Hôpitaux Universitaires Henri Mondor, AP-HP, 51 Avenue du Marechal de Lattre de Tassigny, 94010, Créteil Cedex, France
| | - Alain Luciani
- INSERM IMRB U955, Equipe 18, Créteil, France. .,Faculté de Santé de Créteil, UPEC, Créteil, France. .,Service d'Imagerie Médicale, Hôpitaux Universitaires Henri Mondor, AP-HP, Créteil, France.
| |
Collapse
|
5
|
Recent Advances in Photodynamic Imaging and Therapy in Hepatobiliary Malignancies: Clinical and Experimental Aspects. Curr Oncol 2021; 28:4067-4079. [PMID: 34677263 PMCID: PMC8534451 DOI: 10.3390/curroncol28050345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/10/2023] Open
Abstract
The therapeutic and diagnostic modalities of light are well known, and derivative photodynamic reactions with photosensitizers (PSs), specific wavelengths of light exposure and the existence of tissue oxygen have been developed since the 20th century. Photodynamic therapy (PDT) is an effective local treatment for cancer-specific laser ablation in malignancies of some organs, including the bile duct. Although curability for extrahepatic cholangiocarcinoma is expected with surgery alone, patients with unresectable or remnant biliary cancer need other effective palliative therapies, including PDT. The effectiveness of PDT for cholangiocarcinoma has been reported experimentally or clinically, but it is not the standard option now due to problems with accompanied photosensitivity, limited access routes of irradiation, tumor hypoxia, etc. Novel derivative treatments such as photoimmunotherapy have not been applied in the field hepatobiliary system. Photodynamic diagnosis (PDD) has been more widely applied in the clinical diagnoses of liver malignancies or liver vascularization. At present, 5-aminolevulinic acid (ALA) and indocyanine green (ICG) dyes are mainly used as PSs in PDD, and ICG has been applied for detecting liver malignancies or vascularization. However, no ideal tools for combining both PDD and PDT for solid tumors, including hepatobiliary malignancies, have been clinically developed. To proceed with experimental and clinical trials, it is necessary to clarify the effective photosensitive drugs that are feasible for photochemical diagnosis and local treatment.
Collapse
|
6
|
Gao Y, Zheng QC, Xu S, Yuan Y, Cheng X, Jiang S, Kenry, Yu Q, Song Z, Liu B, Li M. Theranostic Nanodots with Aggregation-Induced Emission Characteristic for Targeted and Image-Guided Photodynamic Therapy of Hepatocellular Carcinoma. Theranostics 2019; 9:1264-1279. [PMID: 30867829 PMCID: PMC6401505 DOI: 10.7150/thno.29101] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/16/2018] [Indexed: 12/21/2022] Open
Abstract
Photosensitizer (PS) serves as the central element of photodynamic therapy (PDT). The use of common nanoparticles (NPs) for PDT has typically been rendered less effective by the undesirable aggregation-caused quenching (ACQ) effect, resulting in quenched fluorescence and reduced reactive oxygen species (ROS) generation that diminish the imaging quality and PDT efficacy. To overcome the ACQ effect and to enhance the overall efficacy of PDT, herein, integrin ανβ3-targeted organic nanodots for image-guided PDT were designed and synthesized based on a red emissive aggregation-induced emission (AIE) PS. Methods: The TPETS nanodots were prepared by nano-precipitation method and further conjugated with thiolated cRGD (cRGD-SH) through a click reaction to yield the targeted TPETS nanodots (T-TPETS nanodots). Nanodots were characterized for encapsulation efficiency, conjugation rate, particle size, absorption and emission spectra and ROS production. The targeted fluorescence imaging and antitumor efficacy of T-TPETS nanodot were evaluated both in vitro and in vivo. The mechanism of cell apoptosis induced by T-TPETS nanodot mediated-PDT was explored. The biocompatibility and toxicity of the nanodots was examined using cytotoxicity test, hemolysis assay, blood biochemistry test and histological staining. Results: The obtained nanodots show bright red fluorescence and highly effective 1O2 generation in aggregate state. Both in vitro and in vivo experiments demonstrate that the nanodots exhibit excellent tumor-targeted imaging performance, which facilitates image-guided PDT for tumor ablation in a hepatocellular carcinoma model. Detailed analysis reveals that the nanodot-mediated PDT is able to induce time- and concentration-dependent cell death. The use of PDT at a high PDT intensity leads to direct cell necrosis, while cell apoptosis via the mitochondria-mediated pathway is achieved under low PDT intensity. Conclusion: Our results suggest that well-designed AIE nanodots are promising for image-guided PDT applications.
Collapse
Affiliation(s)
- Yang Gao
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qi Chang Zheng
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shidang Xu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585
| | - Youyong Yuan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585
| | - Xiang Cheng
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuai Jiang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kenry
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585
| | - Qihong Yu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zifang Song
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585
| | - Min Li
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
7
|
Shaker MN, Ramadan HS, Mohamed MM, El khatib AM, Roston GD. Enhanced photodynamic efficacy of PLGA-encapsulated 5-ALA nanoparticles in mice bearing Ehrlich ascites carcinoma. APPLIED NANOSCIENCE 2013. [DOI: 10.1007/s13204-013-0268-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Kwon JG, Song IS, Kim MS, Lee BH, Kim JH, Yoon I, Shim YK, Kim N, Han J, Youm JB. Pu-18- N-butylimide-NMGA-GNP conjugate is effective against hepatocellular carcinoma. Integr Med Res 2013; 2:106-111. [PMID: 28664061 PMCID: PMC5481715 DOI: 10.1016/j.imr.2013.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/21/2013] [Accepted: 05/25/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) is a new modality in the treatment of cancer. This study thus aims to examine whether the PDT is effective against in vivo hepatocellular carcinoma. METHODS In vivo efficacy of PDT on hepatocellular carcinoma was tested in xenografted mice with human hepatocellular carcinoma cell lines (Huh7) by utilizing a gold nanoparticles (GNPs) conjugate of new photosensitizer (PS), purpurin-18-N-butylimide-N-methyl-D-glucamine (Pu-18-N-butylimide-NMGA). The conjugate (PS-GNPs) was synthesized from the reaction between Pu-18-N-butylimide-NMGA and chloroauric acid (HAuCl4). Mice were arbitrarily assigned into one of three groups. First group received saline alone, second group received PS-GNPs alone, and the last group received both PS-GNPs and irradiation. PS-GNPs was injected directly into the tumor mass and irradiations were performed 24 hours after injection of PS-GNPs. RESULTS Tumor volume was significantly smaller in the group which received both PS-GNPs and irradiation compared with other two groups. Western blot and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay revealed that the group which received both PS-GNPs and irradiation showed larger amount of apoptotic protein and DNA fragmentation compared with other two groups. CONCLUSION This study suggests that Pu-18-N-butylimide-NMGA-GNP conjugate is an effective agent for PDT in the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jin-Geun Kwon
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| | - In-Sung Song
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| | - Min-Soo Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| | - Beom Hee Lee
- PDT Research Institute, School of Nano System Engineering, Inje University, Gimhae, Korea
| | - Jung Hwa Kim
- PDT Research Institute, School of Nano System Engineering, Inje University, Gimhae, Korea
| | - Il Yoon
- PDT Research Institute, School of Nano System Engineering, Inje University, Gimhae, Korea
| | - Young Key Shim
- PDT Research Institute, School of Nano System Engineering, Inje University, Gimhae, Korea
| | - Nari Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| | - Jae Boum Youm
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| |
Collapse
|
9
|
Kitamura K, Tada S, Nakamoto N, Toda K, Horikawa H, Kurita S, Tsunematsu S, Kumagai N, Ishii H, Saito H, Hibi T. Rho/Rho kinase is a key enzyme system involved in the angiotensin II signaling pathway of liver fibrosis and steatosis. J Gastroenterol Hepatol 2007; 22:2022-33. [PMID: 17914985 DOI: 10.1111/j.1440-1746.2006.04735.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIM The molecular mechanisms underlying the involvement of the renin-angiotensin system in hepatic fibrosis are unclear. Recently, it was reported that a Rho kinase inhibitor prevented fibrosis of various tissues and that the Rho/Rho kinase pathway was involved in the renin-angiotensin system of vascular smooth muscle cells. In this study, the involvement of the Rho/Rho kinase pathway on angiotensin II signaling in liver fibrogenesis and generation of steatosis was investigated. METHODS Rats were fed a choline-deficient/L-amino acid-defined (CDAA) diet continuously and treated with a Rho kinase inhibitor, Y-27632, and an angiotensin II receptor blocker, TCV-116. Liver histology and hepatic stellate cell activation were analyzed. Free radical production was detected by 4-hydroxynonenal and 8-hydroxy-2'-deoxyguanosine immunostaining and the expression of tumor necrosis factor-alpha was examined. Isolated hepatic stellate cells were pretreated with a Rho kinase inhibitor, Y-27632, or an angiotensin II receptor blocker, CV-11974, and stimulated with angiotensin II, and mRNA expression of transforming growth factor-beta and alpha-smooth muscle actin was analyzed. RESULTS Both the angiotensin II receptor blocker and the Rho kinase inhibitor improved fibrosis and steatosis of the liver in CDAA-fed rats. The increase in the number of hepatocytes positive for 4-hydroxynonenal and 8-hydroxy-2'-deoxyguanosine in CDAA-fed rats was significantly prevented by the angiotensin II receptor blocker and the Rho kinase inhibitor. The levels of tumor necrosis factor-alpha mRNA in the liver of CDAA-fed rats were significantly increased and this increase was significantly inhibited by treatment with the angiotensin II receptor blocker and the Rho kinase inhibitor. mRNA expression of transforming growth factor-beta and alpha-smooth muscle actin stimulated by angiotensin II was also significantly suppressed by these two drugs. CONCLUSION These results suggest that the Rho/Rho kinase pathway is at least partly involved in the renin-angiotensin system and plays an important role in hepatic fibrosis and steatosis.
Collapse
Affiliation(s)
- Kumi Kitamura
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Mei S, Wang X, Zhang J, Qian J, Ji J. In vivo transfection of C/EBP-alpha gene could ameliorate CCL(4)-induced hepatic fibrosis in mice. Hepatol Res 2007; 37:531-9. [PMID: 17539996 DOI: 10.1111/j.1872-034x.2007.00074.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AIM Hepatic stellate cells (HSCs) play a key role in liver fibrosis. CCAAT/enhancer-binding proteins-alpha (C/EBP-alpha) can inhibit HSCs activation in vitro, as described in our previous study. However, little is known about the in vivo effect of C/EBP-alpha gene in hepatic fibrosis. METHODS Male BALB/c mice were injected by hydrodynamic protocol with pIRES2-EGFP-C/EBPalpha expression vector from the first to the fourth week (early intervention) or from the ninth to the 12th week (late intervention) after CCl(4) injection, respectively. Successful transfection of vector and the expression of C/EBP-alpha were confirmed with the appearance of green fluorescence in liver cells, immunohistochemical staining and the western blot. RESULTS High expression of C/EBP-alpha gene in liver cells, especially in non-parenchymal cells, could reduce the content of collagens by 82.5% and 72.3% (Sirius red staining + image analysis) and the content of hydroxyproline by 56.3% and 51.6%, respectively, in the early and late intervention experiments. CONCLUSION It is evident that exogenous C/EBP-alpha gene has an early and late intervention role in mice liver fibrosis.
Collapse
Affiliation(s)
- Shuang Mei
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
11
|
McMillan BJ, Bradfield CA. The aryl hydrocarbon receptor sans xenobiotics: endogenous function in genetic model systems. Mol Pharmacol 2007; 72:487-98. [PMID: 17535977 DOI: 10.1124/mol.107.037259] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
For more than 30 years, the aryl hydrocarbon receptor [Ah receptor (AHR)] has been extensively scrutinized as the cellular receptor for numerous environmental contaminants, including polychlorinated dioxins, dibenzofurans, and biphenyls. Recent evidence argues that this description is incomplete and perhaps myopic. Ah receptor orthologs have been demonstrated to mediate diverse endogenous functions in our close vertebrate relatives as well as our distant invertebrate ancestors. Moreover, these endogenous functions suggest that xenobiotic toxicity may be best understood in the context of intrinsic AHR physiology. In this literature review, we survey the emerging picture of endogenous AHR biology from work in the vertebrate and invertebrate model systems Mus musculus, Caenorhabditis elegans, and Drosophila melanogaster.
Collapse
Affiliation(s)
- Brian J McMillan
- McArdle Laboratory for Cancer Research, University of Wisconsin Shool of Medicine and Public Health, Madison, Wisconsin, USA
| | | |
Collapse
|
12
|
Li WT, Tsao HW, Chen YY, Cheng SW, Hsu YC. A study on the photodynamic properties of chlorophyll derivatives using human hepatocellular carcinoma cells. Photochem Photobiol Sci 2007; 6:1341-8. [DOI: 10.1039/b704539e] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Zhang C, Zhu Y, Wan J, Xu H, Shi H, Lu X. Effects of Ginkgo biloba extract on cell proliferation, cytokines and extracellular matrix of hepatic stellate cells. Liver Int 2006; 26:1283-90. [PMID: 17105595 DOI: 10.1111/j.1478-3231.2006.01378.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND/AIMS Hepatic fibrosis is the common wound-healing response to chronic liver injury. Ginkgo biloba extract (GbE) has been indicated to reverse hepatic fibrosis and exhibit therapeutic effects both in vitro and in vivo. This study aimed to investigate the underlying mechanism of GbE using HSC-T6 cells, a subline of hepatic stellate cells (HSC) as a model. METHODS HSC-T6 cells were seeded into six-well plates and allowed to attach overnight. After exposure to different concentrations of GbE761 for 24 or 48 h, cell cycle analysis, semiquantitative RT-PCR, Western blotting analysis and analysis of ECM secretion were performed. RESULTS It was revealed that GbE (1, 10, 100, 500 mg/l) suppressed HSC proliferation and caused G0/G1 phase arrest in a concentration-dependent manner. RT-PCR and Western blot assays were applied to detect the decline of transforming growth factor beta1(TGF-beta1) and connective tissue growth factor (CTGF) in both mRNA and protein levels after GbE treatment in HSC-T6 cells for 24 or 48 h. Meanwhile, GbE inhibited the synthesis of type I and type III collagens. Secretion of some extracellular matrix (ECM) proteins, such as type III procollagen (PC III), type IV collagen (collagen IV), laminin (LN), hyaluronic acid (HA), were all decreased in supernatant of GbE treated HSC cells. CONCLUSIONS Our results suggest that GbE confers its anti-fibrosis effects through inhibiting HSC proliferation, reducing TGF-beta1 and CTGF expression and consequently suppressing the collagen production and ECM secretion.
Collapse
Affiliation(s)
- Chunqing Zhang
- Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan Shandong, China
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
The identification of activated hepatic stellate cells and related cell types as key fibrogenic effectors during liver injury has led to intense evaluation of transcriptional events underlying their behavior. While initial studies focused on characterizing interactions between transcription factors and regulatory regions within gene promoters, epigenetic mechanisms have emerged as major determinants of gene activation and repression, in particular histone acetylation and promoter methylation, as well as other complex conditional interactions that underlie global changes in gene expression. Three examples are provided that illustrate how stellate cell activation may be controlled by widely divergent regulatory pathways, including alternative splicing of a growth inhibitory transcription factor (Kruppel-like factor-6), epigenetic regulation of a factor regulating stellate cell survival (nuclear factor kappaB), and regulation of a transcription factor whose expression maintains stellate cell quiescence (LIM homeobox gene 2 [Lhx2]). These complex cascades illustrate how clarifying the finely tuned interdependent layers of transcriptional, translational, post-translational and epigenetic gene regulation in stellate cells is raising new prospects for therapy of hepatic fibrosis.
Collapse
Affiliation(s)
- Scott L Friedman
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
15
|
Chen C, Zhang J, Li J, Huang J, Yang C, Huang G, Shi J. Hydrodynamic-based in vivo transfection of retinoic X receptor-alpha gene can enhance vitamin A-induced attenuation of liver fibrosis in mice. Liver Int 2004; 24:679-86. [PMID: 15566521 DOI: 10.1111/j.1478-3231.2004.0977.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND/AIM In hepatic stellate cells isolated from rat fibrotic livers, the amount of retinoid X receptor-alpha (RXR-alpha) mRNA is greatly reduced. However, the effectiveness of retinoids in the treatment of liver fibrosis is controversial. We hypothesized that increasing the expression levels of RXR-alpha in livers will improve the response of liver fibrosis to retinoids treatment. METHODS pTracer-CMV2 vector harboring both green fluorescent protein and RXR-alpha genes was given to mice with carbon tetrachloride (CCl(4))-induced liver fibrosis, by hydrodynamic-based in vivo transfection. Vitamin A was simultaneously administered to the mice. Sirius red staining and measurement of hydroxyproline content were performed to evaluate liver fibrosis. The incorporation of 5-bromo-2-deoxyribouridine (BrdU) was carried out to determine liver cell proliferation. RESULTS Successful transfection and expression of exogenous RXR-alpha gene in the liver was determined by observance of green fluorescence under a confocal microscope, and detection of RXR-alpha protein by immunohistochemistry. Hepatic fibrosis, evaluated by both Sirius red staining with image analysis and quantity of hydroxyproline in livers of RXR-alpha-transfected group, tapered off remarkably. The hydroxyproline content and Sirius red-positive staining area on liver sections from RXR-alpha-transfected mice decreased by 34.3% and 54.63%, respectively, compared with the control group receiving empty vector. The labeling index of BrdU in non-parenchymal cells was much lower in livers from the RXR-alpha-transfected group than that of empty vector-transfected group. CONCLUSIONS Hydrodynamic-based in vivo transfection of the RXR-alpha gene can enhance the vitamin A-induced attenuation of liver fibrosis in mice. One of the possible mechanisms of action for this gene treatment is inhibition of non-parenchymal cell proliferation mainly composed of hepatic stellate cells in fibrotic livers.
Collapse
Affiliation(s)
- Chen Chen
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Otake M, Nishiwaki M, Kobayashi Y, Baba S, Kohno E, Kawasaki T, Fujise Y, Nakamura H. Selective accumulation of ALA-induced PpIX and photodynamic effect in chemically induced hepatocellular carcinoma. Br J Cancer 2003; 89:730-6. [PMID: 12915887 PMCID: PMC2376916 DOI: 10.1038/sj.bjc.6601135] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The possibility of 5-aminolaevulinic acid-based photodynamic therapy (ALA-PDT) for liver cancer was investigated using a chemically induced hepatocellular carcinoma (HCC) model. Endogenously synthesised protoporphyrin IX (PpIX) following the administration of ALA is an effective photosensitiser for PDT. We determined the fluorescence intensity of PpIX in HCC and nontumoral tissue in the liver. 5-Aminolaevulinic acid was intravenously injected to male Fisher rats with HCC at a dose of 500 mg x kg(-1), and the fluorescence intensity in each tissue sample excised from liver was measured with a spectrofluorometer at 1, 3 and 6 h after administration. Fluorescence intensity was at a peak of 3 h after administration in both HCC and nontumoral tissue. The accumulation of PpIX in HCC was higher than that in the nontumoral tissue at 1 h (P<0.001) and 3 h (P<0.05) after ALA administration. Based on these results, PDT was performed on HCC at 3 h after 500 mg x kg(-1) ALA administration before laser irradiation of 30 J per tumour. Antitumour effect was more evident in HCC than in the nontumoral tissue surrounding HCC. These findings suggest the possibility to detect HCC by fluorescence and to treat HCC by light.
Collapse
Affiliation(s)
- M Otake
- Second Department of Internal Medicine, Hamamatsu University School of Medicine, Handayama 1-20-1, Hamamatsu, Shizuoka 431-3192, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Weiss TS, Pahernik S, Scheruebl I, Jauch KW, Thasler WE. Cellular damage to human hepatocytes through repeated application of 5-aminolevulinic acid. J Hepatol 2003; 38:476-82. [PMID: 12663240 DOI: 10.1016/s0168-8278(02)00454-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIMS 5-Aminolevulinic acid (ALA), a precursor of porphyrins is used for photodynamic diagnosis and therapy within topical or systemic applications. A potential toxic effect on the human liver is of major interest and therefore we investigated the impact of a repeated application of ALA without illumination on cultures of human hepatocytes. METHODS After ALA treatment of hepatocytes in vitro the porphyrin synthesis, albumin secretion, liver-specific enzyme release, and malondialdehyde levels were determined. In order to reduce levels of reactive oxygen substances, mannitol and the antioxidant enzymes superoxide dismutase and catalase were supplemented. RESULTS Porphyrin biosynthesis by human hepatocytes in vitro was repeatedly stimulated by ALA (0.001-1.0 mM), which was indicated by an accumulation of protoporphyrin IX. A repetitive treatment (up to four times) of hepatocytes with ALA resulted in an impairment of the hepatic function and viability, depending on the ALA concentration (0.1-1.0 mM) and frequency of application (2-3 times). This was also accompanied by increased malondialdehyde levels indicating enhanced lipid peroxidation. Only superoxide dismutase was able to reduce cellular damage and prevent specific function. CONCLUSIONS Repeated, not single, ALA treatment without illumination may cause deleterious effects to the liver, which are mediated by oxygen radicals and inhibited by an antioxidant.
Collapse
Affiliation(s)
- Thomas S Weiss
- Center for Liver Cell Research, University of Regensburg Hospital, F.-J.-S.-Allee 11, D-93042 Regensburg, Germany.
| | | | | | | | | |
Collapse
|
18
|
Berg K. Chapter 8 Basic principles of 5-aminolevulinic acid-based photodynamic therapy. COMPREHENSIVE SERIES IN PHOTOSCIENCES 2001. [DOI: 10.1016/s1568-461x(01)80112-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
19
|
Abstract
There has been remarkable progress in our understanding of how chronic alcohol ingestion may lead to hepatic injury and scarring, or fibrosis. Hepatic fibrosis represents the liver's wound healing response and is characterized by accumulation of interstitial matrix, or scar. Fibrosis in the liver results from the activation of stellate cells, or resident mesenchymal cells. Stellate cell activation is a dramatic phenotype transition whose net effect is the replacement of normal liver matrix by scar. Features of stellate cell activation include increased cell accumulation from proliferation and directed migration, increased matrix production, enhanced contractility, accelerated degradation of the normal liver matrix, release of profibrogenic cytokines, and loss of cellular vitamin A. Alcohol may enhance fibrogenesis through stimulation of stellate cells by hypoxia, generation of lipid peroxides from damaged hepatocytes, production of acetaldehyde that may have direct fibrogenic activity, and through activation of Kupffer cells or resident macrophages. Unanswered questions remain to be studied, but the clarification of underlying mechanisms of fibrosis portends continued progress in our ability to treat alcoholic liver fibrosis.
Collapse
Affiliation(s)
- S L Friedman
- Liver Research, Mount Sinai School of Medicine New York, New York 10029, USA.
| |
Collapse
|
20
|
Abstract
Cytokines constitute a major class of mediators responsible for "activation" of hepatic stellate cells (HSCs) in vitro and in vivo. They are largely divided into mitogenic (transforming growth factor-alpha, platelet-derived growth factor, interleukin-1, tumor necrosis factor-alpha, and insulin-like growth factor) and fibrogenic (transforming growth factor-beta and interleukin-6) cytokines. In addition to their mitogenic (stimulation of cell proliferation) and fibrogenic (induction of matrix proteins) properties, they are also shown to confer in vitro unique cellular changes known to be the key features of HSC "activation," including loss of vitamin A, stimulation of migration, enhanced cellular contractility, and matrix metalloproteinase and tissue inhibitor of metalloproteinase induction. Potential cellular sources of the cytokines consist of hepatic macrophages, endothelial cells, biliary epithelial cells, lymphocytes, platelets, hepatocytes, and activated HSCs. To better understand the mode of actions and the pathogenetic significance of cytokines/chemokines involved in "activation" of HSCs, the following four questions need to be addressed: (1) What other cytokines are expressed by HSCs to establish critical autocrine stimulation? (2) What are endogenous or exogenous priming factors for HSC stimulation? (3) What is the mechanism of activation for transforming growth factor-beta, the pivotal fibrogenic cytokine? (4) How important are HSC-derived proinflammatory mediators in liver fibrosis? This review will discuss these questions, along with the current understanding of the role of cytokines in HSC activation.
Collapse
Affiliation(s)
- H Tsukamoto
- Department of Medicine, University of Southern California School of Medicine, Los Angeles 90033, USA.
| |
Collapse
|