1
|
Mohamed NZ, Shaban L, Safan S, El-Sayed ASA. Physiological and metabolic traits of Taxol biosynthesis of endophytic fungi inhabiting plants: Plant-microbial crosstalk, and epigenetic regulators. Microbiol Res 2023; 272:127385. [PMID: 37141853 DOI: 10.1016/j.micres.2023.127385] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 05/06/2023]
Abstract
Attenuating the Taxol productivity of fungi with the subculturing and storage under axenic conditions is the challenge that halts the feasibility of fungi to be an industrial platform for Taxol production. This successive weakening of Taxol productivity by fungi could be attributed to the epigenetic down-regulation and molecular silencing of most of the gene clusters encoding Taxol biosynthetic enzymes. Thus, exploring the epigenetic regulating mechanisms controlling the molecular machinery of Taxol biosynthesis could be an alternative prospective technology to conquer the lower accessibility of Taxol by the potent fungi. The current review focuses on discussing the different molecular approaches, epigenetic regulators, transcriptional factors, metabolic manipulators, microbial communications and microbial cross-talking approaches on restoring and enhancing the Taxol biosynthetic potency of fungi to be industrial platform for Taxol production.
Collapse
Affiliation(s)
- Nabil Z Mohamed
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Lamis Shaban
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| | - Samia Safan
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
2
|
Total optimization potential (TOP) approach based constrained design of isoprene and cis-abienol production in A. thaliana. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
3
|
Bamneshin M, Mirjalili MH, Naghavi MR, Cusido RM, Palazón J. Gene expression pattern and taxane biosynthesis in a cell suspension culture of Taxus baccata L. subjected to light and a phenylalanine ammonia lyase (PAL) inhibitor. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112532. [PMID: 35908357 DOI: 10.1016/j.jphotobiol.2022.112532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Taxus baccata L. cell culture is a promising commercial method for the production of taxanes with anti-cancer activities. In the present study, a T. baccata cell suspension culture was exposed to white light and 2-aminoindan-2-phosphonic acid (AIP), a phenylalanine ammonia lyase (PAL) inhibitor, and the effects of this treatment on cell growth, PAL activity, total phenol content (TPC), total flavonoid content (TFC), taxane production and the expression of some key taxane biosynthetic genes (DXS, GGPPS, T13OH, BAPT, DBTNBT) as well as the PAL were studied. Light reduced cell growth, whereas AIP slightly improved it. Light increased PAL activity up to 2.7-fold relative to darkness. The highest TPC (24.89 mg GAE/g DW) and TFC (66.94 mg RUE/g DW) were observed in cultures treated with light and AIP. Light treatment also resulted in the maximum content of total taxanes (154.78 μg/g DW), increasing extracellular paclitaxel and cephalomannin (3.3-fold) and intracellular 10-deacetyl paclitaxel (2.5-fold). Light significantly increased the expression level of PAL, DBTNBT, BAPT, and T13αOH genes, whereas it had no effect on the expression of DXS, a gene active at the beginning of the taxane biosynthetic pathway. AIP had no significant effect on the expression of the target genes. In conclusion, the light-induced activation of PAL transcription and altered expression of relevant biosynthetic genes reduced cell growth and increased the content of total phenolic compounds and taxanes. These findings can be applied to improve taxane production in controlled cultures and bioreactors.
Collapse
Affiliation(s)
- Mahsa Bamneshin
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Mohammad Hossein Mirjalili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411 Tehran, Iran.
| | - Mohammad Reza Naghavi
- Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran
| | - Rosa M Cusido
- Laboratorio de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Barcelona, Spain
| | - Javier Palazón
- Laboratorio de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
4
|
Srivastava Y, Tripathi S, Mishra B, Sangwan NS. Cloning and homologous characterization of geranylgeranyl pyrophosphate synthase (GGPPS) from Withania somnifera revealed alterations in metabolic flux towards gibberellic acid biosynthesis. PLANTA 2022; 256:4. [PMID: 35648276 DOI: 10.1007/s00425-022-03912-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Overexpression of a novel geranylgeranyl pyrophosphate synthase gene (WsGGPPS) in planta resulted in increased levels of gibberellic acid and decrease in withanolide content. Withania somnifera (L.) Dunal, the herb from family Solanaceae is one of the most treasured medicinal plant used in traditional medicinal systems owing to its unique stockpile of pharmaceutically active secondary metabolites. Phytochemical and pharmacological studies in this plant were well established, but the genes affecting the regulation of biosynthesis of major metabolites were not well elucidated. In this study cloning and functional characterization of a key enzyme in terpenoid biosynthetic pathway viz. geranylgeranyl pyrophosphate synthase (EC 2.5.1.29) gene from Withania somnifera was performed. The full length WsGGPPS gene contained 1,104 base pairs that encode a polypeptide of 365 amino acids. The quantitative expression analysis suggested that WsGGPPS transcripts were expressed maximally in flower tissues followed by berry tissues. The expression levels of WsGGPPS were found to be regulated by methyl jasmonate (MeJA) and salicylic acid (SA). Amino acid sequence alignment and phylogenetic studies suggested that WsGGPPS had close similarities with GGPPS of Solanum tuberosum and Solanum pennellii. The structural analysis provided basic information about three dimensional features and physicochemical parameters of WsGGPPS protein. Overexpression of WsGGPPS in planta for its functional characterization suggested that the WsGGPPS was involved in gibberellic acid biosynthesis.
Collapse
Affiliation(s)
- Yashdeep Srivastava
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Sandhya Tripathi
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | | | - Neelam S Sangwan
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India.
- School of Interdisciplinary and Applied Sciences, Central University of Haryana, Jant-Pali, Mahendragarh, Haryana, 123031, India.
| |
Collapse
|
5
|
Hao J, Guo H, Shi X, Wang Y, Wan Q, Song YB, Zhang L, Dong M, Shen C. Comparative proteomic analyses of two Taxus species (Taxus × media and Taxus mairei) reveals variations in the metabolisms associated with paclitaxel and other metabolites. PLANT & CELL PHYSIOLOGY 2017; 58:1878-1890. [PMID: 29016978 DOI: 10.1093/pcp/pcx128] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/23/2017] [Indexed: 05/20/2023]
Abstract
Taxus species are well-known for paclitaxel, which exhibits antitumor activities and is used for treating various cancers. Although most Taxus species are widespread in many areas, few studies have characterized the variation in metabolism among different Taxus species. Using an integrated approach involving 'tandem mass tag' labeling and liquid chromatography-tandem mass spectrometry (HPLC-MS), proteomes of T. media and T. mairei were investigated and 4078 proteins were quantified. Screening and classification of differentially expressed proteins revealed many metabolism-associated proteins. In detail, four enzymes involved in the flavonoid biosynthesis pathway were predominantly expressed in T. mairei. Four enzymes associated with supplying precursors for paclitaxel biosynthesis and three cytochrome P450 taxoid oxygenases were preferentially expressed in T. media compared with T. mairei. Furthermore, variations in taxoid contents between T. media and T. mairei were determined using HPLC-MS analysis. Variations in flavonoid contents between T. media and T. mairei were determined by HPLC analysis. A number of differentially expressed proteins may provide an explanation for the variation in metabolisms of different Taxus species.
Collapse
Affiliation(s)
- Juan Hao
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| | - Hong Guo
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| | - Xinai Shi
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China
| | - Ye Wang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan Province 455000, China
| | - Qinghua Wan
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China
| | - Yao-Bin Song
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Lei Zhang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
| | - Ming Dong
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Chenjia Shen
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| |
Collapse
|
6
|
Tata SK, Jung J, Kim YH, Choi JY, Jung JY, Lee IJ, Shin JS, Ryu SB. Heterologous expression of chloroplast-localized geranylgeranyl pyrophosphate synthase confers fast plant growth, early flowering and increased seed yield. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:29-39. [PMID: 25644367 PMCID: PMC6120502 DOI: 10.1111/pbi.12333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 12/05/2014] [Accepted: 12/13/2014] [Indexed: 05/07/2023]
Abstract
Geranylgeranyl pyrophosphate synthase (GGPS) is a key enzyme for a structurally diverse class of isoprenoid biosynthetic metabolites including gibberellins, carotenoids, chlorophylls and rubber. We expressed a chloroplast-targeted GGPS isolated from sunflower (Helianthus annuus) under control of the cauliflower mosaic virus 35S promoter in tobacco (Nicotiana tabacum). The resulting transgenic tobacco plants expressing heterologous GGPS showed remarkably enhanced growth (an increase in shoot and root biomass and height), early flowering, increased number of seed pods and greater seed yield compared with that of GUS-transgenic lines (control) or wild-type plants. The gibberellin levels in HaGGPS-transgenic plants were higher than those in control plants, indicating that the observed phenotype may result from increased gibberellin content. However, in HaGGPS-transformant tobacco plants, we did not observe the phenotypic defects such as reduced chlorophyll content and greater petiole and stalk length, which were previously reported for transgenic plants expressing gibberellin biosynthetic genes. Fast plant growth was also observed in HaGGPS-expressing Arabidopsis and dandelion plants. The results of this study suggest that GGPS expression in crop plants may yield desirable agronomic traits, including enhanced growth of shoots and roots, early flowering, greater numbers of seed pods and/or higher seed yield. This research has potential applications for fast production of plant biomass that provides commercially valuable biomaterials or bioenergy.
Collapse
Affiliation(s)
- Sandeep Kumar Tata
- Environmental Biotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Korea
- Biosystems & Bioengineering Division, University of Science and Technology, Daejeon, Korea
| | - Jihye Jung
- Environmental Biotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Korea
- Biosystems & Bioengineering Division, University of Science and Technology, Daejeon, Korea
| | - Yoon-Ha Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, Korea
| | - Jun Young Choi
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Ji-Yul Jung
- Environmental Biotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Korea
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, Korea
| | - Jeong Sheop Shin
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Stephen Beungtae Ryu
- Environmental Biotechnology Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Korea
- Biosystems & Bioengineering Division, University of Science and Technology, Daejeon, Korea
| |
Collapse
|
7
|
SHEN S, WANG L, SUN Z, LI M, LIU C, TIAN B, YUN J, HUA Y. Separation of Recombinant Geranylgeranyl Diphosphate Synthase of Deinococcus radiodurans from Expressed Strain Cell Homogenate by Immobilized Metal Affinity Chromatography on a Characterized Monolithic Cryogel Column. Chin J Chem Eng 2013. [DOI: 10.1016/s1004-9541(13)60514-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Hua W, Song J, Li C, Wang Z. Molecular cloning and characterization of the promoter of SmGGPPs and its expression pattern in Salvia miltiorrhiza. Mol Biol Rep 2012; 39:5775-83. [PMID: 22203482 DOI: 10.1007/s11033-011-1388-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Accepted: 12/17/2011] [Indexed: 10/14/2022]
Abstract
Geranylgeranyl diphosphate (GGPP) synthase is an important branch point enzyme in terpenoid biosynthesis. It regulates the formation of diterpenoid, such as tanshinones. We cloned a gene for GGPP synthase SmGGPPs involved in diterpenoid biosynthesis from Salvia miltiorrhiza. At 2,767 bp long, this gene comprises an intron and two exons that encode a polypeptide of 364 amino acid residues. Then the 5' flanking sequence of SmGGPPs was characterized by bioinformatics method. Deletion analysis of the promoter of SmGGPPs using tobacco plant displayed that the promoter was induced by heat and cold. To further search these cis-elements involved in induction regulation in the 5' flanking sequence of SmGGPPs, many putative cis-elements were predicted with the PlantCARE and PLACE databases. A group of putative cis-acting elements are involved in induction regulation, including G-Box, WRKY, MYC and ATCT motifs. Real-time PCR analysis revealed that SmGGPPs is mainly expressed in the leaves and can also be induced by various factors, such as NaCl, wounding, high temperature, darkness, pathogen, methyl jasmonate, abscisic acid, salicylic acid, and gibberellins. This study provides useful information for further study of SmGGPPs and its regulator effect on the biosynthetic process of tanshinones so that researchers can improve the tanshinone contents in S. miltiorrhiza.
Collapse
Affiliation(s)
- Wenping Hua
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, Shaanxi Province, People's Republic of China
| | | | | | | |
Collapse
|
9
|
Wu Q, Song J, Sun Y, Suo F, Li C, Luo H, Liu Y, Li Y, Zhang X, Yao H, Li X, Hu S, Sun C. Transcript profiles of Panax quinquefolius from flower, leaf and root bring new insights into genes related to ginsenosides biosynthesis and transcriptional regulation. PHYSIOLOGIA PLANTARUM 2010; 138:134-149. [PMID: 19947964 DOI: 10.1111/j.1399-3054.2009.01309.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
American ginseng (Panax quinquefolius L.) has been used for a wide range of therapeutic purposes in China. The major bioactive phytochemicals responsible for this plant's pharmacological features are ginsenosides. Thus far, little is known regarding the genes involved in ginsenosides biosynthesis in this species. As a non-model plant, information about its genomes is generally not available. In this study, we generated 6678 expressed sequence tags (ESTs) from the flower, leaf and root cDNA libraries of American ginseng. Assembly of ESTs resulted in 3349 unigenes including 534 contigs (with ESTs number ranging from 2 to 52) and 2815 singletons. By analyzing the predominant transcripts within specific tissues, a gene expression pattern was obtained in a tissue-specific manner. They were assigned according to the functional classification of unigenes to broad ranges of Gene Ontology categories which include biological processes, cellular components and molecular functions. Based on blastx search results, 24 unigenes representing candidates related to ginsenosides biosynthesis were identified. Cloning and characterization of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR, EC: 1.1.1.34), the rate-limiting enzyme in mevalonic acid pathway, demonstrated that it belonged to the plant HMGR family and was highly expressed in leaves. Putative transcription factors were detected in 63 unigenes, including zinc finger, WRKY, homeobox and MADS-box family proteins. Five hundred and eighty-eight simple sequence repeat motifs were identified, of which, dimer was the most abundant motif. These data will provide useful information on transcript profiles, gene discovery, transcriptional regulation, flower biogenesis and marker-assisted selections. The analysis and information from this study will greatly contribute to the improvement of this medicinal plant as well as of other species in the Araliaceae family, for the purpose of ensuring adequate drug resources.
Collapse
Affiliation(s)
- Qiong Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Pateraki I, Kanellis AK. Isolation and functional analysis of two Cistus creticus cDNAs encoding geranylgeranyl diphosphate synthase. PHYTOCHEMISTRY 2008; 69:1641-1652. [PMID: 18402992 DOI: 10.1016/j.phytochem.2008.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 02/04/2008] [Accepted: 02/05/2008] [Indexed: 05/26/2023]
Abstract
Cistus creticus ssp. creticus is an indigenous shrub of the Mediterranean area. The glandular trichomes covering its leaf surfaces secrete a resin called "ladanum", which among others contains a number of specific labdane-type diterpenes that exhibit antibacterial and antifungal action as well as in vitro and in vivo cytotoxic and cytostatic activity against human cancer cell lines. In view of the properties and possible future exploitation of these metabolites, it was deemed necessary to study the geranylgeranyl diphosphate synthase enzyme (GGDPS, EC 2.5.1.30), a short chain prenyltransferase responsible for the synthesis of the precursor molecule of all diterpenes. In this work, we present the cloning, functional characterisation and expression profile at the gene and protein levels of two differentially expressed C. creticus full-length cDNAs, CcGGDPS1 and CcGGDPS2. Heterologous yeast cell expression system showed that these cDNAs exhibited GGDPS enzyme activity. Gene and protein expression analyses suggest that this enzyme is developmentally and tissue-regulated showing maximum expression in trichomes and smallest leaves (0.5-1.0cm). This work is the first attempt to study the terpenoid biosynthesis at the molecular level in C. creticus ssp. creticus.
Collapse
Affiliation(s)
- Irene Pateraki
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | | |
Collapse
|
11
|
Croteau R, Ketchum REB, Long RM, Kaspera R, Wildung MR. Taxol biosynthesis and molecular genetics. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2006; 5:75-97. [PMID: 20622989 PMCID: PMC2901146 DOI: 10.1007/s11101-005-3748-2] [Citation(s) in RCA: 286] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Biosynthesis of the anticancer drug Taxol in Taxus (yew) species involves 19 steps from the universal diterpenoid progenitor geranylgeranyl diphosphate derived by the plastidial methyl erythritol phosphate pathway for isoprenoid precursor supply. Following the committed cyclization to the taxane skeleton, eight cytochrome P450-mediated oxygenations, three CoA-dependent acyl/aroyl transfers, an oxidation at C9, and oxetane (D-ring) formation yield the intermediate baccatin III, to which the functionally important C13-side chain is appended in five additional steps. To gain further insight about Taxol biosynthesis relevant to the improved production of this drug, and to draw inferences about the organization, regulation, and origins of this complex natural product pathway, Taxus suspension cells (induced for taxoid biosynthesis by methyl jasmonate) were used for feeding studies, as the foundation for cell-free enzymology and as the source of transcripts for cDNA library construction and a variety of cloning strategies. This approach has led to the elucidation of early and late pathway segments, the isolation and characterization of over half of the pathway enzymes and their corresponding genes, and the identification of candidate cDNAs for the remaining pathway steps, and it has provided many promising targets for genetically engineering more efficient biosynthetic production of Taxol and its precursors.
Collapse
Affiliation(s)
- Rodney Croteau
- Author for correspondence (Tel: +1-509-335-1790; Fax: +1-509-335-7643;
| | | | | | | | | |
Collapse
|
12
|
A double oxidative burst for taxol production in suspension cultures of Taxus chinensis var. mairei induced by oligosaccharide from Fusarium oxysprum. Enzyme Microb Technol 2002. [DOI: 10.1016/s0141-0229(02)00057-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|