1
|
Tang S, Huang CH, Ko TP, Lin KF, Chang YC, Lin PY, Sun L, Chen CY. Dual dimeric interactions in the nucleic acid-binding protein Sac10b lead to multiple bridging of double-stranded DNA. Heliyon 2024; 10:e31630. [PMID: 38867953 PMCID: PMC11167270 DOI: 10.1016/j.heliyon.2024.e31630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/26/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
Nucleoid-associated proteins play a crucial role in the compaction and regulation of genetic material across organisms. The Sac10b family, also known as Alba, comprises widely distributed and highly conserved nucleoid-associated proteins found in archaea. Sac10b is identified as the first 10 kDa DNA-binding protein in the thermoacidophile Sulfolobus acidocaldarius. Here, we present the crystal structures of two homologous proteins, Sac10b1 and Sac10b2, as well as the Sac10b1 mutant F59A, determined at a resolution of 1.4-2.0 Å. Electron microscopic images reveal the DNA-bridging capabilities of both Sac10b1 and Sac10b2, albeit to varying extents. Analyses of crystal packing and electron microscopic results suggest that Sac10b1 facilitates cooperative DNA binding, forming extensive bridged filaments via the conserved R58 and F59 residues at the dimer-dimer interface. Substitutions at R58 or F59 of Sac10b1 attenuate end-to-end association, resulting in non-cooperative DNA binding, and formation of small, bridged DNA segments in a way similar to Sac10b2. Analytical ultracentrifuge and circular dichroism confirm the presence of thermostable, acid-tolerant dimers in both Sac10b1 and Sac10b2. These findings attest to the functional role of Sac10b in organizing and stabilizing chromosomal DNA through distinct bridging interactions, particularly under extreme growth conditions.
Collapse
Affiliation(s)
- Songqiang Tang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Chun-Hsiang Huang
- Protein Diffraction Group, Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Kuan-Fu Lin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yuan-Chih Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Po-Yen Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Liuchang Sun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Chin-Yu Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| |
Collapse
|
2
|
Cajili MKM, Prieto EI. Atomic Force Microscopy Characterization of Reconstituted Protein-DNA Complexes. Methods Mol Biol 2024; 2819:279-295. [PMID: 39028512 DOI: 10.1007/978-1-0716-3930-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Atomic force microscopy is a high-resolution imaging technique useful for observing the structures of biomolecular complexes. This approach provides a straightforward method to characterize the binding behavior of different chromatin architectural proteins and to analyze the increasingly complex structural units assembled on the DNA. The protocol describes the preparation, AFM imaging, and structural analysis of chromatin that is reconstituted in vitro using purified proteins and DNA. Here, we describe the successful application of the method on the chromatin architectural proteins of the archaeon Sulfolobus solfataricus.
Collapse
Affiliation(s)
| | - Eloise I Prieto
- National Institute of Molecular Biology and Biotechnology, University of the Philippines, Quezon City, Philippines.
| |
Collapse
|
3
|
Agarwal N, Nagar N, Raj R, Kumar D, Poluri KM. Conserved Apical Proline Regulating the Structure and DNA Binding Properties of Helicobacter pylori Histone-like DNA Binding Protein (Hup). ACS OMEGA 2022; 7:15231-15246. [PMID: 35572751 PMCID: PMC9089689 DOI: 10.1021/acsomega.2c01754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Prokaryotic cells lack a proper dedicated nuclear arrangement machinery. A set of proteins known as nucleoid associated proteins (NAPs) perform opening and closure of nucleic acids, behest cellular requirement. Among these, a special class of proteins analogous to eukaryotic histones popularly known as histone-like (HU) DNA binding proteins facilitate the nucleic acid folding/compaction thereby regulating gene architecture and gene regulation. DNA compaction and DNA protection in Helicobacter pylori is performed by HU protein (Hup). To dissect and galvanize the role of proline residue in the binding of Hup with DNA, the structure-dynamics-functional relationship of Hup-P64A variant was analyzed. NMR and biophysical studies evidenced that Hup-P64A protein attenuated DNA-binding and induced structural/stability changes in the DNA binding domain (DBD). Moreover, molecular dynamics simulations and 15N relaxation studies established the reduced conformational dynamics of P64A protein. This comprehensive study dissected the exclusive role of evolutionarily conserved apical proline residue in regulating the structure and DNA binding of Hup protein as P64 is presumed to be involved in the external leverage mechanism responsible for DNA bending and packaging, as proline rings wedge into the DNA backbone through intercalation besides their significant role in DNA binding.
Collapse
Affiliation(s)
- Nipanshu Agarwal
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India
| | - Nupur Nagar
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India
| | - Ritu Raj
- Centre
of Biomedical Research, SGPGIMS Campus, Lucknow-226014, India
| | - Dinesh Kumar
- Centre
of Biomedical Research, SGPGIMS Campus, Lucknow-226014, India
| | - Krishna Mohan Poluri
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India
- Centre
for Nanotechnology, Indian Institute of
Technology Roorkee, Roorkee-247667, Uttarakhand, India
| |
Collapse
|
4
|
Cajili MKM, Prieto EI. Interplay between Alba and Cren7 Regulates Chromatin Compaction in Sulfolobus solfataricus. Biomolecules 2022; 12:biom12040481. [PMID: 35454068 PMCID: PMC9030869 DOI: 10.3390/biom12040481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/03/2022] [Accepted: 03/15/2022] [Indexed: 01/06/2023] Open
Abstract
Chromatin compaction and regulation are essential processes for the normal function of all organisms, yet knowledge on how archaeal chromosomes are packed into higher-order structures inside the cell remains elusive. In this study, we investigated the role of archaeal architectural proteins Alba and Cren7 in chromatin folding and dynamics. Atomic force microscopy revealed that Sulfolobus solfataricus chromatin is composed of 28 nm fibers and 60 nm globular structures. In vitro reconstitution showed that Alba can mediate the formation of folded DNA structures in a concentration-dependent manner. Notably, it was demonstrated that Alba on its own can form higher-order structures with DNA. Meanwhile, Cren7 was observed to affect the formation of Alba-mediated higher-order chromatin structures. Overall, the results suggest an interplay between Alba and Cren7 in regulating chromatin compaction in archaea.
Collapse
|
5
|
Wai AH, Cho LH, Peng X, Waseem M, Lee DJ, Lee JM, Kim CK, Chung MY. Genome-wide identification and expression profiling of Alba gene family members in response to abiotic stress in tomato (Solanum lycopersicum L.). BMC PLANT BIOLOGY 2021; 21:530. [PMID: 34772358 PMCID: PMC8588595 DOI: 10.1186/s12870-021-03310-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/02/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Alba (Acetylation lowers binding affinity) proteins are an ancient family of nucleic acid-binding proteins that function in gene regulation, RNA metabolism, mRNA translatability, developmental processes, and stress adaptation. However, comprehensive bioinformatics analysis on the Alba gene family of Solanum lycopersicum has not been reported previously. RESULTS In the present study, we undertook the first comprehensive genome-wide characterization of the Alba gene family in tomato (Solanum lycopersicum L.). We identified eight tomato Alba genes, which were classified into two groups: genes containing a single Alba domain and genes with a generic Alba domain and RGG/RG repeat motifs. Cis-regulatory elements and target sites for miRNAs, which function in plant development and stress responses, were prevalent in SlAlba genes. To explore the structure-function relationships of tomato Alba proteins, we predicted their 3D structures, highlighting their likely interactions with several putative ligands. Confocal microscopy revealed that SlAlba-GFP fusion proteins were localized to the nucleus and cytoplasm, consistent with putative roles in various signalling cascades. Expression profiling revealed the differential expression patterns of most SlAlba genes across diverse organs. SlAlba1 and SlAlba2 were predominantly expressed in flowers, whereas SlAlba5 expression peaked in 1 cm-diameter fruits. The SlAlba genes were differentially expressed (up- or downregulated) in response to different abiotic stresses. All but one of these genes were induced by abscisic acid treatment, pointing to their possible regulatory roles in stress tolerance via an abscisic acid-dependent pathway. Furthermore, co-expression of SlAlba genes with multiple genes related to several metabolic pathways spotlighted their crucial roles in various biological processes and signalling. CONCLUSIONS Our characterization of SlAlba genes should facilitate the discovery of additional genes associated with organ and fruit development as well as abiotic stress adaptation in tomato.
Collapse
Affiliation(s)
- Antt Htet Wai
- Department of Agricultural Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam 540-950 Republic of Korea
- Department of Biology, Yangon University of Education, Kamayut Township, Yangon Region 11041 Myanmar
| | - Lae-Hyeon Cho
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang-si, Gyeongsangnam-do 50463 Republic of Korea
| | - Xin Peng
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou, China
| | - Muhammad Waseem
- College of horticulture, South China Agricultural University, Guangzhou, China
| | - Do-jin Lee
- Department of Agricultural Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam 540-950 Republic of Korea
| | - Je-Min Lee
- Department of Horticulture, Kyungpook National University, Daegu, Republic of Korea
| | - Chang-Kil Kim
- Department of Horticulture, Kyungpook National University, Daegu, Republic of Korea
| | - Mi-Young Chung
- Department of Agricultural Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam 540-950 Republic of Korea
| |
Collapse
|
6
|
Liu J, Cvirkaite-Krupovic V, Commere PH, Yang Y, Zhou F, Forterre P, Shen Y, Krupovic M. Archaeal extracellular vesicles are produced in an ESCRT-dependent manner and promote gene transfer and nutrient cycling in extreme environments. THE ISME JOURNAL 2021; 15:2892-2905. [PMID: 33903726 PMCID: PMC8443754 DOI: 10.1038/s41396-021-00984-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 03/22/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
Membrane-bound extracellular vesicles (EVs), secreted by cells from all three domains of life, transport various molecules and act as agents of intercellular communication in diverse environments. Here we demonstrate that EVs produced by a hyperthermophilic and acidophilic archaeon Sulfolobus islandicus carry not only a diverse proteome, enriched in membrane proteins, but also chromosomal and plasmid DNA, and can transfer this DNA to recipient cells. Furthermore, we show that EVs can support the heterotrophic growth of Sulfolobus in minimal medium, implicating EVs in carbon and nitrogen fluxes in extreme environments. Finally, our results indicate that, similar to eukaryotes, production of EVs in S. islandicus depends on the archaeal ESCRT machinery. We find that all components of the ESCRT apparatus are encapsidated into EVs. Using synchronized S. islandicus cultures, we show that EV production is linked to cell division and appears to be triggered by increased expression of ESCRT proteins during this cell cycle phase. Using a CRISPR-based knockdown system, we show that archaeal ESCRT-III and AAA+ ATPase Vps4 are required for EV production, whereas archaea-specific component CdvA appears to be dispensable. In particular, the active EV production appears to coincide with the expression patterns of ESCRT-III-1 and ESCRT-III-2, rather than ESCRT-III, suggesting a prime role of these proteins in EV budding. Collectively, our results suggest that ESCRT-mediated EV biogenesis has deep evolutionary roots, likely predating the divergence of eukaryotes and archaea, and that EVs play an important role in horizontal gene transfer and nutrient cycling in extreme environments.
Collapse
Affiliation(s)
- Junfeng Liu
- grid.27255.370000 0004 1761 1174CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China ,grid.428999.70000 0001 2353 6535Archaeal Virology Unit, Institut Pasteur, Paris, France
| | | | - Pierre-Henri Commere
- grid.428999.70000 0001 2353 6535Institut Pasteur, Flow Cytometry Platform, Paris, France
| | - Yunfeng Yang
- grid.27255.370000 0004 1761 1174CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Fan Zhou
- grid.27255.370000 0004 1761 1174CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Patrick Forterre
- grid.428999.70000 0001 2353 6535Archaeal Virology Unit, Institut Pasteur, Paris, France
| | - Yulong Shen
- grid.27255.370000 0004 1761 1174CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Mart Krupovic
- grid.428999.70000 0001 2353 6535Archaeal Virology Unit, Institut Pasteur, Paris, France
| |
Collapse
|
7
|
Laursen SP, Bowerman S, Luger K. Archaea: The Final Frontier of Chromatin. J Mol Biol 2020; 433:166791. [PMID: 33383035 PMCID: PMC7987875 DOI: 10.1016/j.jmb.2020.166791] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 12/26/2022]
Abstract
The three domains of life employ various strategies to organize their genomes. Archaea utilize features similar to those found in both eukaryotic and bacterial chromatin to organize their DNA. In this review, we discuss the current state of research regarding the structure-function relationships of several archaeal chromatin proteins (histones, Alba, Cren7, and Sul7d). We address individual structures as well as inferred models for higher-order chromatin formation. Each protein introduces a unique phenotype to chromatin organization, and these structures are put into the context of in vivo and in vitro data. We close by discussing the present gaps in knowledge that are preventing further studies of the organization of archaeal chromatin, on both the organismal and domain level.
Collapse
Affiliation(s)
- Shawn P Laursen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80303, United States
| | - Samuel Bowerman
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, United States
| | - Karolin Luger
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, United States; Howard Hughes Medical Institute, Chevy Chase, MD 20815, United States.
| |
Collapse
|
8
|
Huang Q, Lin Z, Wu P, Ni J, Shen Y. Phosphoproteomic Analysis Reveals Rio1-Related Protein Phosphorylation Changes in Response to UV Irradiation in Sulfolobus islandicus REY15A. Front Microbiol 2020; 11:586025. [PMID: 33343525 PMCID: PMC7744417 DOI: 10.3389/fmicb.2020.586025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/09/2020] [Indexed: 11/29/2022] Open
Abstract
DNA damage response (DDR) in eukaryotes is largely regulated by protein phosphorylation. In archaea, many proteins are phosphorylated, however, it is unclear how the cells respond to DNA damage through global protein phosphorylation. We previously found that Δrio1, a Rio1 kinase homolog deletion strain of Sulfolobus islandicus REY15A, was sensitive to UV irradiation. In this study, we showed that Δrio1 grew faster than the wild type. Quantitative phosphoproteomic analysis of the wild type and Δrio1, untreated and irradiated with UV irradiation, revealed 562 phosphorylated sites (with a Ser/Thr/Tyr ratio of 65.3%/23.8%/10.9%) of 333 proteins in total. The phosphorylation levels of 35 sites of 30 proteins changed with >1.3-fold in the wild type strain upon UV irradiation. Interestingly, more than half of the UV-induced changes in the wild type did not occur in the Δrio1 strain, which were mainly associated with proteins synthesis and turnover. In addition, a protein kinase and several transcriptional regulators were differentially phosphorylated after UV treatment, and some of the changes were dependent on Rio1. Finally, many proteins involved in various cellular metabolisms exhibited Riol-related and UV-independent phosphorylation changes. Our results suggest that Rio1 is involved in the regulation of protein recycling and signal transduction in response to UV irradiation, and plays regulatory roles in multiple cellular processes in S. islandicus.
Collapse
Affiliation(s)
- Qihong Huang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Zijia Lin
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Pengju Wu
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Jinfeng Ni
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yulong Shen
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| |
Collapse
|
9
|
Abstract
Over the past decade, advances in methodologies for the determination of chromosome conformation have provided remarkable insight into the local and higher-order organization of bacterial and eukaryotic chromosomes. Locally folded domains are found in both bacterial and eukaryotic genomes, although they vary in size. Importantly, genomes of metazoans also possess higher-order organization into A- and B-type compartments, regions of transcriptionally active and inactive chromatin, respectively. Until recently, nothing was known about the organization of genomes of organisms in the third domain of life - the archaea. However, despite archaea possessing simple circular genomes that are morphologically reminiscent of those seen in many bacteria, a recent study of archaea of the genus Sulfolobus has revealed that it organizes its genome into large-scale domains. These domains further interact to form defined A- and B-type compartments. The interplay of transcription and localization of a novel structural maintenance of chromosomes (SMC) superfamily protein, termed coalescin, defines compartment identity. In this Review, we discuss the mechanistic and evolutionary implications of these findings.
Collapse
Affiliation(s)
- Naomichi Takemata
- Biology Department, Indiana University, Bloomington, USA.,Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, USA
| | - Stephen D Bell
- Biology Department, Indiana University, Bloomington, USA .,Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, USA
| |
Collapse
|
10
|
Loth K, Largillière J, Coste F, Culard F, Landon C, Castaing B, Delmas AF, Paquet F. New protein-DNA complexes in archaea: a small monomeric protein induces a sharp V-turn DNA structure. Sci Rep 2019; 9:14253. [PMID: 31582767 PMCID: PMC6776556 DOI: 10.1038/s41598-019-50211-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 09/05/2019] [Indexed: 01/02/2023] Open
Abstract
MC1, a monomeric nucleoid-associated protein (NAP), is structurally unrelated to other DNA-binding proteins. The protein participates in the genome organization of several Euryarchaea species through an atypical compaction mechanism. It is also involved in DNA transcription and cellular division through unknown mechanisms. We determined the 3D solution structure of a new DNA-protein complex formed by MC1 and a strongly distorted 15 base pairs DNA. While the protein just needs to adapt its conformation slightly, the DNA undergoes a dramatic curvature (the first two bend angles of 55° and 70°, respectively) and an impressive torsional stress (dihedral angle of 106°) due to several kinks upon binding of MC1 to its concave side. Thus, it adopts a V-turn structure. For longer DNAs, MC1 stabilizes multiple V-turn conformations in a flexible and dynamic manner. The existence of such V-turn conformations of the MC1-DNA complexes leads us to propose two binding modes of the protein, as a bender (primary binding mode) and as a wrapper (secondary binding mode). Moreover, it opens up new opportunities for studying and understanding the repair, replication and transcription molecular machineries of Archaea.
Collapse
Affiliation(s)
- Karine Loth
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, rue Charles Sadron, F-45071, Orléans, Cedex 2, France. .,UFR Collegium Sciences et Techniques, Université d'Orléans, rue de Chartres, 45100, Orléans, France.
| | - Justine Largillière
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, rue Charles Sadron, F-45071, Orléans, Cedex 2, France
| | - Franck Coste
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, rue Charles Sadron, F-45071, Orléans, Cedex 2, France
| | - Françoise Culard
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, rue Charles Sadron, F-45071, Orléans, Cedex 2, France
| | - Céline Landon
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, rue Charles Sadron, F-45071, Orléans, Cedex 2, France
| | - Bertrand Castaing
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, rue Charles Sadron, F-45071, Orléans, Cedex 2, France
| | - Agnès F Delmas
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, rue Charles Sadron, F-45071, Orléans, Cedex 2, France
| | - Françoise Paquet
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, rue Charles Sadron, F-45071, Orléans, Cedex 2, France.
| |
Collapse
|
11
|
Johnson T, Payne S, Grove R, McCarthy S, Oeltjen E, Mach C, Adamec J, Wilson MA, Van Cott K, Blum P. Methylation deficiency of chromatin proteins is a non-mutational and epigenetic-like trait in evolved lines of the archaeon Sulfolobus solfataricus. J Biol Chem 2019; 294:7821-7832. [PMID: 30918025 PMCID: PMC6514617 DOI: 10.1074/jbc.ra118.006469] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/01/2019] [Indexed: 11/06/2022] Open
Abstract
Archaea are a distinct and deeply rooted lineage that harbor eukaryotic-like mechanisms, including several that manage chromosome function. In previous work, the thermoacidophilic crenarchaeon, Sulfolobus solfataricus, was subjected to adaptive laboratory evolution to produce three strains, called SARC, with a new heritable trait of super acid resistance. These strains acquired heritable conserved transcriptomes, yet one strain contained no mutations. Homologous recombination without allele replacement at SARC acid resistance genes caused changes in both phenotype and expression of the targeted gene. As recombination displaces chromatin proteins, their involvement was predicted in the SARC trait. Native chromatin proteins are basic and highly abundant and undergo post-translational modification through lysine monomethylation. In this work, their modification states were investigated. In all SARC lines, two chromatin proteins, Cren7 and Sso7d, were consistently undermethylated, whereas other chromatin proteins were unaltered. This pattern was heritable in the absence of selection and independent of transient exposure to acid stress. The bulk of Sso7d was undermethylated at three contiguous N-terminal lysine residues but not at central or C-terminal regions. The N-terminal region formed a solvent-exposed patch located on the opposite side of the binding domain associated with the DNA minor groove. By analogy to eukaryotic histones, this patch could interact with other chromosomal proteins and be modulated by differential post-translational modification. Previous work established an epigenetic-like mechanism of adaptation and inheritance in S. solfataricus The identification of heritable epigenetic marks in this work further supports the occurrence of an epigenetic process in archaea.
Collapse
Affiliation(s)
- Tyler Johnson
- From the Beadle Center for Genetics, School of Biological Sciences
| | - Sophie Payne
- From the Beadle Center for Genetics, School of Biological Sciences
| | - Ryan Grove
- the Department of Biochemistry and Redox Biology Center, and
| | - Samuel McCarthy
- From the Beadle Center for Genetics, School of Biological Sciences
| | - Erin Oeltjen
- From the Beadle Center for Genetics, School of Biological Sciences
| | - Collin Mach
- From the Beadle Center for Genetics, School of Biological Sciences
| | - Jiri Adamec
- the Department of Biochemistry and Redox Biology Center, and
| | - Mark A Wilson
- the Department of Biochemistry and Redox Biology Center, and
| | - Kevin Van Cott
- the Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, Nebraska 68588, and
| | - Paul Blum
- From the Beadle Center for Genetics, School of Biological Sciences,
- the Department of Microbiology and Toxicology, University of California, Santa Cruz, California 95064
| |
Collapse
|
12
|
Zacharias M. Atomic Resolution Insight into Sac7d Protein Binding to DNA and Associated Global Changes by Molecular Dynamics Simulations. Angew Chem Int Ed Engl 2019; 58:5967-5972. [DOI: 10.1002/anie.201900935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Martin Zacharias
- Physics Department T38Technical University of Munich 85748 Garching Germany
| |
Collapse
|
13
|
Zacharias M. Atomic Resolution Insight into Sac7d Protein Binding to DNA and Associated Global Changes by Molecular Dynamics Simulations. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Martin Zacharias
- Physics Department T38Technical University of Munich 85748 Garching Germany
| |
Collapse
|
14
|
Lin KF, Hsu JY, Hsieh DL, Tsai MJ, Yeh CH, Chen CY. Crystal structure of the programmed cell death 5 protein from Sulfolobus solfataricus. Acta Crystallogr F Struct Biol Commun 2019; 75:73-79. [PMID: 30713157 PMCID: PMC6360439 DOI: 10.1107/s2053230x18017673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/13/2018] [Indexed: 11/10/2022] Open
Abstract
Programmed cell death 5 (PDCD5) is a vital signaling protein in the apoptosis pathway in eukaryotes. It is known that there are two dissociated N-terminal regions and a triple-helix core in eukaryotic PDCD5. Structural and functional studies of PDCD5 from hyperthermophilic archaea have been limited to date. Here, the PDCD5 homolog Sso0352 (SsoPDCD5) was identified in Sulfolobus solfataricus, the SsoPDCD5 protein was expressed and crystallized, and the phase was identified by single-wavelength anomalous diffraction. The native SsoPDCD5 crystal belonged to space group C2 and diffracted to 1.49 Å resolution. This is the first crystal structure of a PDCD5 homolog to be solved. SsoPDCD5 shares a similar triple-helix bundle with eukaryotic PDCD5 but has a long α-helix in the N-terminus. A structural search and biochemical data suggest that SsoPDCD5 may function as a DNA-binding protein.
Collapse
Affiliation(s)
- Kuan-Fu Lin
- Department of Life Sciences, National Central University, 300 Zhongda Road, Zhongli District, Taoyuan City 32001, Taiwan
| | - Jia-Yuan Hsu
- Department of Life Sciences, National Central University, 300 Zhongda Road, Zhongli District, Taoyuan City 32001, Taiwan
| | - Dong-Lin Hsieh
- Department of Life Sciences, National Central University, 300 Zhongda Road, Zhongli District, Taoyuan City 32001, Taiwan
| | - Meng-Ju Tsai
- Department of Life Sciences, National Central University, 300 Zhongda Road, Zhongli District, Taoyuan City 32001, Taiwan
| | - Ching-Hui Yeh
- Department of Life Sciences, National Central University, 300 Zhongda Road, Zhongli District, Taoyuan City 32001, Taiwan
| | - Chin-Yu Chen
- Department of Life Sciences, National Central University, 300 Zhongda Road, Zhongli District, Taoyuan City 32001, Taiwan
| |
Collapse
|
15
|
Abstract
Organisms display astonishing levels of cell and molecular diversity, including genome size, shape, and architecture. In this chapter, we review how the genome can be viewed as both a structural and an informational unit of biological diversity and explicitly define our intended meaning of genetic information. A brief overview of the characteristic features of bacterial, archaeal, and eukaryotic cell types and viruses sets the stage for a review of the differences in organization, size, and packaging strategies of their genomes. We include a detailed review of genetic elements found outside the primary chromosomal structures, as these provide insights into how genomes are sometimes viewed as incomplete informational entities. Lastly, we reassess the definition of the genome in light of recent advancements in our understanding of the diversity of genomic structures and the mechanisms by which genetic information is expressed within the cell. Collectively, these topics comprise a good introduction to genome biology for the newcomer to the field and provide a valuable reference for those developing new statistical or computation methods in genomics. This review also prepares the reader for anticipated transformations in thinking as the field of genome biology progresses.
Collapse
|
16
|
Abstract
The genomes of all organisms throughout the tree of life are compacted and organized in chromatin by association of chromatin proteins. Eukaryotic genomes encode histones, which are assembled on the genome into octamers, yielding nucleosomes. Post-translational modifications of the histones, which occur mostly on their N-terminal tails, define the functional state of chromatin. Like eukaryotes, most archaeal genomes encode histones, which are believed to be involved in the compaction and organization of their genomes. Instead of discrete multimers, in vivo data suggest assembly of “nucleosomes” of variable size, consisting of multiples of dimers, which are able to induce repression of transcription. Based on these data and a model derived from X-ray crystallography, it was recently proposed that archaeal histones assemble on DNA into “endless” hypernucleosomes. In this review, we discuss the amino acid determinants of hypernucleosome formation and highlight differences with the canonical eukaryotic octamer. We identify archaeal histones differing from the consensus, which are expected to be unable to assemble into hypernucleosomes. Finally, we identify atypical archaeal histones with short N- or C-terminal extensions and C-terminal tails similar to the tails of eukaryotic histones, which are subject to post-translational modification. Based on the expected characteristics of these archaeal histones, we discuss possibilities of involvement of histones in archaeal transcription regulation. Both Archaea and eukaryotes express histones, but whereas the tertiary structure of histones is conserved, the quaternary structure of histone–DNA complexes is very different. In a recent study, the crystal structure of the archaeal hypernucleosome was revealed to be an “endless” core of interacting histones that wraps the DNA around it in a left-handed manner. The ability to form a hypernucleosome is likely determined by dimer–dimer interactions as well as stacking interactions between individual layers of the hypernucleosome. We analyzed a wide variety of archaeal histones and found that most but not all histones possess residues able to facilitate hypernucleosome formation. Among these are histones with truncated termini or extended histone tails. Based on our analysis, we propose several possibilities of archaeal histone involvement in transcription regulation.
Collapse
Affiliation(s)
- Bram Henneman
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Clara van Emmerik
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Hugo van Ingen
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Remus T. Dame
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
- * E-mail:
| |
Collapse
|
17
|
Burroughs AM, Kaur G, Zhang D, Aravind L. Novel clades of the HU/IHF superfamily point to unexpected roles in the eukaryotic centrosome, chromosome partitioning, and biologic conflicts. Cell Cycle 2017; 16:1093-1103. [PMID: 28441108 PMCID: PMC5499826 DOI: 10.1080/15384101.2017.1315494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The HU superfamily of proteins, with a unique DNA-binding mode, has been extensively studied as the primary chromosome-packaging protein of the bacterial superkingdom. Representatives also play a role in DNA-structuring during recombination events and in eukaryotic organellar genome maintenance. However, beyond these well-studied roles, little is understood of the functional diversification of this large superfamily. Using sensitive sequence and structure analysis methods we identify multiple novel clades of the HU superfamily. We present evidence that a novel eukaryotic clade prototyped by the human CCDC81 protein acquired roles beyond DNA-binding, likely in protein-protein interaction in centrosome organization and as a potential cargo-binding protein in conjunction with Dynein-VII. We also show that these eukaryotic versions were acquired via an early lateral transfer from bacteroidetes, where we predict a role in chromosome partition. This likely happened before the last eukaryotic common ancestor, pointing to potential endosymbiont contributions beyond that of the mitochondrial progenitor. Further, we show that the dramatic lineage-specific expansion of this domain in the bacteroidetes lineage primarily is linked to a functional shift related to potential recognition and preemption of genome invasive entities such as mobile elements. Remarkably, the CCDC81 clade has undergone a similar massive lineage-specific expansion within the archosaurian lineage in birds, suggesting a possible use of the HU superfamily in a similar capacity in recognition of non-self molecules even in this case.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- a National Center for Biotechnology Information , National Library of Medicine, National Institutes of Health , Bethesda , MD , USA
| | - Gurmeet Kaur
- a National Center for Biotechnology Information , National Library of Medicine, National Institutes of Health , Bethesda , MD , USA
| | - Dapeng Zhang
- a National Center for Biotechnology Information , National Library of Medicine, National Institutes of Health , Bethesda , MD , USA
| | - L Aravind
- a National Center for Biotechnology Information , National Library of Medicine, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
18
|
Dey D, Nagaraja V, Ramakumar S. Structural and evolutionary analyses reveal determinants of DNA binding specificities of nucleoid-associated proteins HU and IHF. Mol Phylogenet Evol 2016; 107:356-366. [PMID: 27894997 DOI: 10.1016/j.ympev.2016.11.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 11/14/2016] [Accepted: 11/24/2016] [Indexed: 12/31/2022]
Abstract
Nucleoid-associated proteins (NAPs) are chromosome-organizing factors, which affect the transcriptional landscape of a bacterial cell. HU is an NAP, which binds to DNA with a broad specificity while homologous IHF (Integration Host Factor), binds DNA with moderately higher specificity. Specificity and differential binding affinity of HU/IHF proteins towards their target binding sites play a crucial role in their regulatory dynamics. Decades of biochemical and genomic studies have been carried out for HU and IHF like proteins. Yet, questions related to their DNA binding specificity, and differential ability to bend DNA thus affecting the binding site length remained unanswered. In addition, the problem has not been investigated from an evolutionary perspective. Our phylogenetic analysis revealed three major clades belonging to HU, IHFα and IHFβ like proteins with reference to E. coli. We carried out a comparative analysis of three-dimensional structures of HU/IHF proteins to gain insight into the structural basis of clade division. The present study revealed three major features which contribute to differential DNA binding specificity of HU/IHF proteins, (I) conformational restriction of DNA binding residues due to salt-bridge formation, (II) the enrichment of alanine in the DNA binding site increasing conformational space of flexible side chains in its vicinity and (III) nature of DNA binding residue (Arg to Lys bias in different clades) which interacts differentially to DNA bases. We observed an extended electropositive surface at the DNA draping site for IHF clade proteins compared to HU, which stabilizes the DNA bend. Differences in the dimer stabilization strategies between HU and IHF were also observed. Our analysis reveals a comprehensive evolutionary picture, which rationalizes the origin of multi-specificity of HU/IHF proteins using sequence and structure-based determinants, which could also be applied to understand differences in binding specificities of other nucleic acid binding proteins.
Collapse
Affiliation(s)
- Debayan Dey
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India; Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | | |
Collapse
|
19
|
Kalichuk V, Béhar G, Renodon-Cornière A, Danovski G, Obal G, Barbet J, Mouratou B, Pecorari F. The archaeal "7 kDa DNA-binding" proteins: extended characterization of an old gifted family. Sci Rep 2016; 6:37274. [PMID: 27853299 PMCID: PMC5112516 DOI: 10.1038/srep37274] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/27/2016] [Indexed: 01/06/2023] Open
Abstract
The “7 kDa DNA-binding” family, also known as the Sul7d family, is composed of chromatin proteins from the Sulfolobales archaeal order. Among them, Sac7d and Sso7d have been the focus of several studies with some characterization of their properties. Here, we studied eleven other proteins alongside Sac7d and Sso7d under the same conditions. The dissociation constants of the purified proteins for binding to double-stranded DNA (dsDNA) were determined in phosphate-buffered saline at 25 °C and were in the range from 11 μM to 22 μM with a preference for G/C rich sequences. In accordance with the extremophilic origin of their hosts, the proteins were found highly stable from pH 0 to pH 12 and at temperatures from 85.5 °C to 100 °C. Thus, these results validate eight putative “7 kDa DNA-binding” family proteins and show that they behave similarly regarding both their function and their stability among various genera and species. As Sac7d and Sso7d have found numerous uses as molecular biology reagents and artificial affinity proteins, this study also sheds light on even more attractive proteins that will facilitate engineering of novel highly robust reagents.
Collapse
Affiliation(s)
- Valentina Kalichuk
- CRCNA, Inserm, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium
| | - Ghislaine Béhar
- CRCNA, Inserm, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | | | - Georgi Danovski
- CRCNA, Inserm, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Gonzalo Obal
- Institut Pasteur de Montevideo, Protein Biophysics Unit, Montevideo, Uruguay
| | - Jacques Barbet
- CRCNA, Inserm, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Barbara Mouratou
- CRCNA, Inserm, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Frédéric Pecorari
- CRCNA, Inserm, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| |
Collapse
|
20
|
Turaga G, Edmondson SP, Smith K, Shriver JW. Insights into the Structure of Sulfolobus Nucleoid Using Engineered Sac7d Dimers with a Defined Orientation. Biochemistry 2016; 55:6230-6237. [PMID: 27766846 DOI: 10.1021/acs.biochem.6b00810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The structure of Archaeal chromatin or nucleoid is believed to have characteristics similar to that found in both eukaryotes and bacteria. Recent comparative studies have suggested that DNA compaction in Archaea requires a bridging protein (e.g., Alba) along with either a wrapping protein (e.g., a histone) or a bending protein such as Sac7d. While X-ray crystal structures demonstrate that Sac7d binds as a monomer to create a significant kink in duplex DNA, the structure of a multiprotein-DNA complex has not been established. Using cross-linked dimers of Sac7d with a defined orientation, we present evidence that indicates that Sac7d is able to largely coat duplex DNA in vivo by binding in alternating head-to-head and tail-to-tail orientations. Although each Sac7d monomer promotes a significant kink of nearly 70°, coated DNA is expected to be largely extended because of compensation of repetitive kinks with helical symmetry.
Collapse
Affiliation(s)
- Gokul Turaga
- Departments of Chemistry and Biological Sciences, University of Alabama in Huntsville , Huntsville, Alabama 35899, United States
| | - Stephen P Edmondson
- Departments of Chemistry and Biological Sciences, University of Alabama in Huntsville , Huntsville, Alabama 35899, United States
| | - Kelley Smith
- Departments of Chemistry and Biological Sciences, University of Alabama in Huntsville , Huntsville, Alabama 35899, United States
| | - John W Shriver
- Departments of Chemistry and Biological Sciences, University of Alabama in Huntsville , Huntsville, Alabama 35899, United States
| |
Collapse
|
21
|
Willbanks A, Leary M, Greenshields M, Tyminski C, Heerboth S, Lapinska K, Haskins K, Sarkar S. The Evolution of Epigenetics: From Prokaryotes to Humans and Its Biological Consequences. GENETICS & EPIGENETICS 2016; 8:25-36. [PMID: 27512339 PMCID: PMC4973776 DOI: 10.4137/geg.s31863] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/03/2016] [Accepted: 07/06/2016] [Indexed: 12/11/2022]
Abstract
The evolution process includes genetic alterations that started with prokaryotes and now continues in humans. A distinct difference between prokaryotic chromosomes and eukaryotic chromosomes involves histones. As evolution progressed, genetic alterations accumulated and a mechanism for gene selection developed. It was as if nature was experimenting to optimally utilize the gene pool without changing individual gene sequences. This mechanism is called epigenetics, as it is above the genome. Curiously, the mechanism of epigenetic regulation in prokaryotes is strikingly different from that in eukaryotes, mainly higher eukaryotes, like mammals. In fact, epigenetics plays a significant role in the conserved process of embryogenesis and human development. Malfunction of epigenetic regulation results in many types of undesirable effects, including cardiovascular disease, metabolic disorders, autoimmune diseases, and cancer. This review provides a comparative analysis and new insights into these aspects.
Collapse
Affiliation(s)
- Amber Willbanks
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Meghan Leary
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Molly Greenshields
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Camila Tyminski
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Sarah Heerboth
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Karolina Lapinska
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Kathryn Haskins
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Sibaji Sarkar
- Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA, USA.; Genome Science Institute, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
22
|
Barillà D. Driving Apart and Segregating Genomes in Archaea. Trends Microbiol 2016; 24:957-967. [PMID: 27450111 PMCID: PMC5120986 DOI: 10.1016/j.tim.2016.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/16/2016] [Accepted: 07/01/2016] [Indexed: 11/01/2022]
Abstract
Genome segregation is a fundamental biological process in organisms from all domains of life. How this stage of the cell cycle unfolds in Eukarya has been clearly defined and considerable progress has been made to unravel chromosome partition in Bacteria. The picture is still elusive in Archaea. The lineages of this domain exhibit different cell-cycle lifestyles and wide-ranging chromosome copy numbers, fluctuating from 1 up to 55. This plurality of patterns suggests that a variety of mechanisms might underpin disentangling and delivery of DNA molecules to daughter cells. Here I describe recent developments in archaeal genome maintenance, including investigations of novel genome segregation machines that point to unforeseen bacterial and eukaryotic connections.
Collapse
Affiliation(s)
- Daniela Barillà
- Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
23
|
Chu Y, Zhu Y, Chen Y, Li W, Zhang Z, Liu D, Wang T, Ma J, Deng H, Liu ZJ, Ouyang S, Huang L. aKMT Catalyzes Extensive Protein Lysine Methylation in the Hyperthermophilic Archaeon Sulfolobus islandicus but is Dispensable for the Growth of the Organism. Mol Cell Proteomics 2016; 15:2908-23. [PMID: 27329856 DOI: 10.1074/mcp.m115.057778] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Indexed: 11/06/2022] Open
Abstract
Protein methylation is believed to occur extensively in creanarchaea. Recently, aKMT, a highly conserved crenarchaeal protein lysine methyltransferase, was identified and shown to exhibit broad substrate specificity in vitro Here, we have constructed an aKMT deletion mutant of the hyperthermophilic crenarchaeon Sulfolobus islandicus The mutant was viable but showed a moderately slower growth rate than the parental strain under non-optimal growth conditions. Consistent with the moderate effect of the lack of aKMT on the growth of the cell, expression of a small number of genes, which encode putative functions in substrate transportation, energy metabolism, transcriptional regulation, stress response proteins, etc, was differentially regulated by more than twofold in the mutant strain, as compared with that in the parental strain. Analysis of the methylation of total cellular protein by mass spectrometry revealed that methylated proteins accounted for ∼2/3 (1,158/1,751) and ∼1/3 (591/1,757) of the identified proteins in the parental and the mutant strains, respectively, indicating that there is extensive protein methylation in S. islandicus and that aKMT is a major protein methyltransferase in this organism. No significant sequence preference was detected at the sites of methylation by aKMT. Methylated lysine residues, when visible in the structure, are all located on the surface of the proteins. The crystal structure of aKMT in complex with S-adenosyl-l-methionine (SAM) or S-adenosyl homocysteine (SAH) reveals that the protein consists of four α helices and seven β sheets, lacking a substrate recognition domain found in PrmA, a bacterial homolog of aKMT, in agreement with the broad substrate specificity of aKMT. Our results suggest that aKMT may serve a role in maintaining the methylation status of cellular proteins required for the efficient growth of the organism under certain non-optimal conditions.
Collapse
Affiliation(s)
- Yindi Chu
- From the ‡State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yanping Zhu
- §National Laboratory of Biomacromolecules,Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,
| | - Yuling Chen
- ¶MOE Key Laboratory of Bioinformatics, School of Life Sciences,Tsinghua University, Beijing, China
| | - Wei Li
- ‖Network Information Center,Institute of Microbiology,Chinese Academy of Sciences, Beijing, China
| | - Zhenfeng Zhang
- From the ‡State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Di Liu
- ‖Network Information Center,Institute of Microbiology,Chinese Academy of Sciences, Beijing, China
| | - Tongkun Wang
- From the ‡State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Juncai Ma
- From the ‡State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; ‖Network Information Center,Institute of Microbiology,Chinese Academy of Sciences, Beijing, China
| | - Haiteng Deng
- ¶MOE Key Laboratory of Bioinformatics, School of Life Sciences,Tsinghua University, Beijing, China
| | - Zhi-Jie Liu
- §National Laboratory of Biomacromolecules,Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,; **iHuman Institute,Shanghai Tech University, Shanghai, China
| | - Songying Ouyang
- §National Laboratory of Biomacromolecules,Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,;
| | - Li Huang
- From the ‡State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China;
| |
Collapse
|
24
|
Goyal M, Banerjee C, Nag S, Bandyopadhyay U. The Alba protein family: Structure and function. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:570-83. [PMID: 26900088 DOI: 10.1016/j.bbapap.2016.02.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/06/2016] [Accepted: 02/16/2016] [Indexed: 01/05/2023]
Abstract
Alba family proteins are small, basic, dimeric nucleic acid-binding proteins, which are widely distributed in archaea and a number of eukaryotes. This family of proteins bears the distinct features of regulation through acetylation/deacetylation, hence named as acetylation lowers binding affinity (Alba). Alba family proteins bind DNA cooperatively with no apparent sequence specificity. Besides DNA, Alba proteins also interact with diverse RNA species and associate with ribonucleo-protein complexes. Initially, Alba proteins were recognized as chromosomal proteins and supposed to be involved in the maintenance of chromatin architecture and transcription repression. However, recent studies have shown increasing evidence of functional plasticity among Alba family of proteins that widely range from genome packaging and organization, transcriptional and translational regulation, RNA metabolism, and development and differentiation processes. In recent years, Alba family proteins have attracted growing interest due to their widespread occurrence in large number of organisms. Presence in multiple copies, functional crosstalk, differential binding affinity, and posttranslational modifications are some of the key factors that might regulate the biological functions of Alba family proteins. In this review article, we present an overview of the Alba family proteins, their salient features and emphasize their functional role in different organisms reported so far.
Collapse
Affiliation(s)
- Manish Goyal
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Chinmoy Banerjee
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Shiladitya Nag
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India.
| |
Collapse
|
25
|
Ma C, Pathak C, Lee SJ, Lee KY, Jang SB, Nam M, Im H, Yoon HJ, Lee BJ. Alba from Thermoplasma volcanium belongs to α-NAT's: An insight into the structural aspects of Tv Alba and its acetylation by Tv Ard1. Arch Biochem Biophys 2016; 590:90-100. [DOI: 10.1016/j.abb.2015.11.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/04/2015] [Accepted: 11/26/2015] [Indexed: 01/30/2023]
|
26
|
How Likely Are We? Evolution of Organismal Complexity. Evol Biol 2016. [DOI: 10.1007/978-3-319-41324-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Mechanisms of Evolutionary Innovation Point to Genetic Control Logic as the Key Difference Between Prokaryotes and Eukaryotes. J Mol Evol 2015. [PMID: 26208881 DOI: 10.1007/s00239-015-9688-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The evolution of life from the simplest, original form to complex, intelligent animal life occurred through a number of key innovations. Here we present a new tool to analyze these key innovations by proposing that the process of evolutionary innovation may follow one of three underlying processes, namely a Random Walk, a Critical Path, or a Many Paths process, and in some instances may also constitute a "Pull-up the Ladder" event. Our analysis is based on the occurrence of function in modern biology, rather than specific structure or mechanism. A function in modern biology may be classified in this way either on the basis of its evolution or the basis of its modern mechanism. Characterizing key innovations in this way helps identify the likelihood that an innovation could arise. In this paper, we describe the classification, and methods to classify functional features of modern organisms into these three classes based on the analysis of how a function is implemented in modern biology. We present the application of our categorization to the evolution of eukaryotic gene control. We use this approach to support the argument that there are few, and possibly no basic chemical differences between the functional constituents of the machinery of gene control between eukaryotes, bacteria and archaea. This suggests that the difference between eukaryotes and prokaryotes that allows the former to develop the complex genetic architecture seen in animals and plants is something other than their chemistry. We tentatively identify the difference as a difference in control logic, that prokaryotic genes are by default 'on' and eukaryotic genes are by default 'off.' The Many Paths evolutionary process suggests that, from a 'default off' starting point, the evolution of the genetic complexity of higher eukaryotes is a high probability event.
Collapse
|
28
|
The chromosome copy number of the hyperthermophilic archaeon Thermococcus kodakarensis KOD1. Extremophiles 2015; 19:741-50. [PMID: 25952670 PMCID: PMC4502288 DOI: 10.1007/s00792-015-0750-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/12/2015] [Indexed: 01/08/2023]
Abstract
The euryarchaeon Thermococcus kodakarensis is a well-characterized anaerobic hyperthermophilic heterotroph and due to the availability of genetic engineering systems it has become one of the model organisms for studying Archaea. Despite this prominent role among the Euryarchaeota, no data about the ploidy level of this species is available. While polyploidy has been shown to exist in various Euryarchaeota, especially Halobacteria, the chromosome copy number of species belonging to one of the major orders within that phylum, i.e., the Thermococcales (including Thermococcus spp. and Pyrococcus spp.), has never been determined. This prompted us to investigate the chromosome copy number of T. kodakarensis. In this study, we demonstrate that T. kodakarensis is polyploid with a chromosome copy number that varies between 7 and 19 copies, depending on the growth phase. An apparent correlation between the presence of histones and polyploidy in Archaea is observed.
Collapse
|
29
|
|
30
|
Borrel G, Parisot N, Harris HMB, Peyretaillade E, Gaci N, Tottey W, Bardot O, Raymann K, Gribaldo S, Peyret P, O’Toole PW, Brugère JF. Comparative genomics highlights the unique biology of Methanomassiliicoccales, a Thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine. BMC Genomics 2014; 15:679. [PMID: 25124552 PMCID: PMC4153887 DOI: 10.1186/1471-2164-15-679] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 07/18/2014] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND A seventh order of methanogens, the Methanomassiliicoccales, has been identified in diverse anaerobic environments including the gastrointestinal tracts (GIT) of humans and other animals and may contribute significantly to methane emission and global warming. Methanomassiliicoccales are phylogenetically distant from all other orders of methanogens and belong to a large evolutionary branch composed by lineages of non-methanogenic archaea such as Thermoplasmatales, the Deep Hydrothermal Vent Euryarchaeota-2 (DHVE-2, Aciduliprofundum boonei) and the Marine Group-II (MG-II). To better understand this new order and its relationship to other archaea, we manually curated and extensively compared the genome sequences of three Methanomassiliicoccales representatives derived from human GIT microbiota, "Candidatus Methanomethylophilus alvus", "Candidatus Methanomassiliicoccus intestinalis" and Methanomassiliicoccus luminyensis. RESULTS Comparative analyses revealed atypical features, such as the scattering of the ribosomal RNA genes in the genome and the absence of eukaryotic-like histone gene otherwise present in most of Euryarchaeota genomes. Previously identified in Thermoplasmatales genomes, these features are presently extended to several completely sequenced genomes of this large evolutionary branch, including MG-II and DHVE2. The three Methanomassiliicoccales genomes share a unique composition of genes involved in energy conservation suggesting an original combination of two main energy conservation processes previously described in other methanogens. They also display substantial differences with each other, such as their codon usage, the nature and origin of their CRISPRs systems and the genes possibly involved in particular environmental adaptations. The genome of M. luminyensis encodes several features to thrive in soil and sediment conditions suggesting its larger environmental distribution than GIT. Conversely, "Ca. M. alvus" and "Ca. M. intestinalis" do not present these features and could be more restricted and specialized on GIT. Prediction of the amber codon usage, either as a termination signal of translation or coding for pyrrolysine revealed contrasted patterns among the three genomes and suggests a different handling of the Pyl-encoding capacity. CONCLUSIONS This study represents the first insights into the genomic organization and metabolic traits of the seventh order of methanogens. It suggests contrasted evolutionary history among the three analyzed Methanomassiliicoccales representatives and provides information on conserved characteristics among the overall methanogens and among Thermoplasmata.
Collapse
Affiliation(s)
- Guillaume Borrel
- />EA-4678 CIDAM, Clermont Université, Université d’Auvergne, 28 Place Henri Dunant, BP 10448, 63000 Clermont-Ferrand, France
- />School of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Nicolas Parisot
- />EA-4678 CIDAM, Clermont Université, Université d’Auvergne, 28 Place Henri Dunant, BP 10448, 63000 Clermont-Ferrand, France
- />CNRS, UMR 6023, Université Blaise Pascal, 63000 Clermont-Ferrand, France
| | - Hugh MB Harris
- />School of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Eric Peyretaillade
- />EA-4678 CIDAM, Clermont Université, Université d’Auvergne, 28 Place Henri Dunant, BP 10448, 63000 Clermont-Ferrand, France
| | - Nadia Gaci
- />EA-4678 CIDAM, Clermont Université, Université d’Auvergne, 28 Place Henri Dunant, BP 10448, 63000 Clermont-Ferrand, France
| | - William Tottey
- />EA-4678 CIDAM, Clermont Université, Université d’Auvergne, 28 Place Henri Dunant, BP 10448, 63000 Clermont-Ferrand, France
| | - Olivier Bardot
- />GReD, CNRS, UMR 6293, Inserm, UMR 1103, Clermont Université, Université d’Auvergne 28 Place Henri Dunant, BP 10448, 63000 Clermont-Ferrand, France
| | - Kasie Raymann
- />Département de Microbiologie, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Paris Cedex 15, 75724 France
- />Cellule Pasteur UPMC, Université Pierre et Marie Curie, Paris Cedex 15, 75724 France
| | - Simonetta Gribaldo
- />Département de Microbiologie, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Paris Cedex 15, 75724 France
- />Cellule Pasteur UPMC, Université Pierre et Marie Curie, Paris Cedex 15, 75724 France
| | - Pierre Peyret
- />EA-4678 CIDAM, Clermont Université, Université d’Auvergne, 28 Place Henri Dunant, BP 10448, 63000 Clermont-Ferrand, France
| | - Paul W O’Toole
- />School of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Jean-François Brugère
- />EA-4678 CIDAM, Clermont Université, Université d’Auvergne, 28 Place Henri Dunant, BP 10448, 63000 Clermont-Ferrand, France
| |
Collapse
|
31
|
|
32
|
Paquet F, Delalande O, Goffinont S, Culard F, Loth K, Asseline U, Castaing B, Landon C. Model of a DNA-protein complex of the architectural monomeric protein MC1 from Euryarchaea. PLoS One 2014; 9:e88809. [PMID: 24558431 PMCID: PMC3928310 DOI: 10.1371/journal.pone.0088809] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 01/11/2014] [Indexed: 11/19/2022] Open
Abstract
In Archaea the two major modes of DNA packaging are wrapping by histone proteins or bending by architectural non-histone proteins. To supplement our knowledge about the binding mode of the different DNA-bending proteins observed across the three domains of life, we present here the first model of a complex in which the monomeric Methanogen Chromosomal protein 1 (MC1) from Euryarchaea binds to the concave side of a strongly bent DNA. In laboratory growth conditions MC1 is the most abundant architectural protein present in Methanosarcina thermophila CHTI55. Like most proteins that strongly bend DNA, MC1 is known to bind in the minor groove. Interaction areas for MC1 and DNA were mapped by Nuclear Magnetic Resonance (NMR) data. The polarity of protein binding was determined using paramagnetic probes attached to the DNA. The first structural model of the DNA-MC1 complex we propose here was obtained by two complementary docking approaches and is in good agreement with the experimental data previously provided by electron microscopy and biochemistry. Residues essential to DNA-binding and -bending were highlighted and confirmed by site-directed mutagenesis. It was found that the Arg25 side-chain was essential to neutralize the negative charge of two phosphates that come very close in response to a dramatic curvature of the DNA.
Collapse
Affiliation(s)
- Françoise Paquet
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, Université d'Orléans, Orleans, France
- * E-mail:
| | - Olivier Delalande
- Faculté des Sciences Pharmaceutiques et Biologiques, Institut de Génétique et Développement de Rennes, Centre National de la Recherche Scientifique UMR 6290, Université de Rennes1, Rennes, France
| | - Stephane Goffinont
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, Université d'Orléans, Orleans, France
| | - Françoise Culard
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, Université d'Orléans, Orleans, France
| | - Karine Loth
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, Université d'Orléans, Orleans, France
| | - Ulysse Asseline
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, Université d'Orléans, Orleans, France
| | - Bertrand Castaing
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, Université d'Orléans, Orleans, France
| | - Celine Landon
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique UPR 4301, Université d'Orléans, Orleans, France
| |
Collapse
|
33
|
Alba shapes the archaeal genome using a delicate balance of bridging and stiffening the DNA. Nat Commun 2013; 3:1328. [PMID: 23271660 PMCID: PMC3535426 DOI: 10.1038/ncomms2330] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 11/26/2012] [Indexed: 11/29/2022] Open
Abstract
Architectural proteins have an important role in shaping the genome and act as global regulators of gene expression. How these proteins jointly modulate genome plasticity is largely unknown. In archaea, one of the most abundant proteins, Alba, is considered to have a key role in organizing the genome. Here we characterize the multimodal architectural properties and interplay of the Alba1 and Alba2 proteins using single-molecule imaging and manipulation techniques. We demonstrate that the two paralogues can bridge and rigidify DNA and that the interplay between the two proteins influences the balance between these effects. Our data yield a structural model that explains the multimodal behaviour of Alba proteins and its impact on genome folding. How the genome is physically organized is less understood in archaea than in eubacteria or eukaryotes. Laurens et al. measure DNA binding by the Sulfolobus solfataricus proteins Alba1 and Alba2 using single-molecule techniques and conclude that the presence of Alba2 leads to more bridging between DNA.
Collapse
|
34
|
Črnigoj M, Podlesek Z, Zorko M, Jerala R, Anderluh G, Ulrih NP. Interactions of archaeal chromatin proteins Alba1 and Alba2 with nucleic acids. PLoS One 2013; 8:e58237. [PMID: 23469156 PMCID: PMC3585288 DOI: 10.1371/journal.pone.0058237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 02/01/2013] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Architectural proteins have important roles in compacting and organising chromosomal DNA. There are two potential histone counterpart peptide sequences (Alba1 and Alba2) in the Aeropyrum pernix genome (APE1832.1 and APE1823). METHODOLOGY/PRINCIPAL FINDINGS THESE TWO PEPTIDES WERE EXPRESSED AND THEIR INTERACTIONS WITH VARIOUS DNAS WERE STUDIED USING A COMBINATION OF VARIOUS EXPERIMENTAL TECHNIQUES: surface plasmon resonance, UV spectrophotometry, circular dichroism-spectropolarimetry, gel-shift assays, and isothermal titration calorimetry. CONCLUSIONS/SIGNIFICANCE Our data indicate that there are significant differences in the properties of the Alba1 and Alba2 proteins. Both of these Alba proteins can thermally stabilise DNA polynucleotides, as seen from UV melting curves. Alba2 and equimolar mixtures of Alba1/Alba2 have greater effects on the thermal stability of poly(dA-dT).poly(dA-dT). Surface plasmon resonance sensorgrams for binding of Alba1, Alba2, and equimolar mixtures of Alba1/Alba2 to DNA oligonucleotides show different binding patterns. Circular dichroism indicates that Alba2 has a less-ordered secondary structure than Alba1. The secondary structures of the Alba proteins are not significantly influenced by DNA binding, even at high temperatures. Based on these data, we conclude that Alba1, Alba2, and equimolar mixtures of Alba1/Alba2 show different properties in their binding to various DNAs.
Collapse
Affiliation(s)
- Miha Črnigoj
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Zdravko Podlesek
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Mateja Zorko
- National Chemical Institute of Slovenia, Ljubljana, Slovenia
| | - Roman Jerala
- National Chemical Institute of Slovenia, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
- Centre of Excellence EN-FIST, Ljubljana, Slovenia
| | - Gregor Anderluh
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- National Chemical Institute of Slovenia, Ljubljana, Slovenia
| | - Nataša Poklar Ulrih
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CipKeBiP), Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
35
|
Identification and characterization of a highly conserved crenarchaeal protein lysine methyltransferase with broad substrate specificity. J Bacteriol 2012; 194:6917-26. [PMID: 23086207 DOI: 10.1128/jb.01535-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Protein lysine methylation occurs extensively in the Crenarchaeota, a major kingdom in the Archaea. However, the enzymes responsible for this type of posttranslational modification have not been found. Here we report the identification and characterization of the first crenarchaeal protein lysine methyltransferase, designated aKMT, from the hyperthermophilic crenarchaeon Sulfolobus islandicus. The enzyme was capable of transferring methyl groups to selected lysine residues in a substrate protein using S-adenosyl-l-methionine (SAM) as the methyl donor. aKMT, a non-SET domain protein, is highly conserved among crenarchaea, and distantly related homologs also exist in Bacteria and Eukarya. aKMT was active over a wide range of temperatures, from ~25 to 90 °C, with an optimal temperature at ~60 to 70 °C. Amino acid residues Y9 and T12 at the N terminus appear to be the key residues in the putative active site of aKMT, as indicated by sequence conservation and site-directed mutagenesis. Although aKMT was identified based on its methylating activity on Cren7, the crenarchaeal chromatin protein, it exhibited broad substrate specificity and was capable of methylating a number of recombinant Sulfolobus proteins overproduced in Escherichia coli. The finding of aKMT will help elucidate mechanisms underlining extensive protein lysine methylation and the functional significance of posttranslational protein methylation in crenarchaea.
Collapse
|
36
|
Liu YF, Zhang N, Liu X, Wang X, Wang ZX, Chen Y, Yao HW, Ge M, Pan XM. Molecular mechanism underlying the interaction of typical Sac10b family proteins with DNA. PLoS One 2012; 7:e34986. [PMID: 22511977 PMCID: PMC3325275 DOI: 10.1371/journal.pone.0034986] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 03/08/2012] [Indexed: 11/19/2022] Open
Abstract
The Sac10b protein family is regarded as a family of DNA-binding proteins that is highly conserved and widely distributed within the archaea. Sac10b family members are typically small basic dimeric proteins that bind to DNA with cooperativity and no sequence specificity and are capable of constraining DNA negative supercoils, protecting DNA from Dnase I digestion, and do not compact DNA obviously. However, a detailed understanding of the structural basis of the interaction of Sac10b family proteins with DNA is still lacking. Here, we determined the crystal structure of Mth10b, an atypical member of the Sac10b family from Methanobacterium thermoautotrophicum ΔH, at 2.2 Å. Unlike typical Sac10b family proteins, Mth10b is an acidic protein and binds to neither DNA nor RNA. The overall structure of Mth10b displays high similarity to its homologs, but three pairs of conserved positively charged residues located at the presumed DNA-binding surface are substituted by non-charged residues in Mth10b. Through amino acids interchanges, the DNA-binding ability of Mth10b was restored successfully, whereas the DNA-binding ability of Sso10b, a typical Sac10b family member, was weakened greatly. Based on these results, we propose a model describing the molecular mechanism underlying the interactions of typical Sac10b family proteins with DNA that explains all the characteristics of the interactions between typical Sac10b family members and DNA.
Collapse
Affiliation(s)
- Yan-Feng Liu
- Ministry of Education Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Nan Zhang
- Ministry of Education Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Xi Liu
- Ministry of Education Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Xinquan Wang
- Ministry of Education Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Zhi-Xin Wang
- Ministry of Education Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yuanyuan Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Hong-Wei Yao
- Ministry of Education Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Meng Ge
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
- * E-mail: (X-MP); (MG)
| | - Xian-Ming Pan
- Ministry of Education Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
- * E-mail: (X-MP); (MG)
| |
Collapse
|
37
|
Roth HM, Römer J, Grundler V, Van Houten B, Kisker C, Tessmer I. XPB helicase regulates DNA incision by the Thermoplasma acidophilum endonuclease Bax1. DNA Repair (Amst) 2012; 11:286-93. [PMID: 22237014 DOI: 10.1016/j.dnarep.2011.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 11/14/2011] [Accepted: 12/06/2011] [Indexed: 01/21/2023]
Abstract
Bax1 has recently been identified as a novel binding partner for the archaeal helicase XPB. We previously characterized Bax1 from Thermoplasma acidophilum as a Mg²⁺-dependent structure-specific endonuclease. Here we directly compare the endonuclease activity of Bax1 alone or in combination with XPB. Using several biochemical and biophysical approaches, we demonstrate regulation of Bax1 endonuclease activity by XPB. Interestingly, incision assays with Bax1 and XPB/Bax1 clearly demonstrate that Bax1 produces different incision patterns depending on the presence or absence of XPB. Using atomic force microscopy (AFM), we directly visualize and compare binding of Bax1 and XPB/Bax1 to different DNA substrates. Our AFM data support enhanced DNA binding affinity of Bax1 in the presence of XPB. Taken together, the DNA incision and binding results suggest that XPB is able to load and position Bax1 on the scissile DNA substrate, thus increasing the DNA substrate range of Bax1.
Collapse
Affiliation(s)
- Heide M Roth
- Rudolf Virchow Center for Experimental Biomedicine, Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Tanaka T, Padavattan S, Kumarevel T. Crystal structure of archaeal chromatin protein Alba2-double-stranded DNA complex from Aeropyrum pernix K1. J Biol Chem 2012; 287:10394-10402. [PMID: 22334696 DOI: 10.1074/jbc.m112.343210] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
All thermophilic and hyperthermophilic archaea encode homologs of dimeric Alba (Sac10b) proteins that bind cooperatively at high density to DNA. Here, we report the 2.0 Å resolution crystal structure of an Alba2 (Ape10b2)-dsDNA complex from Aeropyrum pernix K1. A rectangular tube-like structure encompassing duplex DNA reveals the positively charged residues in the monomer-monomer interface of each dimer packing on either side of the bound dsDNA in successive minor grooves. The extended hairpin loop connecting strands β3 and β4 undergoes significant conformational changes upon DNA binding to accommodate the other Alba2 dimer during oligomerization. Mutational analysis of key interacting residues confirmed the specificity of Alba2-dsDNA interactions.
Collapse
Affiliation(s)
- Tomoyuki Tanaka
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Sivaraman Padavattan
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | | |
Collapse
|
39
|
Uracil-DNA glycosylase of Thermoplasma acidophilum directs long-patch base excision repair, which is promoted by deoxynucleoside triphosphates and ATP/ADP, into short-patch repair. J Bacteriol 2011; 193:4495-508. [PMID: 21665970 DOI: 10.1128/jb.00233-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Hydrolytic deamination of cytosine to uracil in DNA is increased in organisms adapted to high temperatures. Hitherto, the uracil base excision repair (BER) pathway has only been described in two archaeons, the crenarchaeon Pyrobaculum aerophilum and the euryarchaeon Archaeoglobus fulgidus, which are hyperthermophiles and use single-nucleotide replacement. In the former the apurinic/apyrimidinic (AP) site intermediate is removed by the sequential action of a 5'-acting AP endonuclease and a 5'-deoxyribose phosphate lyase, whereas in the latter the AP site is primarily removed by a 3'-acting AP lyase, followed by a 3'-phosphodiesterase. We describe here uracil BER by a cell extract of the thermoacidophilic euryarchaeon Thermoplasma acidophilum, which prefers a similar short-patch repair mode as A. fulgidus. Importantly, T. acidophilumcell extract also efficiently executes ATP/ADP-stimulated long-patch BER in the presence of deoxynucleoside triphosphates, with a repair track of ∼15 nucleotides. Supplementation of recombinant uracil-DNA glycosylase (rTaUDG; ORF Ta0477) increased the formation of short-patch at the expense of long-patch repair intermediates, and additional supplementation of recombinant DNA ligase (rTalig; Ta1148) greatly enhanced repair product formation. TaUDG seems to recruit AP-incising and -excising functions to prepare for rapid single-nucleotide insertion and ligation, thus excluding slower and energy-costly long-patch BER.
Collapse
|
40
|
Hsu CH, Wang AHJ. The DNA-recognition fold of Sso7c4 suggests a new member of SpoVT-AbrB superfamily from archaea. Nucleic Acids Res 2011; 39:6764-74. [PMID: 21546550 PMCID: PMC3159460 DOI: 10.1093/nar/gkr283] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Organisms growing at elevated temperatures face the challenge of maintaining the integrity of their genetic materials. Archaea possess unique chromatin proteins for gene organization and information processing. We present the solution structure of Sso7c4 from Sulfolobus solfataricus, which has a homodimeric DNA-binding fold forming a swapped β-loop-β ‘Tai-Chi’ topology. The fold is reminiscent of the N-terminal DNA-binding domain of AbrB and MazE. In addition, several amide resonances in the heteronuclear single quantum coherence spectra of Sso7c4 are shifted and broadened with the addition of small amounts of duplex DNA oligomers. The locations of the corresponding amides in the Sso7c4 structure define its DNA-interacting surface. NMR spectra of DNA titrated with the protein further indicated that Sso7c4 interacts with DNA in the major groove. Taken together, a plausible model for the Sso7c4–DNA complex is presented, in which the DNA double helix is curved around the protein dimer.
Collapse
Affiliation(s)
- Chun-Hua Hsu
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | | |
Collapse
|
41
|
The activity of an ancient atypical protein kinase is stimulated by ADP-ribose in vitro. Arch Biochem Biophys 2011; 511:56-63. [PMID: 21527241 DOI: 10.1016/j.abb.2011.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 04/06/2011] [Accepted: 04/10/2011] [Indexed: 11/22/2022]
Abstract
The piD261/Bud32 protein kinases are universal amongst the members of the Eucarya and Archaea. Despite the fact that phylogenetic analyses indicate that the piD261/Bud32 protein kinases descend directly from the primordial ancestor of the "eukaryotic" protein kinase superfamily, our knowledge of their physiological role is relatively fragmentary and largely limited to two eucaryal representatives: piD261/Bud32 from yeast and the p53-related protein kinase from humans. A deduced archaeal homolog, SsoPK5, is encoded by open reading frame sso0433 from the acidothermophile Sulfolobus solfataricus. Recombinantly-expressed SsoPK5 exhibited protein kinase activity, with a noticeable preference for phosphorylating proteins of acidic character and for Mn(2+) as cofactor. The protein kinase also can phosphorylate itself on serine and threonine residues. The activity of rSsoPK5 was increased several-fold upon preincubation with either millimolar concentrations of 5'-AMP or submicromolar concentrations of ADP-ribose. Other mono- and di-nucleotides were ineffective. While activation was enhanced by the presence of ATP, no autophosphorylation of the protein kinase could be detected prior to addition of exogenous substrate proteins. We therefore suggest that ADP-ribose acts by evoking a conformational transition in the enzyme. Activation by ADP-ribose represents a potential regulatory link between chromatin remodeling and the activity of SsoPK5.
Collapse
|
42
|
|
43
|
de Vries R. DNA condensation in bacteria: Interplay between macromolecular crowding and nucleoid proteins. Biochimie 2010; 92:1715-21. [DOI: 10.1016/j.biochi.2010.06.024] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Accepted: 06/29/2010] [Indexed: 10/19/2022]
|
44
|
Capes MD, Coker JA, Gessler R, Grinblat-Huse V, DasSarma SL, Jacob CG, Kim JM, DasSarma P, DasSarma S. The information transfer system of halophilic archaea. Plasmid 2010; 65:77-101. [PMID: 21094181 DOI: 10.1016/j.plasmid.2010.11.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 11/08/2010] [Accepted: 11/15/2010] [Indexed: 10/18/2022]
Abstract
Information transfer is fundamental to all life forms. In the third domain of life, the archaea, many of the genes functioning in these processes are similar to their eukaryotic counterparts, including DNA replication and repair, basal transcription, and translation genes, while many transcriptional regulators and the overall genome structure are more bacterial-like. Among halophilic (salt-loving) archaea, the genomes commonly include extrachromosomal elements, many of which are large megaplasmids or minichromosomes. With the sequencing of genomes representing ten different genera of halophilic archaea and the availability of genetic systems in two diverse models, Halobacterium sp. NRC-1 and Haloferax volcanii, a large number of genes have now been annotated, classified, and studied. Here, we review the comparative genomic, genetic, and biochemical work primarily aimed at the information transfer system of halophilic archaea, highlighting gene conservation and differences in the chromosomes and the large extrachromosomal elements among these organisms.
Collapse
Affiliation(s)
- Melinda D Capes
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Priyakumar UD, Harika G, Suresh G. Molecular simulations on the thermal stabilization of DNA by hyperthermophilic chromatin protein Sac7d, and associated conformational transitions. J Phys Chem B 2010; 114:16548-57. [PMID: 21086967 DOI: 10.1021/jp101583d] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sac7d belongs to a family of chromosomal proteins, which are crucial for thermal stabilization of DNA at higher growth temperatures. It is capable of binding DNA nonspecifically, and is responsible for the increase in the melting temperature of DNA in the bound form up to 85 °C. Molecular dynamics (MD) simulations were performed at different temperatures on two protein-DNA complexes of Sac7d. Various structural and energetic parameters were calculated to examine the DNA stability and to investigate the conformational changes in DNA and the protein-DNA interactions. Room temperature simulations indicated very good agreement with the experimental structures. The protein structure is nearly unchanged at both 300 and 360 K, and only up to five base pairs of the DNA are stabilized by Sac7d at 360 K. However, the MD simulations on DNA alone systems show that they lose their helical structures at 360 K further supporting the role of Sac7d in stabilizing the oligomers. At higher temperatures (420 and 480 K), DNA undergoes denaturation in the presence and the absence of the protein. The DNA molecules were found to undergo B- to A-form transitions consistent with experimental studies, and the extent of these transitions are examined in detail. The extent of sampling B- and A-form regions was found to show temperature and sequence dependence. Multiple MD simulations yielded similar results validating the proposed model. Interaction energy calculations corresponding to protein-DNA binding indicates major contribution due to DNA backbone, explaining the nonspecific interactions of Sac7d.
Collapse
Affiliation(s)
- U Deva Priyakumar
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032, India.
| | | | | |
Collapse
|
46
|
Andersson AF, Pelve EA, Lindeberg S, Lundgren M, Nilsson P, Bernander R. Replication-biased genome organisation in the crenarchaeon Sulfolobus. BMC Genomics 2010; 11:454. [PMID: 20667100 PMCID: PMC3091651 DOI: 10.1186/1471-2164-11-454] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 07/28/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Species of the crenarchaeon Sulfolobus harbour three replication origins in their single circular chromosome that are synchronously initiated during replication. RESULTS We demonstrate that global gene expression in two Sulfolobus species is highly biased, such that early replicating genome regions are more highly expressed at all three origins. The bias by far exceeds what would be anticipated by gene dosage effects alone. In addition, early replicating regions are denser in archaeal core genes (enriched in essential functions), display lower intergenic distances, and are devoid of mobile genetic elements. CONCLUSION The strong replication-biased structuring of the Sulfolobus chromosome implies that the multiple replication origins serve purposes other than simply shortening the time required for replication. The higher-level chromosomal organisation could be of importance for minimizing the impact of DNA damage, and may also be linked to transcriptional regulation.
Collapse
Affiliation(s)
- Anders F Andersson
- Department of Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
47
|
Prohaska SJ, Stadler PF, Krakauer DC. Innovation in gene regulation: The case of chromatin computation. J Theor Biol 2010; 265:27-44. [DOI: 10.1016/j.jtbi.2010.03.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 03/06/2010] [Indexed: 11/17/2022]
|
48
|
The hyperthermophilic euryarchaeon Archaeoglobus fulgidus repairs uracil by single-nucleotide replacement. J Bacteriol 2010; 192:5755-66. [PMID: 20453094 DOI: 10.1128/jb.00135-10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Hydrolytic deamination of cytosine to uracil in cellular DNA is a major source of C-to-T transition mutations if uracil is not repaired by the DNA base excision repair (BER) pathway. Since deamination increases rapidly with temperature, hyperthermophiles, in particular, are expected to succumb to such damage. There has been only one report of crenarchaeotic BER showing strong similarities to that in most eukaryotes and bacteria for hyperthermophilic Archaea. Here we report a different type of BER performed by extract prepared from cells of the euryarchaeon Archaeoglobus fulgidus. Although immunodepletion showed that the monofunctional family 4 type of uracil-DNA glycosylase (UDG) is the principal and probably only UDG in this organism, a β-elimination mechanism rather than a hydrolytic mechanism is employed for incision of the abasic site following uracil removal. The resulting 3' remnant is removed by efficient 3'-phosphodiesterase activity followed by single-nucleotide insertion and ligation. The finding that repair product formation is stimulated similarly by ATP and ADP in vitro raises the question of whether ADP is more important in vivo because of its higher heat stability.
Collapse
|
49
|
Transcriptional activation in the context of repression mediated by archaeal histones. Proc Natl Acad Sci U S A 2010; 107:6777-81. [PMID: 20351259 DOI: 10.1073/pnas.1002360107] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many archaea (including all the methanogens, nearly all euryarchaeotes, and some crenarchaeotes) use histones as components of the chromatin that compacts their genomes. The archaeal histones are homo- and heterodimers that pair on DNA to form tetrasomes (as the eukaryotic histones H3 and H4 do). The resulting DNA packaging is known to interfere with assembly of the archaeal transcription apparatus at promoters; the ability of transcriptional activation to function in repressive archaeal chromatin has not yet been explored in vitro. Using four of the Methanocaldococcus jannaschii (Mja) histones, we have examined activation of the model Mja rb2 transcription unit by the Mja transcriptional activator Ptr2 in this simplified-chromatin context. Using hydroxyl radical footprinting, we find that the Ptr2-specific rb2 upstream activating site is a preferred histone-localizing site that nucleates histone: DNA-binding radiating from the rb2 promoter. Nevertheless, Ptr2 competes effectively with histones for access to the rb2 promoter and most potently activates transcription in vitro at histone concentrations that extensively coat DNA and essentially silence basal transcription.
Collapse
|
50
|
Dimer-dimer stacking interactions are important for nucleic acid binding by the archaeal chromatin protein Alba. Biochem J 2010; 427:49-55. [PMID: 20082605 PMCID: PMC2841500 DOI: 10.1042/bj20091841] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Archaea use a variety of small basic proteins to package their DNA. One of the most widespread and highly conserved is the Alba (Sso10b) protein. Alba interacts with both DNA and RNA in vitro, and we show in the present study that it binds more tightly to dsDNA (double-stranded DNA) than to either ssDNA (single-stranded DNA) or RNA. The Alba protein is dimeric in solution, and forms distinct ordered complexes with DNA that have been visualized by electron microscopy studies; these studies suggest that, on binding dsDNA, the protein forms extended helical protein fibres. An end-to-end association of consecutive Alba dimers is suggested by the presence of a dimer–dimer interface in crystal structures of Alba from several species, and by the strong conservation of the interface residues, centred on Arg59 and Phe60. In the present study we map perturbation of the polypeptide backbone of Alba upon binding to DNA and RNA by NMR, and demonstrate the central role of Phe60 in forming the dimer–dimer interface. Site-directed spin labelling and pulsed ESR are used to confirm that an end-to-end, dimer–dimer interaction forms in the presence of dsDNA.
Collapse
|