1
|
Kan S, Duan M, Liu Y, Wang C, Xie J. Role of Mitochondria in Physiology of Chondrocytes and Diseases of Osteoarthritis and Rheumatoid Arthritis. Cartilage 2021; 13:1102S-1121S. [PMID: 34894777 PMCID: PMC8804744 DOI: 10.1177/19476035211063858] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
PURPOSE OF REVIEW Mitochondria are recognized to be one of the most important organelles in chondrocytes for their role in triphosphate (ATP) generation through aerobic phosphorylation. Mitochondria also participate in many intracellular processes involving modulating reactive oxygen species (ROS), responding to instantaneous hypoxia stress, regulating cytoplasmic transport of calcium ion, and directing mitophagy to maintain the homeostasis of individual chondrocytes. DESIGNS To summarize the specific role of mitochondria in chondrocytes, we screened related papers in PubMed database and the search strategy is ((mitochondria) AND (chondrocyte)) AND (English [Language]). The articles published in the past 5 years were included and 130 papers were studied. RESULTS In recent years, the integrity of mitochondrial structure has been regarded as a prerequisite for normal chondrocyte survival and defect in mitochondrial function has been found in cartilage-related diseases, such as osteoarthritis (OA) and rheumatoid arthritis (RA). However, the understanding of mitochondria in cartilage is still largely limited. The mechanism on how the changes in mitochondrial structure and function directly lead to the occurrence and development of cartilage-related diseases remains to be elusive. CONCLUSION This review aims to summarize the role of mitochondria in chondrocytes under the physiological and pathological changes from ATP generation, calcium homeostasis, redox regulation, mitophagy modulation, mitochondria biogenesis to immune response activation. The enhanced understanding of molecular mechanisms in mitochondria might offer some new cues for cartilage remodeling and pathological intervention.
Collapse
Affiliation(s)
- Shiyi Kan
- State Key Laboratory of Oral Diseases,
West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengmeng Duan
- State Key Laboratory of Oral Diseases,
West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Liu
- State Key Laboratory of Oral Diseases,
West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chunli Wang
- “111” Project Laboratory of
Biomechanics and Tissue Repair, Bioengineering College, Chongqing University,
Chongqing, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases,
West China Hospital of Stomatology, Sichuan University, Chengdu, China,“111” Project Laboratory of
Biomechanics and Tissue Repair, Bioengineering College, Chongqing University,
Chongqing, China,Lab of Bone & Joint Disease, State
Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan
University, Chengdu, China,Jing Xie, Lab of Bone & Joint Disease,
State Key Laboratory of Oral Diseases, West China Hospital of Stomatology,
Sichuan University, Chengdu 610064, Sichuan, China.
| |
Collapse
|
2
|
Ghosh MK, Chakraborty D, Sarkar S, Bhowmik A, Basu M. The interrelationship between cerebral ischemic stroke and glioma: a comprehensive study of recent reports. Signal Transduct Target Ther 2019; 4:42. [PMID: 31637020 PMCID: PMC6799849 DOI: 10.1038/s41392-019-0075-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/26/2019] [Accepted: 08/29/2019] [Indexed: 12/16/2022] Open
Abstract
Glioma and cerebral ischemic stroke are two major events that lead to patient death worldwide. Although these conditions have different physiological incidences, ~10% of ischemic stroke patients develop cerebral cancer, especially glioma, in the postischemic stages. Additionally, the high proliferation, venous thrombosis and hypercoagulability of the glioma mass increase the significant risk of thromboembolism, including ischemic stroke. Surprisingly, these events share several common pathways, viz. hypoxia, cerebral inflammation, angiogenesis, etc., but the proper mechanism behind this co-occurrence has yet to be discovered. The hypercoagulability and presence of the D-dimer level in stroke are different in cancer patients than in the noncancerous population. Other factors such as atherosclerosis and coagulopathy involved in the pathogenesis of stroke are partially responsible for cancer, and the reverse is also partially true. Based on clinical and neurosurgical experience, the neuronal structures and functions in the brain and spine are observed to change after a progressive attack of ischemia that leads to hypoxia and atrophy. The major population of cancer cells cannot survive in an adverse ischemic environment that excludes cancer stem cells (CSCs). Cancer cells in stroke patients have already metastasized, but early-stage cancer patients also suffer stroke for multiple reasons. Therefore, stroke is an early manifestation of cancer. Stroke and cancer share many factors that result in an increased risk of stroke in cancer patients, and vice-versa. The intricate mechanisms for stroke with and without cancer are different. This review summarizes the current clinical reports, pathophysiology, probable causes of co-occurrence, prognoses, and treatment possibilities.
Collapse
Affiliation(s)
- Mrinal K. Ghosh
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C. Mullick Road, Kolkata 700032 and CN-06, Sector-V, Salt Lake, Kolkata, 700091 India
| | - Dipankar Chakraborty
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C. Mullick Road, Kolkata 700032 and CN-06, Sector-V, Salt Lake, Kolkata, 700091 India
| | - Sibani Sarkar
- Signal Transduction in Cancer and Stem Cells Laboratory, Division of Cancer Biology and Inflammatory Disorder, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S.C. Mullick Road, Kolkata 700032 and CN-06, Sector-V, Salt Lake, Kolkata, 700091 India
| | - Arijit Bhowmik
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata, 700 026 India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24, Paraganas, 743372 India
| |
Collapse
|
3
|
Ekim Kocabey A, Kost L, Gehlhar M, Rödel G, Gey U. Mitochondrial Sco proteins are involved in oxidative stress defense. Redox Biol 2018; 21:101079. [PMID: 30593977 PMCID: PMC6307045 DOI: 10.1016/j.redox.2018.101079] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/31/2022] Open
Abstract
Members of the evolutionary conserved Sco protein family have been intensively studied regarding their role in the assembly of the mitochondrial cytochrome c oxidase. However, experimental and structural data, specifically the presence of a thioredoxin-like fold, suggest that Sco proteins may also play a role in redox homeostasis. In our study, we addressed this putative function of Sco proteins using Saccharomyces cerevisiae as a model system. Like many eukaryotes, this yeast possesses two SCO homologs (SCO1 and SCO2). Mutants bearing a deletion of either of the two genes are not affected in their growth under oxidative stress. However, the concomitant deletion of the SOD1 gene encoding the superoxide dismutase 1 resulted in a distinct phenotype: double deletion strains lacking SCO1 or SCO2 and SOD1 are highly sensitive to oxidative stress and show dramatically increased ROS levels. The respiratory competent double deletion strain Δsco2Δsod1 paved the way to investigate the putative antioxidant function of SCO homologs apart from their role in respiration by complementation analysis. Sco homologs from Drosophila, Arabidopsis, human and two other yeast species were integrated into the genome of the double deletion mutant and the transformants were analyzed for their growth under oxidative stress. Interestingly, all homologs except for Kluyveromyces lactis K07152 and Arabidopsis thaliana HCC1 were able to complement the phenotype, indicating their role in oxidative stress defense. We further applied this complementation-based system to investigate whether pathogenic point mutations affect the putative antioxidant role of hSco2. Surprisingly, all of the mutant alleles failed to restore the ROS-sensitivity of the Δsco2Δsod1 strain. In conclusion, our data not only provide clear evidence for the function of Sco proteins in oxidative stress defense but also offer a valuable tool to investigate this role for other homologous proteins. Concomitant deletion of SCO and SOD1 leads to a high ROS sensitivity. SCO homologs from higher organisms can rescue the oxidative stress sensitive phenotype of the double deletion mutant. Pathogenic human Sco2 mutations affect the antioxidant function of the protein. The role of the Sco proteins in oxidative stress defense is discussed.
Collapse
Affiliation(s)
| | - Luise Kost
- Institute of Genetics, Technische Universität Dresden, 01062 Dresden, Germany
| | - Maria Gehlhar
- Institute of Genetics, Technische Universität Dresden, 01062 Dresden, Germany
| | - Gerhard Rödel
- Institute of Genetics, Technische Universität Dresden, 01062 Dresden, Germany
| | - Uta Gey
- Institute of Genetics, Technische Universität Dresden, 01062 Dresden, Germany.
| |
Collapse
|
4
|
Naletova I, Satriano C, Curci A, Margiotta N, Natile G, Arena G, La Mendola D, Nicoletti VG, Rizzarelli E. Cytotoxic phenanthroline derivatives alter metallostasis and redox homeostasis in neuroblastoma cells. Oncotarget 2018; 9:36289-36316. [PMID: 30555630 PMCID: PMC6284747 DOI: 10.18632/oncotarget.26346] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/01/2018] [Indexed: 02/06/2023] Open
Abstract
Copper homeostasis is generally investigated focusing on a single component of the metallostasis network. Here we address several of the factors controlling the metallostasis for neuroblastoma cells (SH-SY5Y) upon treatment with 2,9-dimethyl-1,10-phenanthroline-5,6-dione (phendione) and 2,9-dimethyl-1,10-phenanthroline (cuproindione). These compounds bind and transport copper inside cells, exert their cytotoxic activity through the induction of oxidative stress, causing apoptosis and alteration of the cellular redox and copper homeostasis network. The intracellular pathway ensured by copper transporters (Ctr1, ATP7A), chaperones (CCS, ATOX, COX 17, Sco1, Sco2), small molecules (GSH) and transcription factors (p53) is scrutinised.
Collapse
Affiliation(s)
- Irina Naletova
- Department of Chemical Sciences, University of Catania, Catania, Italy
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
| | - Cristina Satriano
- Department of Chemical Sciences, University of Catania, Catania, Italy
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
| | - Alessandra Curci
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
- Department of Chemistry, University of Bari ‘Aldo Moro’, Bari, Italy
| | - Nicola Margiotta
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
- Department of Chemistry, University of Bari ‘Aldo Moro’, Bari, Italy
| | - Giovanni Natile
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
- Department of Chemistry, University of Bari ‘Aldo Moro’, Bari, Italy
| | - Giuseppe Arena
- Department of Chemical Sciences, University of Catania, Catania, Italy
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
| | - Diego La Mendola
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Vincenzo Giuseppe Nicoletti
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Enrico Rizzarelli
- Department of Chemical Sciences, University of Catania, Catania, Italy
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
| |
Collapse
|
5
|
Aggregation of rare/low-frequency variants of the mitochondria respiratory chain-related proteins in rheumatoid arthritis patients. J Hum Genet 2015; 60:449-54. [PMID: 26016412 DOI: 10.1038/jhg.2015.50] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 04/14/2015] [Accepted: 04/16/2015] [Indexed: 12/29/2022]
Abstract
Exome sequencings were conducted using 59 patients having rheumatoid arthritis (RA) and 93 controls. After stepwise filtering, 107 genes showed less than 0.05 of P-values by gene-burden tests. Among 107 genes, NDUFA7 which is a subunit of the complex I in the mitochondrial respiratory chain was selected for further analysis based on previous reports. A case-control study was performed on the three single-nucleotide variants (SNVs) of NDUFA7 with 432 cases and 432 controls. An association was observed between NDUFA7 and RA with severe erosive arthritis. These results together with previous reports suggested the involvement of reactive oxygen species (ROS) in the pathogenesis of RA. In the next step, four SNVs from three genes related to the mitochondrial respiratory chain were selected, which is a major source of ROS, and conducted a case-control study. An association was observed based on a pathway-burden test comprising NDUFA7, SDHAF2, SCO1 and ATP5O: P=1.56E-04, odds ratio=2.16, 95% confidence interval=1.43-3.28. Previous reports suggested the involvement of ROS in the pathogenesis of RA. The aggregation of SNVs in the mitochondria respiratory chain suggests the pivotal role of those SNVs in the pathogenesis of RA with severe erosive arthritis.
Collapse
|
6
|
Nayab SN, Jones FH, Olsen I. Effects of calcium ion-implantation of titanium on bone cell functionin vitro. J Biomed Mater Res A 2007; 83:296-302. [PMID: 17437306 DOI: 10.1002/jbm.a.31218] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The modification of titanium (Ti) surfaces by ion-implantation has previously been reported to enhance osseointegration in vivo. However, the mechanisms underlying the apparently improved biocompatibility of these novel implant materials are unknown. The aim of this study is, therefore, to determine the precise effects of calcium ion-implanted Ti on the functional activity of bone cells in vitro. Flow cytometry (FCM) and the reverse transcriptase polymerase chain reaction (RT-PCR) were used to measure the response of bone-derived cells to key bone-associated components, including alkaline phosphatase (ALP), bone morphogenetic protein receptor-1B (BMPR-1B), bone sialoprotein (BSP), osteonectin (ON), and osteopontin (OPN). FCM analysis showed that BMPR-1B, BSP and particularly OPN were significantly up-regulated in MG-63 cells cultured on Ca-implanted Ti compared with control nonimplanted Ti. Moreover, the effects of this novel Ca-Ti surface were found to be mediated, at least partly, via gene activation, since RT-PCR demonstrated the presence of notably elevated levels of OPN mRNA transcripts in the MG-63 cells. These findings thus show that Ti surfaces implanted with Ca ions can enhance the expression of certain bone-associated components in vitro, and suggest that this effect could be the cause of the potential benefit of this material on bone in vivo.
Collapse
Affiliation(s)
- Saima N Nayab
- Division of Biomaterials and Tissue Engineering, University College London, Eastman Dental Institute, 256 Gray's Inn Road, London WC1X 8LD, United Kingdom
| | | | | |
Collapse
|
7
|
Lee YJ, Choi B, Lee EH, Choi KS, Sohn S. Immobilization stress induces cell death through production of reactive oxygen species in the mouse cerebral cortex. Neurosci Lett 2006; 392:27-31. [PMID: 16203091 DOI: 10.1016/j.neulet.2005.08.065] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Revised: 08/26/2005] [Accepted: 08/29/2005] [Indexed: 11/28/2022]
Abstract
Prolonged stress has been shown to impair brain function and increase vulnerability to neuronal injury. To elucidate the in vivo response of neuronal cells to induced stress, we immobilized mice by binding their legs. Levels of reactive oxygen species (ROS) in the cerebral cortex were increased after stress induction. NADPH oxidase, interleukin-1beta (IL-1beta) and cyclooxygenase 2 mRNA (COX-2) expression levels were upregulated, and Fas levels were also increased. The increased expression of these factors was associated with neuronal death, which was confirmed by TUNEL and NeuN staining. OX42 staining was also evident around the TUNEL-stained lesions. From these findings, it appears that immobilization stress induces neuronal death in the mouse cerebral cortex, a process mediated by NADPH oxidase, IL-1beta, COX-2, ROS and Fas. However, this could be inhibited by pretreating the animals with antioxidants such as ebselen or pyrrolidine dithiocarbamate.
Collapse
Affiliation(s)
- Young Jun Lee
- Laboratory of Cell Biology, Ajou University Institute for Medical Sciences, Suwon 442-721, South Korea
| | | | | | | | | |
Collapse
|
8
|
Phelka AD, Sadoff MM, Martin BP, Philbert MA. BCL-XL expression levels influence differential regional astrocytic susceptibility to 1,3-dinitrobenzene. Neurotoxicology 2005; 27:192-200. [PMID: 16257055 DOI: 10.1016/j.neuro.2005.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Accepted: 09/28/2005] [Indexed: 11/15/2022]
Abstract
The selective vulnerability of brainstem astrocytes to 1,3-dinitrobenzene is mediated by a 10-fold lower threshold for opening of the cyclosporin A-inhibitable mitochondrial permeability transition pore (mtPTP). BCL-XL, BAX and BCL-2 are members of the BCL-2 protein family known to regulate both apoptotic and necrotic cell death signaling at the mtPTP. The levels at which these proteins are expressed relative to one another, where in the cell they are located and whether they are post-translational modified contributes greatly to the balance in active agonistic to active antagonistic BCL-2 proteins, and this critical balance has been hypothesized to dictate regional astrocytic susceptibility to DNB. The effects of DNB on the balance in expression of the BCL-2 family proteins have been evaluated in F344 rat DNB-sensitive (brainstem) and non-sensitive (cortical) tissue homogenates and primary astrocytes. No significant treatment-related alterations in BCL-XL, BAX or BCL-2 protein expression are observed in rat tissue homogenates or primary astrocytes. However, moderate increases in BCL-XL are observed only in DNB-treated rat cortical astrocytes, and these increases may be sufficient to shift the constitutive balance in expression of antagonistic to agonistic BCL-2 proteins from a ratio which favors BAX to one in which BAX and BCL-XL are comparably expressed. Rat primary brainstem and cortical astrocytes are also transiently transfected with bcl-xl to evaluate whether or not moderate enhancement of BCL-XL protein expression levels are sufficient to alter regional sensitivity to DNB in vitro. BCL-XL overexpression minimizes DNB-induced inhibition of succinate dehydrogenase (complex II) activity and increases significantly the concentration of DNB required to induce MPT onset in primary brainstem and cortical astrocytes. Results from the current investigation suggest that modest region-specific alterations in the balance in expression of antagonistic to agonistic BCL-2 proteins may adequately explain differential regional sensitivity to DNB-induced mitochondrial dysfunction.
Collapse
Affiliation(s)
- Amanda D Phelka
- Toxicology Program, Department of Environmental Health Sciences, University of Michigan, 1420 Washington Heights, Ann Arbor, MI 48109-2029, USA
| | | | | | | |
Collapse
|
9
|
Hinz B, Ramer R, Eichele K, Weinzierl U, Brune K. Up-Regulation of Cyclooxygenase-2 Expression Is Involved in R(+)-Methanandamide-Induced Apoptotic Death of Human Neuroglioma Cells. Mol Pharmacol 2004; 66:1643-51. [PMID: 15361550 DOI: 10.1124/mol.104.002618] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cannabinoids have been implicated in the reduction of glioma growth. The present study investigated a possible relationship between the recently shown induction of cyclooxygenase (COX)-2 expression by the endocannabinoid analog R(+)methanandamide [R(+)-MA] and its effect on the viability of H4 human neuroglioma cells. Incubation with R(+)-MA for up to 72 h decreased the cellular viability and enhanced accumulation of cytoplasmic DNA fragments in a time-dependent manner. Suppression of R(+)-MA-induced prostaglandin (PG) E2 synthesis with the selective COX-2 inhibitor celecoxib (0.01-1 microM) or inhibition of COX-2 expression by COX-2-silencing small-interfering RNA was accompanied by inhibition of R(+)-MA-mediated DNA fragmentation and cell death. In contrast, the selective COX-1 inhibitor SC-560 was inactive in this respect. Cells were also protected from apoptotic cell death by other COX-2 inhibitors (NS-398 [[N-[2-(cyclohexyloxy)-4-nitrophenyl]-methanesulfonamide]] and diclofenac) and by the ceramide synthase inhibitor fumonisin B1, which interferes with COX-2 expression by R(+)-MA. Moreover, the proapoptotic action of R(+)-MA was mimicked by the major COX-2 product PGE2. Apoptosis and cell death by R(+)-MA were not affected by antagonists of cannabinoid receptors (CB1, CB2) and vanilloid receptor 1. In further experiments, celecoxib was demonstrated to suppress apoptotic cell death elicited by anandamide, which is structurally similar to R(+)-MA. As a whole, this study defines COX-2 as a hitherto unknown target by which a cannabinoid induces apoptotic death of glioma cells. Furthermore, our data show that pharmacological concentrations of celecoxib may interfere with the proapoptotic action of R(+)-MA and anandamide, suggesting that cotreatment with COX-2 inhibitors could diminish glioma regression induced by these compounds.
Collapse
Affiliation(s)
- Burkhard Hinz
- Department of Experimental and Clinical Pharmacology and Toxicology, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| | | | | | | | | |
Collapse
|