1
|
Raposo-Garcia S, Costas C, Louzao MC, Vieytes MR, Vale C, Botana LM. Synergistic Effect of Brevetoxin BTX-3 and Ciguatoxin CTX3C in Human Voltage-Gated Na v1.6 Sodium Channels. Chem Res Toxicol 2023; 36:1990-2000. [PMID: 37965843 PMCID: PMC10845145 DOI: 10.1021/acs.chemrestox.3c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023]
Abstract
Emerging marine biotoxins such as ciguatoxins and brevetoxins have been widely and independently studied as food pollutants. Their maximum levels in food components were set without considering their possible synergistic effects as consequence of their coexistence in seafood and their action at the same cellular target. The absolute lack of data and regulations of the possible combined effects that both marine biotoxins may have raised the need to analyze their direct in vitro effects using electrophysiology techniques. The results presented in this study indicate that ciguatoxins and brevetoxins had a synergistic effect on human Nav1.6 voltage-gated sodium channels by hyperpolarizing their activation and inactivation states. The results presented here indicate that brevetoxin 3 (BTX-3) acts as partial agonist of human sodium channels, while ciguatoxin 3C (CTX3C) was a full agonist, explaining the differences in the effect of each toxin in the channel. Therefore, this work sets the cellular basis to further apply this type of studies to other food toxicants that may act synergistically and thus implement the corresponding regulatory limits considering their coexistence and the risks to human and animal health derived from it.
Collapse
Affiliation(s)
- Sandra Raposo-Garcia
- Departamento
de Farmacología, Farmacia y Tecnología Farmacéutica,
Facultad de Veterinaria, IDIS, Universidad
de Santiago de Compostela, Campus Universitario s/n, Lugo 27002, Spain
| | - Celia Costas
- Departamento
de Farmacología, Farmacia y Tecnología Farmacéutica,
Facultad de Veterinaria, IDIS, Universidad
de Santiago de Compostela, Campus Universitario s/n, Lugo 27002, Spain
| | - M. Carmen Louzao
- Departamento
de Farmacología, Farmacia y Tecnología Farmacéutica,
Facultad de Veterinaria, IDIS, Universidad
de Santiago de Compostela, Campus Universitario s/n, Lugo 27002, Spain
| | - Mercedes R. Vieytes
- Departamento
de Fisiología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, Lugo 27002, Spain
| | - Carmen Vale
- Departamento
de Farmacología, Farmacia y Tecnología Farmacéutica,
Facultad de Veterinaria, IDIS, Universidad
de Santiago de Compostela, Campus Universitario s/n, Lugo 27002, Spain
| | - Luis M. Botana
- Departamento
de Farmacología, Farmacia y Tecnología Farmacéutica,
Facultad de Veterinaria, IDIS, Universidad
de Santiago de Compostela, Campus Universitario s/n, Lugo 27002, Spain
| |
Collapse
|
2
|
Raposo-Garcia S, Cao A, Costas C, Louzao MC, Vilariño N, Vale C, Botana LM. Mouse N2a Neuroblastoma Assay: Uncertainties and Comparison with Alternative Cell-Based Assays for Ciguatoxin Detection. Mar Drugs 2023; 21:590. [PMID: 37999414 PMCID: PMC10672529 DOI: 10.3390/md21110590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/25/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
The growing concern about ciguatera fish poisoning (CF) due to the expansion of the microorganisms producing ciguatoxins (CTXs) increased the need to develop a reliable and fast method for ciguatoxin detection to guarantee food safety. Cytotoxicity assay on the N2a cells sensitized with ouabain (O) and veratridine (V) is routinely used in ciguatoxin detection; however, this method has not been standardized yet. This study demonstrated the low availability of sodium channels in the N2a cells, the great O/V damage to the cells and the cell detachment when the cell viability is evaluated by the classical cytotoxicity assay and confirmed the absence of toxic effects caused by CTXs alone when using the methods that do not require medium removal such as lactate dehydrogenase (LDH) and Alamar blue assays. Different cell lines were evaluated as alternatives, such as human neuroblastoma, which was not suitable for the CTX detection due to the greater sensitivity to O/V and low availability of sodium channels. However, the HEK293 Nav cell line expressing the α1.6 subunit of sodium channels was sensitive to the ciguatoxin without the sensitization with O/V due to its expression of sodium channels. In the case of sensitizing the cells with O/V, it was possible to detect the presence of the ciguatoxin by the classical cytotoxicity MTT method at concentrations as low as 0.0001 nM CTX3C, providing an alternative cell line for the detection of compounds that act on the sodium channels.
Collapse
Affiliation(s)
| | | | | | | | | | - Carmen Vale
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (S.R.-G.); (A.C.); (C.C.); (M.C.L.); (N.V.)
| | - Luis M. Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (S.R.-G.); (A.C.); (C.C.); (M.C.L.); (N.V.)
| |
Collapse
|
3
|
Drouillas B, Brocard C, Zanella S, Bos R, Brocard F. Persistent Nav1.1 and Nav1.6 currents drive spinal locomotor functions through nonlinear dynamics. Cell Rep 2023; 42:113085. [PMID: 37665666 DOI: 10.1016/j.celrep.2023.113085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/29/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023] Open
Abstract
Persistent sodium current (INaP) in the spinal locomotor network promotes two distinct nonlinear firing patterns: a self-sustained spiking triggered by a brief excitation in bistable motoneurons and bursting oscillations in interneurons of the central pattern generator (CPG). Here, we identify the NaV channels responsible for INaP and their role in motor behaviors. We report the axonal Nav1.6 as the main molecular player for INaP in lumbar motoneurons. The inhibition of Nav1.6, but not of Nav1.1, in motoneurons impairs INaP, bistability, postural tone, and locomotor performance. In interneurons of the rhythmogenic CPG region, both Nav1.6 and Nav1.1 equally mediate INaP. Inhibition of both channels is required to abolish oscillatory bursting activities and the locomotor rhythm. Overall, Nav1.6 plays a significant role both in posture and locomotion by governing INaP-dependent bistability in motoneurons and working in tandem with Nav1.1 to provide INaP-dependent rhythmogenic properties of the CPG.
Collapse
Affiliation(s)
- Benoît Drouillas
- Institut de Neurosciences de la Timone, UMR 7289, Aix-Marseille Université and Centre National de la Recherche Scientifique (CNRS), Marseille, France
| | - Cécile Brocard
- Institut de Neurosciences de la Timone, UMR 7289, Aix-Marseille Université and Centre National de la Recherche Scientifique (CNRS), Marseille, France
| | - Sébastien Zanella
- Institut de Neurosciences de la Timone, UMR 7289, Aix-Marseille Université and Centre National de la Recherche Scientifique (CNRS), Marseille, France
| | - Rémi Bos
- Institut de Neurosciences de la Timone, UMR 7289, Aix-Marseille Université and Centre National de la Recherche Scientifique (CNRS), Marseille, France
| | - Frédéric Brocard
- Institut de Neurosciences de la Timone, UMR 7289, Aix-Marseille Université and Centre National de la Recherche Scientifique (CNRS), Marseille, France.
| |
Collapse
|
4
|
da Silva CA, Grover CJ, Picardo MCD, Del Negro CA. Role of Na V1.6-mediated persistent sodium current and bursting-pacemaker properties in breathing rhythm generation. Cell Rep 2023; 42:113000. [PMID: 37590134 PMCID: PMC10528911 DOI: 10.1016/j.celrep.2023.113000] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/16/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
Inspiration is the inexorable active phase of breathing. The brainstem pre-Bötzinger complex (preBötC) gives rise to inspiratory neural rhythm, but its underlying cellular and ionic bases remain unclear. The long-standing "pacemaker hypothesis" posits that the persistent Na+ current (INaP) that gives rise to bursting-pacemaker properties in preBötC interneurons is essential for rhythmogenesis. We tested the pacemaker hypothesis by conditionally knocking out and knocking down the Scn8a (Nav1.6 [voltage-gated sodium channel 1.6]) gene in core rhythmogenic preBötC neurons. Deleting Scn8a substantially decreases the INaP and abolishes bursting-pacemaker activity, which slows inspiratory rhythm in vitro and negatively impacts the postnatal development of ventilation. Diminishing Scn8a via genetic interference has no impact on breathing in adult mice. We argue that the Scn8a-mediated INaP is not obligatory but that it influences the development and rhythmic function of the preBötC. The ubiquity of the INaP in respiratory brainstem interneurons could underlie breathing-related behaviors such as neonatal phonation or rhythmogenesis in different physiological conditions.
Collapse
Affiliation(s)
- Carlos A da Silva
- Department of Applied Science, William & Mary, Williamsburg, VA 23185, USA
| | - Cameron J Grover
- Department of Applied Science, William & Mary, Williamsburg, VA 23185, USA
| | | | | |
Collapse
|
5
|
Structure of human Na V1.6 channel reveals Na + selectivity and pore blockade by 4,9-anhydro-tetrodotoxin. Nat Commun 2023; 14:1030. [PMID: 36823201 PMCID: PMC9950489 DOI: 10.1038/s41467-023-36766-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
The sodium channel NaV1.6 is widely expressed in neurons of the central and peripheral nervous systems, which plays a critical role in regulating neuronal excitability. Dysfunction of NaV1.6 has been linked to epileptic encephalopathy, intellectual disability and movement disorders. Here we present cryo-EM structures of human NaV1.6/β1/β2 alone and complexed with a guanidinium neurotoxin 4,9-anhydro-tetrodotoxin (4,9-ah-TTX), revealing molecular mechanism of NaV1.6 inhibition by the blocker. The apo-form structure reveals two potential Na+ binding sites within the selectivity filter, suggesting a possible mechanism for Na+ selectivity and conductance. In the 4,9-ah-TTX bound structure, 4,9-ah-TTX binds to a pocket similar to the tetrodotoxin (TTX) binding site, which occupies the Na+ binding sites and completely blocks the channel. Molecular dynamics simulation results show that subtle conformational differences in the selectivity filter affect the affinity of TTX analogues. Taken together, our results provide important insights into NaV1.6 structure, ion conductance, and inhibition.
Collapse
|
6
|
Raposo-Garcia S, Costas C, Louzao MC, Vale C, Botana LM. Synergistic effect of environmental food pollutants: Pesticides and marine biotoxins. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160111. [PMID: 36370778 DOI: 10.1016/j.scitotenv.2022.160111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/24/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Emerging marine biotoxins such as ciguatoxins and pyrethroid compounds, widely used in agriculture, are independently treated as environmental toxicants. Their maximum residue levels in food components are set without considering their possible synergistic effects as consequence of their interaction with the same cellular target. There is an absolute lack of data on the possible combined cellular effects that biological and chemical pollutants, may have. Nowadays, an increasing presence of ciguatoxins in European Coasts has been reported and these toxins can affect human health. Similarly, the increasing use of phytosanitary products for control of food plagues has raised exponentially during the last decades due to climate change. The lack of data and regulation evaluating the combined effect of environmental pollutants with the same molecular target led us to analyse their in vitro effects. In this work, the effects of ciguatoxins and pyrethroids in human sodium channels were investigated. The results presented in this study indicate that both types of compounds have a profound synergistic effect in voltage-dependent sodium channels. These food pollutants act by decreasing the maximum peak inward sodium currents and hyperpolarizing the sodium channels activation, effects that are boosted by the simultaneous presence of both compounds. A fact that highlights the need to re-evaluate their limits in feedstock as well as their potential in vivo toxicity considering that they act on the same cellular target. Moreover, this work sets the cellular basis to further apply this type of studies to other water and food pollutants that may act synergistically and thus implement the corresponding regulatory limits taking into account its presence in a healthy diet.
Collapse
Affiliation(s)
- Sandra Raposo-Garcia
- Departamento de Farmacologı́a, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain
| | - Celia Costas
- Departamento de Farmacologı́a, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain
| | - M Carmen Louzao
- Departamento de Farmacologı́a, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain
| | - Carmen Vale
- Departamento de Farmacologı́a, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain.
| | - Luis M Botana
- Departamento de Farmacologı́a, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain.
| |
Collapse
|
7
|
Wienbar S, Schwartz GW. Differences in spike generation instead of synaptic inputs determine the feature selectivity of two retinal cell types. Neuron 2022; 110:2110-2123.e4. [PMID: 35508174 PMCID: PMC9262831 DOI: 10.1016/j.neuron.2022.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/21/2022] [Accepted: 04/11/2022] [Indexed: 12/19/2022]
Abstract
Retinal ganglion cells (RGCs) are the spiking projection neurons of the eye that encode different features of the visual environment. The circuits providing synaptic input to different RGC types to drive feature selectivity have been studied extensively, but there has been less research aimed at understanding the intrinsic properties and how they impact feature selectivity. We introduce an RGC type in the mouse, the Bursty Suppressed-by-Contrast (bSbC) RGC, and compared it to the OFF sustained alpha (OFFsA). Differences in their contrast response functions arose from differences not in synaptic inputs but in their intrinsic properties. Spike generation was the key intrinsic property behind this functional difference; the bSbC RGC undergoes depolarization block while the OFFsA RGC maintains a high spike rate. Our results demonstrate that differences in intrinsic properties allow these two RGC types to detect and relay distinct features of an identical visual stimulus to the brain.
Collapse
Affiliation(s)
- Sophia Wienbar
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL 60208, USA
| | - Gregory William Schwartz
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
8
|
Shen H, Yan N, Pan X. Structural determination of human Na v1.4 and Na v1.7 using single particle cryo-electron microscopy. Methods Enzymol 2021; 653:103-120. [PMID: 34099168 DOI: 10.1016/bs.mie.2021.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Voltage-gated sodium (Nav) channels are responsible for the initiation and propagation of action potentials. Their abnormal functions are associated with numerous diseases, such as epilepsy, cardiac arrhythmia, and pain syndromes. Therefore, these channels represent important drug targets. Even in the post-resolution revolution era, a lack of structural information continues to impede structure-based drug discovery. The limiting factor for the structural determination of Nav channels using single particle cryo-electron microscopy (cryo-EM) resides in the generation of sufficient high-quality recombinant proteins. After extensive trials, we have been successful in determining a series of high-resolution structures of Nav channels, including NavPaS from American cockroach, Nav1.4 from electric eel, and human Nav1.1, Nav1.2, Nav1.4, Nav1.5, and Nav1.7, with distinct strategies. These structures established the framework for understanding the electromechanical coupling and disease mechanism of Nav channels, and for facilitating drug discovery. Here, we exemplify these methods with two specific cases, human Nav1.4 and Nav1.7, which may shed light on the structural determination of other membrane proteins.
Collapse
Affiliation(s)
- Huaizong Shen
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| | - Nieng Yan
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States.
| | - Xiaojing Pan
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
9
|
Boente-Juncal A, Raposo-García S, Louzao MC, Vale C, Botana LM. Targeting Chloride Ion Channels: New Insights into the Mechanism of Action of the Marine Toxin Azaspiracid. Chem Res Toxicol 2021; 34:865-879. [PMID: 33512997 DOI: 10.1021/acs.chemrestox.0c00494] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Azaspiracids (AZAs) are marine toxins produced by dinoflagellates belonging to the genera Azadinium and Amphidoma that caused human intoxications after consumption of contaminated fishery products, such as mussels. However, the exact mechanism for the AZA induced cytotoxic and neurotoxic effects is still unknown. In this study several pharmacological approaches were employed to evaluate the role of anion channels on the AZA effects that demonstrated that cellular anion dysregulation was involved in the toxic effects of these compounds. The results presented here demonstrated that volume regulated anion channels (VRACs) are affected by this group of toxins, and, because there is not any specific activator of VRACs besides the intracellular application of GTPγ-S molecule, this group of natural compounds could represent a powerful tool to analyze the role of these channels in cellular homeostasis. In addition to this, in this work, a detailed pharmacological approach was performed in order to elucidate the anion channels present in human HEK293 cells as well as their regulation by the marine toxins azaspiracids. Altogether, the data presented here demonstrated that the effect of azaspiracids in human cells was completely dependent on ATP-regulated anion channels, whose upregulation by these toxins could lead to regulatory volume decrease and underlie the reported toxicity of these compounds.
Collapse
Affiliation(s)
- Andrea Boente-Juncal
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, España
| | - Sandra Raposo-García
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, España
| | - M Carmen Louzao
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, España
| | - Carmen Vale
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, España
| | - Luis M Botana
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, España
| |
Collapse
|
10
|
Cellular senescence and failure of myelin repair in multiple sclerosis. Mech Ageing Dev 2020; 192:111366. [DOI: 10.1016/j.mad.2020.111366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 08/10/2020] [Accepted: 09/23/2020] [Indexed: 01/10/2023]
|
11
|
Boente-Juncal A, Raposo-García S, Costas C, Louzao MC, Vale C, Botana LM. Partial Blockade of Human Voltage-Dependent Sodium Channels by the Marine Toxins Azaspiracids. Chem Res Toxicol 2020; 33:2593-2604. [DOI: 10.1021/acs.chemrestox.0c00216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Andrea Boente-Juncal
- Departamento de Farmacologı́a, Farmacia y Tecnologı́a Farmacéutica, Facultade de Veterinaria, Universidade de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain
| | - Sandra Raposo-García
- Departamento de Farmacologı́a, Farmacia y Tecnologı́a Farmacéutica, Facultade de Veterinaria, Universidade de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain
| | - Celia Costas
- Departamento de Farmacologı́a, Farmacia y Tecnologı́a Farmacéutica, Facultade de Veterinaria, Universidade de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain
| | - M. Carmen Louzao
- Departamento de Farmacologı́a, Farmacia y Tecnologı́a Farmacéutica, Facultade de Veterinaria, Universidade de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain
| | - Carmen Vale
- Departamento de Farmacologı́a, Farmacia y Tecnologı́a Farmacéutica, Facultade de Veterinaria, Universidade de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain
| | - Luis M. Botana
- Departamento de Farmacologı́a, Farmacia y Tecnologı́a Farmacéutica, Facultade de Veterinaria, Universidade de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo, Spain
| |
Collapse
|
12
|
Enrique A, Martín P, Sbaraglini ML, Talevi A, Milesi V. Parabens inhibit hNa V 1.2 channels. Biomed Pharmacother 2020; 128:110250. [PMID: 32480218 DOI: 10.1016/j.biopha.2020.110250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/27/2020] [Accepted: 05/10/2020] [Indexed: 10/24/2022] Open
Abstract
Propylparaben, a commonly used antimicrobial preservative, has been reported as an anticonvulsant agent targeting neuronal Na+ channels (NaV). However, the specific features of the NaV channel inhibition by this agent have so far not been extensively studied. Moreover, it is still unclear if it shares this pharmacological activity with other parabens. Here, we fully characterized the mechanism of action of the inhibitory effect that propylparaben and benzylparaben induce on human NaV 1.2 channel isoform (hNaV1.2). We established a first approach to know the parabens structural determinants for this channel inhibition. The parabens effects on hNaV1.2 channel mediated currents were recorded using the patch-clamp whole-cell configuration on hNaV1.2 stably transfected HEK293 cells. Propylparaben induced a typical state-dependent inhibition on hNaV1.2 channel carried current, characterized by a left-shift in the steady-state inactivation curve, a prolongation in the time needed for recovery from fast inactivation and a frequency-dependent blocking behavior. The state-dependent inhibition is increased for butylparaben and benzylparaben and diminished for methylparaben, ethylparaben and p-hydroxybenzoic acid (the major metabolite of parabens hydrolysis). Particularly, butylparaben and benzylparaben shift the steady-state inactivation curve 2- and 3-times more than propylparaben, respectively. Parabens are blockers of hNaV1.2 channels, sharing the mechanism of action of most of sodium channel blocking antiseizure drugs. The potency of this inhibition increases with the size of the lipophilic alcoholic residue of the ester group. These results provide a basis for rational drug design directed to generate new potential anticonvulsant agents.
Collapse
Affiliation(s)
- Andrea Enrique
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, La Plata, Argentina.
| | - Pedro Martín
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, La Plata, Argentina.
| | - María Laura Sbaraglini
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.
| | - Alan Talevi
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.
| | - Verónica Milesi
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, La Plata, Argentina.
| |
Collapse
|
13
|
The role of Nav1.7 in human nociceptors: insights from human induced pluripotent stem cell-derived sensory neurons of erythromelalgia patients. Pain 2020; 160:1327-1341. [PMID: 30720580 PMCID: PMC6554007 DOI: 10.1097/j.pain.0000000000001511] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Supplemental Digital Content is Available in the Text. Human sodium channel NaV1.7 in induced pluripotent stem cell–derived sensory neurons sets the action potential threshold but does not support subthreshold depolarizations. The chronic pain syndrome inherited erythromelalgia (IEM) is attributed to mutations in the voltage-gated sodium channel (NaV) 1.7. Still, recent studies targeting NaV1.7 in clinical trials have provided conflicting results. Here, we differentiated induced pluripotent stem cells from IEM patients with the NaV1.7/I848T mutation into sensory nociceptors. Action potentials in these IEM nociceptors displayed a decreased firing threshold, an enhanced upstroke, and afterhyperpolarization, all of which may explain the increased pain experienced by patients. Subsequently, we investigated the voltage dependence of the tetrodotoxin-sensitive NaV activation in these human sensory neurons using a specific prepulse voltage protocol. The IEM mutation induced a hyperpolarizing shift of NaV activation, which leads to activation of NaV1.7 at more negative potentials. Our results indicate that NaV1.7 is not active during subthreshold depolarizations, but that its activity defines the action potential threshold and contributes significantly to the action potential upstroke. Thus, our model system with induced pluripotent stem cell–derived sensory neurons provides a new rationale for NaV1.7 function and promises to be valuable as a translational tool to profile and develop more efficacious clinical analgesics.
Collapse
|
14
|
Ni G, Hao X, Cai X, Qin J, Zhou L, Kwan P, Chen Z. SiRNA-mediated ankyrin-G silence modulates the expression of voltage-gated Na channels in murine hippocampal HT22 cells. ACTA EPILEPTOLOGICA 2019. [DOI: 10.1186/s42494-019-0004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
15
|
Zaman T, Abou Tayoun A, Goldberg EM. A single-center SCN8A-related epilepsy cohort: clinical, genetic, and physiologic characterization. Ann Clin Transl Neurol 2019; 6:1445-1455. [PMID: 31402610 PMCID: PMC6689675 DOI: 10.1002/acn3.50839] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022] Open
Abstract
Objective Pathogenic variants in SCN8A, encoding the voltage‐gated sodium (Na+) channel α subunit Nav1.6, is a known cause of epilepsy. Here, we describe clinical and genetic features of all patients with SCN8A epilepsy evaluated at a single‐tertiary care center, with biophysical data on identified Nav1.6 variants and pharmacological response to selected Na+ channel blockers. Methods SCN8A variants were identified via an exome‐based panel of epilepsy‐associated genes for next generation sequencing (NGS), or via exome sequencing. Biophysical characterization was performed using voltage‐clamp recordings of ionic currents in heterologous cells. Results We observed a range in age of onset and severity of epilepsy and associated developmental delay/intellectual disability. Na+ channel blockers were highly or partially effective in most patients. Nav1.6 variants exhibited one or more biophysical defects largely consistent with gain of channel function. We found that clinical severity was correlated with the presence of multiple observed biophysical defects and the extent to which pathological Na+ channel activity could be normalized pharmacologically. For variants not previously reported, functional studies enhanced the evidence of pathogenicity. Interpretation We present a comprehensive single‐center dataset for SCN8A epilepsy that includes clinical, genetic, electrophysiologic, and pharmacologic data. We confirm a spectrum of severity and a variety of biophysical defects of Nav1.6 variants consistent with gain of channel function. Na+ channel blockers in the treatment of SCN8A epilepsy may correlate with the effect of such agents on pathological Na+ current observed in heterologous systems.
Collapse
Affiliation(s)
- Tariq Zaman
- Division of Neurology Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Ahmad Abou Tayoun
- Division of Genomic Diagnostics, Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104.,Genetics Department, Al Jalila Children's Specialty Hospital, Dubai, United Arab Emirates
| | - Ethan M Goldberg
- Division of Neurology Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104.,Department of Neurology, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104.,Department of Neuroscience, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104.,The Epilepsy Neurogenetics Initiative, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104
| |
Collapse
|
16
|
The invasiveness of human cervical cancer associated to the function of Na V1.6 channels is mediated by MMP-2 activity. Sci Rep 2018; 8:12995. [PMID: 30158710 PMCID: PMC6115389 DOI: 10.1038/s41598-018-31364-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/16/2018] [Indexed: 12/17/2022] Open
Abstract
Voltage-gated sodium (NaV) channels have been related with cell migration and invasiveness in human cancers. We previously reported the contribution of NaV1.6 channels activity with the invasion capacity of cervical cancer (CeCa) positive to Human Papilloma Virus type 16 (HPV16), which accounts for 50% of all CeCa cases. Here, we show that NaV1.6 gene (SCN8A) overexpression is a general characteristic of CeCa, regardless of the HPV type. In contrast, no differences were observed in NaV1.6 channel expression between samples of non-cancerous and cervical intraepithelial neoplasia. Additionally, we found that CeCa cell lines, C33A, SiHa, CaSki and HeLa, express mainly the splice variant of SCN8A that lacks exon 18, shown to encode for an intracellularly localized NaV1.6 channel, whereas the full-length adult form was present in CeCa biopsies. Correlatively, patch-clamp experiments showed no evidence of whole-cell sodium currents (INa) in CeCa cell lines. Heterologous expression of full-length NaV1.6 isoform in C33A cells produced INa, which were sufficient to significantly increase invasion capacity and matrix metalloproteinase type 2 (MMP-2) activity. These data suggest that upregulation of NaV1.6 channel expression occurs when cervical epithelium have been transformed into cancer cells, and that NaV1.6-mediated invasiveness of CeCa cells involves MMP-2 activity. Thus, our findings support the notion about using NaV channels as therapeutic targets against cancer metastasis.
Collapse
|
17
|
Palestro PH, Enrique N, Goicoechea S, Villalba ML, Sabatier LL, Martin P, Milesi V, Bruno Blanch LE, Gavernet L. Searching for New Leads To Treat Epilepsy: Target-Based Virtual Screening for the Discovery of Anticonvulsant Agents. J Chem Inf Model 2018; 58:1331-1342. [PMID: 29870230 DOI: 10.1021/acs.jcim.7b00721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The purpose of this investigation is to contribute to the development of new anticonvulsant drugs to treat patients with refractory epilepsy. We applied a virtual screening protocol that involved the search into molecular databases of new compounds and known drugs to find small molecules that interact with the open conformation of the Nav1.2 pore. As the 3D structure of human Nav1.2 is not available, we first assembled 3D models of the target, in closed and open conformations. After the virtual screening, the resulting candidates were submitted to a second virtual filter, to find compounds with better chances of being effective for the treatment of P-glycoprotein (P-gp) mediated resistant epilepsy. Again, we built a model of the 3D structure of human P-gp, and we validated the docking methodology selected to propose the best candidates, which were experimentally tested on Nav1.2 channels by patch clamp techniques and in vivo by the maximal electroshock seizure (MES) test. Patch clamp studies allowed us to corroborate that our candidates, drugs used for the treatment of other pathologies like Ciprofloxacin, Losartan, and Valsartan, exhibit inhibitory effects on Nav1.2 channel activity. Additionally, a compound synthesized in our lab, N, N'-diphenethylsulfamide, interacts with the target and also triggers significant Na1.2 channel inhibitory action. Finally, in vivo studies confirmed the anticonvulsant action of Valsartan, Ciprofloxacin, and N, N'-diphenethylsulfamide.
Collapse
Affiliation(s)
- Pablo H Palestro
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences , National University of La Plata , 47 and 115 , La Plata , Buenos Aires B1900BJW , Argentina
| | - Nicolas Enrique
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET-Universidad Nacional de la Plata), Fac. de Ciencias Exactas , Universidad Nacional de La Plata , La Plata , Buenos Aires B1900BJW , Argentina
| | - Sofia Goicoechea
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences , National University of La Plata , 47 and 115 , La Plata , Buenos Aires B1900BJW , Argentina
| | - Maria L Villalba
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences , National University of La Plata , 47 and 115 , La Plata , Buenos Aires B1900BJW , Argentina
| | - Laureano L Sabatier
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences , National University of La Plata , 47 and 115 , La Plata , Buenos Aires B1900BJW , Argentina
| | - Pedro Martin
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET-Universidad Nacional de la Plata), Fac. de Ciencias Exactas , Universidad Nacional de La Plata , La Plata , Buenos Aires B1900BJW , Argentina
| | - Veronica Milesi
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, CONICET-Universidad Nacional de la Plata), Fac. de Ciencias Exactas , Universidad Nacional de La Plata , La Plata , Buenos Aires B1900BJW , Argentina
| | - Luis E Bruno Blanch
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences , National University of La Plata , 47 and 115 , La Plata , Buenos Aires B1900BJW , Argentina
| | - Luciana Gavernet
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences , National University of La Plata , 47 and 115 , La Plata , Buenos Aires B1900BJW , Argentina
| |
Collapse
|
18
|
Correale J, Ysrraelit MC, Benarroch EE. Metabolic coupling of axons and glial cells. Neurology 2018; 90:737-744. [DOI: 10.1212/wnl.0000000000005339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
19
|
Hernandez-Muñoz I, Figuerola E, Sanchez-Molina S, Rodriguez E, Fernández-Mariño AI, Pardo-Pastor C, Bahamonde MI, Fernández-Fernández JM, García-Domínguez DJ, Hontecillas-Prieto L, Lavarino C, Carcaboso AM, de Torres C, Tirado OM, de Alava E, Mora J. RING1B contributes to Ewing sarcoma development by repressing the NaV1.6 sodium channel and the NF-κB pathway, independently of the fusion oncoprotein. Oncotarget 2018; 7:46283-46300. [PMID: 27317769 PMCID: PMC5216798 DOI: 10.18632/oncotarget.10092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/28/2016] [Indexed: 11/25/2022] Open
Abstract
Ewing sarcoma (ES) is an aggressive tumor defined by EWSR1 gene fusions that behave as an oncogene. Here we demonstrate that RING1B is highly expressed in primary ES tumors, and its expression is independent of the fusion oncogene. RING1B-depleted ES cells display an expression profile enriched in genes functionally involved in hematological development but RING1B depletion does not induce cellular differentiation. In ES cells, RING1B directly binds the SCN8A sodium channel promoter and its depletion results in enhanced Nav1.6 expression and function. The signaling pathway most significantly modulated by RING1B is NF-κB. RING1B depletion results in enhanced p105/p50 expression, which sensitizes ES cells to apoptosis by FGFR/SHP2/STAT3 blockade. Reduced NaV1.6 function protects ES cells from apoptotic cell death by maintaining low NF-κB levels. Our findings identify RING1B as a trait of the cell-of-origin and provide a potential targetable vulnerability.
Collapse
Affiliation(s)
| | - Elisabeth Figuerola
- Developmental Tumor Biology Laboratory, Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950-Barcelona, Spain
| | - Sara Sanchez-Molina
- Developmental Tumor Biology Laboratory, Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950-Barcelona, Spain
| | - Eva Rodriguez
- Developmental Tumor Biology Laboratory, Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950-Barcelona, Spain
| | - Ana Isabel Fernández-Mariño
- Laboratori de Fisiologia Molecular, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003-Barcelona, Spain.,Present Affiliation: Department of Neuroscience and Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison-53705, USA
| | - Carlos Pardo-Pastor
- Laboratori de Fisiologia Molecular, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003-Barcelona, Spain
| | - María Isabel Bahamonde
- Laboratori de Fisiologia Molecular, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003-Barcelona, Spain
| | - José M Fernández-Fernández
- Laboratori de Fisiologia Molecular, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003-Barcelona, Spain
| | - Daniel J García-Domínguez
- Department of Pediatric Hematology and Oncology, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013-Seville, Spain
| | - Lourdes Hontecillas-Prieto
- Department of Pediatric Hematology and Oncology, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013-Seville, Spain
| | - Cinzia Lavarino
- Developmental Tumor Biology Laboratory, Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950-Barcelona, Spain
| | - Angel M Carcaboso
- Developmental Tumor Biology Laboratory, Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950-Barcelona, Spain
| | - Carmen de Torres
- Developmental Tumor Biology Laboratory, Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950-Barcelona, Spain
| | - Oscar M Tirado
- Sarcoma Research Group, Laboratori d'Oncología Molecular, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908-Barcelona, Spain
| | - Enrique de Alava
- Department of Pediatric Hematology and Oncology, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013-Seville, Spain
| | - Jaume Mora
- Developmental Tumor Biology Laboratory, Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950-Barcelona, Spain
| |
Collapse
|
20
|
Pastore V, Wasowski C, Martin P, Enrique A, Higgs J, Bruno-Blanch LE, Milesi V, Marder M. N-propyl-2,2-diphenyl-2-hydroxyacetamide, a novel α-hydroxyamide with anticonvulsant, anxiolytic and antidepressant-like effects that inhibits voltage-gated sodium channels. Eur J Pharmacol 2017; 819:270-280. [PMID: 29217174 DOI: 10.1016/j.ejphar.2017.11.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 11/14/2017] [Accepted: 11/30/2017] [Indexed: 01/08/2023]
Abstract
In patients with epilepsy, anxiety and depression are the most frequent psychiatric comorbidities but they often remain unrecognized and untreated. We report herein the antidepressant-like activity in two animal models, tail suspension and forced swimming tests, of six anticonvulsants α-hydroxyamides. From these, N-propyl-2,2-diphenyl-2-hydroxyacetamide (compound 5) emerged not only as the most active as anticonvulsant (ED50 = 2.5mg/kg, MES test), but it showed the most remarkable antidepressant-like effect in the tail suspension and forced swimming tests (0.3-30mg/kg, i.p.); and, also, anxiolytic-like action in the plus maze test (3-10mg/kg, i.p.) in mice. Studies of its mechanism of action, by means of its capacity to act via the GABAA receptor ([3H]-flunitrazepam binding assay); the 5-HT1A receptor ([3H]-8-OH-DPAT binding assay) and the voltage-gated sodium channels (either using the patch clamp technique in hNav 1.2 expressed in HEK293 cell line or using veratrine, in vivo) were attempted. The results demonstrated that its effects are not likely related to 5-HT1A or GABAAergic receptors and that its anticonvulsant and antidepressant-like effect could be due to its voltage-gated sodium channel blocking properties.
Collapse
Affiliation(s)
- Valentina Pastore
- Universidad de Buenos Aires, Consejo Nacional de lnvestigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Junín 956 (C1113AAD), Ciudad de Buenos Aires, Argentina.
| | - Cristina Wasowski
- Universidad de Buenos Aires, Consejo Nacional de lnvestigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Junín 956 (C1113AAD), Ciudad de Buenos Aires, Argentina.
| | - Pedro Martin
- Universidad Nacional de La Plata, Consejo Nacional de lnvestigaciones Científicas y Técnicas, Instituto de Estudios Inmunopatológicos y Fisiológicos, 47 street and 115 (B1900BJW), La Plata, Argentina.
| | - Andrea Enrique
- Química Medicinal, Departamento de Ciencias Biológicas, Universidad Nacional de La Plata, 47 street and 115 (B1900BJW), La Plata, Argentina.
| | - Josefina Higgs
- Universidad de Buenos Aires, Consejo Nacional de lnvestigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Junín 956 (C1113AAD), Ciudad de Buenos Aires, Argentina.
| | - Luis E Bruno-Blanch
- Química Medicinal, Departamento de Ciencias Biológicas, Universidad Nacional de La Plata, 47 street and 115 (B1900BJW), La Plata, Argentina.
| | - Veronica Milesi
- Universidad Nacional de La Plata, Consejo Nacional de lnvestigaciones Científicas y Técnicas, Instituto de Estudios Inmunopatológicos y Fisiológicos, 47 street and 115 (B1900BJW), La Plata, Argentina.
| | - Mariel Marder
- Universidad de Buenos Aires, Consejo Nacional de lnvestigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Junín 956 (C1113AAD), Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
21
|
Balbi P, Massobrio P, Hellgren Kotaleski J. A single Markov-type kinetic model accounting for the macroscopic currents of all human voltage-gated sodium channel isoforms. PLoS Comput Biol 2017; 13:e1005737. [PMID: 28863150 PMCID: PMC5599066 DOI: 10.1371/journal.pcbi.1005737] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 09/14/2017] [Accepted: 08/23/2017] [Indexed: 11/19/2022] Open
Abstract
Modelling ionic channels represents a fundamental step towards developing biologically detailed neuron models. Until recently, the voltage-gated ion channels have been mainly modelled according to the formalism introduced by the seminal works of Hodgkin and Huxley (HH). However, following the continuing achievements in the biophysical and molecular comprehension of these pore-forming transmembrane proteins, the HH formalism turned out to carry limitations and inconsistencies in reproducing the ion-channels electrophysiological behaviour. At the same time, Markov-type kinetic models have been increasingly proven to successfully replicate both the electrophysiological and biophysical features of different ion channels. However, in order to model even the finest non-conducting molecular conformational change, they are often equipped with a considerable number of states and related transitions, which make them computationally heavy and less suitable for implementation in conductance-based neurons and large networks of those. In this purely modelling study we develop a Markov-type kinetic model for all human voltage-gated sodium channels (VGSCs). The model framework is detailed, unifying (i.e., it accounts for all ion-channel isoforms) and computationally efficient (i.e. with a minimal set of states and transitions). The electrophysiological data to be modelled are gathered from previously published studies on whole-cell patch-clamp experiments in mammalian cell lines heterologously expressing the human VGSC subtypes (from NaV1.1 to NaV1.9). By adopting a minimum sequence of states, and using the same state diagram for all the distinct isoforms, the model ensures the lightest computational load when used in neuron models and neural networks of increasing complexity. The transitions between the states are described by original ordinary differential equations, which represent the rate of the state transitions as a function of voltage (i.e., membrane potential). The kinetic model, developed in the NEURON simulation environment, appears to be the simplest and most parsimonious way for a detailed phenomenological description of the human VGSCs electrophysiological behaviour.
Collapse
Affiliation(s)
- Pietro Balbi
- Department of Neurorehabilitation, Scientific Institute of Pavia via Boezio IRCCS, Istituti Clinici Scientifici Maugeri SpA, Pavia, Italy
| | - Paolo Massobrio
- Department of Informatics, Bioengineering, Robotics and System Engineering (DIBRIS), University of Genova, Genova, Italy
| | - Jeanette Hellgren Kotaleski
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Computational Science and Technology, School of Computer Science and Communication, KTH The Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
22
|
Low Somatic Sodium Conductance Enhances Action Potential Precision in Time-Coding Auditory Neurons. J Neurosci 2017; 36:11999-12009. [PMID: 27881784 DOI: 10.1523/jneurosci.1475-16.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/21/2016] [Accepted: 10/04/2016] [Indexed: 01/14/2023] Open
Abstract
Auditory nerve fibers encode sounds in the precise timing of action potentials (APs), which is used for such computations as sound localization. Timing information is relayed through several cell types in the auditory brainstem that share an unusual property: their APs are not overshooting, suggesting that the cells have very low somatic sodium conductance (gNa). However, it is not clear how gNa influences temporal precision. We addressed this by comparing bushy cells (BCs) in the mouse cochlear nucleus with T-stellate cells (SCs), which do have normal overshooting APs. BCs play a central role in both relaying and refining precise timing information from the auditory nerve, whereas SCs discard precise timing information and encode the envelope of sound amplitude. Nucleated-patch recording at near-physiological temperature indicated that the Na current density was 62% lower in BCs, and the voltage dependence of gNa inactivation was 13 mV hyperpolarized compared with SCs. We endowed BCs with SC-like gNa using two-electrode dynamic clamp and found that synaptic activity at physiologically relevant rates elicited APs with significantly lower probability, through increased activation of delayed rectifier channels. In addition, for two near-simultaneous synaptic inputs, the window of coincidence detection widened significantly with increasing gNa, indicating that refinement of temporal information by BCs is degraded by gNa Thus, reduced somatic gNa appears to be an adaption for enhancing fidelity and precision in time-coding neurons. SIGNIFICANCE STATEMENT Proper hearing depends on analyzing temporal aspects of sounds with high precision. Auditory neurons that specialize in precise temporal information have a suite of unusual intrinsic properties, including nonovershooting action potentials and few sodium channels in the soma. However, it was not clear how low sodium channel availability in the soma influenced the temporal precision of action potentials initiated in the axon initial segment. We studied this using dynamic clamp to mimic sodium channels in the soma, which yielded normal, overshooting action potentials. Increasing somatic sodium conductance had major negative consequences: synaptic activity evoked action potentials with lower fidelity, and the precision of coincidence detection was degraded. Thus, low somatic sodium channel availability appears to enhance fidelity and temporal precision.
Collapse
|
23
|
Duménieu M, Oulé M, Kreutz MR, Lopez-Rojas J. The Segregated Expression of Voltage-Gated Potassium and Sodium Channels in Neuronal Membranes: Functional Implications and Regulatory Mechanisms. Front Cell Neurosci 2017; 11:115. [PMID: 28484374 PMCID: PMC5403416 DOI: 10.3389/fncel.2017.00115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/05/2017] [Indexed: 01/25/2023] Open
Abstract
Neurons are highly polarized cells with apparent functional and morphological differences between dendrites and axon. A critical determinant for the molecular and functional identity of axonal and dendritic segments is the restricted expression of voltage-gated ion channels (VGCs). Several studies show an uneven distribution of ion channels and their differential regulation within dendrites and axons, which is a prerequisite for an appropriate integration of synaptic inputs and the generation of adequate action potential (AP) firing patterns. This review article will focus on the signaling pathways leading to segmented expression of voltage-gated potassium and sodium ion channels at the neuronal plasma membrane and the regulatory mechanisms ensuring segregated functions. We will also discuss the relevance of proper ion channel targeting for neuronal physiology and how alterations in polarized distribution contribute to neuronal pathology.
Collapse
Affiliation(s)
- Maël Duménieu
- Research Group Neuroplasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Marie Oulé
- Research Group Neuroplasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Michael R Kreutz
- Research Group Neuroplasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany.,Leibniz Group "Dendritic Organelles and Synaptic Function", University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology (ZMNH)Hamburg, Germany
| | - Jeffrey Lopez-Rojas
- Research Group Neuroplasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany
| |
Collapse
|
24
|
The association of bacterial C 9-based TTX-like compounds with Prorocentrum minimum opens new uncertainties about shellfish seafood safety. Sci Rep 2017; 7:40880. [PMID: 28106083 PMCID: PMC5247728 DOI: 10.1038/srep40880] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/12/2016] [Indexed: 12/23/2022] Open
Abstract
In 2012, Tetrodotoxin (TTX) was identified in mussels and linked to the presence of Prorocentrum minimum (P. minimum) in Greece. The connexion between TTX and P. minimum was further studied in this paper. First, the presence of TTX-producer bacteria, Vibrio and Pseudomonas spp, was confirmed in Greek mussels. In addition these samples showed high activity as inhibitors of sodium currents (INa). P. minimum was before associated with neurotoxic symptoms, however, the nature and structure of toxins produced by this dinoflagellate remains unknown. Three P. minimum strains, ccmp1529, ccmp2811 and ccmp2956, growing in different conditions of temperature, salinity and light were used to study the production of toxic compounds. Electrophysiological assays showed no effect of ccmp2811 strain on INa, while ccmp1529 and ccmp2956 strains were able to significantly reduce INa in the same way as TTX. In these samples two new compounds, m/z 265 and m/z 308, were identified and characterized by liquid chromatography tandem high-resolution mass spectrometry. Besides, two TTX-related bacteria, Roseobacter and Vibrio sp, were observed. These results show for the first time that P. minimum produce TTX-like compounds with a similar ion pattern and C9-base to TTX analogues and with the same effect on INa.
Collapse
|
25
|
Li S, Wang X, Ma QH, Yang WL, Zhang XG, Dawe GS, Xiao ZC. Amyloid precursor protein modulates Nav1.6 sodium channel currents through a Go-coupled JNK pathway. Sci Rep 2016; 6:39320. [PMID: 28008944 PMCID: PMC5180232 DOI: 10.1038/srep39320] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 11/17/2016] [Indexed: 02/08/2023] Open
Abstract
Amyloid precursor protein (APP), commonly associated with Alzheimer's disease, also marks axonal degeneration. In the recent studies, we demonstrated that APP aggregated at nodes of Ranvier (NORs) in myelinated central nervous system (CNS) axons and interacted with Nav1.6. However, the physiological function of APP remains unknown. In this study, we described reduced sodium current densities in APP knockout hippocampal neurons. Coexpression of APP or its intracellular domains containing a VTPEER motif with Nav1.6 sodium channels in Xenopus oocytes resulted in an increase in peak sodium currents, which was enhanced by constitutively active Go mutant and blocked by a dominant negative mutant. JNK and CDK5 inhibitor attenuated increases in Nav1.6 sodium currents induced by overexpression of APP. Nav1.6 sodium currents were increased by APPT668E (mutant Thr to Glu) and decreased by T668A (mutant Thr to ALa) mutant, respectively. The cell surface expression of Nav1.6 sodium channels in the white matter of spinal cord and the spinal conduction velocity is decreased in APP, p35 and JNK3 knockout mice. Therefore, APP modulates Nav1.6 sodium channels through a Go-coupled JNK pathway, which is dependent on phosphorylation of APP at Thr668.
Collapse
Affiliation(s)
- Shao Li
- Department of Physiology, Dalian Medical University, Dalian 116044, China
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 10 Medical Drive 117597, Singapore
| | - Xi Wang
- Department of Physiology, Dalian Medical University, Dalian 116044, China
- The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical College, Kunming 650031, China
| | - Quan-Hong Ma
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Wu-lin Yang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 10 Medical Drive 117597, Singapore
| | - Xiao-Gang Zhang
- Department of Physiology, Dalian Medical University, Dalian 116044, China
| | - Gavin S. Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, 10 Medical Drive 117597, Singapore
- Neurobiology and Ageing Programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive 117456, Singapore
- Singapore Institute for Neurotechnology (SINAPSE), Centre for Life Sciences, National University of Singapore, 28 Medical Drive 117456, Singapore
| | - Zhi-Cheng Xiao
- The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical College, Kunming 650031, China
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| |
Collapse
|
26
|
Krouchev NI, Rattay F, Sawan M, Vinet A. From Squid to Mammals with the HH Model through the Nav Channels' Half-Activation-Voltage Parameter. PLoS One 2015; 10:e0143570. [PMID: 26629692 PMCID: PMC4667926 DOI: 10.1371/journal.pone.0143570] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 11/08/2015] [Indexed: 11/18/2022] Open
Abstract
The model family analyzed in this work stems from the classical Hodgkin-Huxley model (HHM). for a single-compartment (space-clamp) and continuous variation of the voltage-gated sodium channels (Nav) half-activation-voltage parameter ΔV1/2, which controls the window of sodium-influx currents. Unlike the baseline HHM, its parametric extension exhibits a richer multitude of dynamic regimes, such as multiple fixed points (FP’s), bi- and multi-stability (coexistence of FP’s and/or periodic orbits). Such diversity correlates with a number of functional properties of excitable neural tissue, such as the capacity or not to evoke an action potential (AP) from the resting state, by applying a minimal absolute rheobase current amplitude. The utility of the HHM rooted in the giant squid for the descriptions of the mammalian nervous system is of topical interest. We conclude that the model’s fundamental principles are still valid (up to using appropriate parameter values) for warmer-blooded species, without a pressing need for a substantial revision of the mathematical formulation. We demonstrate clearly that the continuous variation of the ΔV1/2 parameter comes close to being equivalent with recent HHM ‘optimizations’. The neural dynamics phenomena described here are nontrivial. The model family analyzed in this work contains the classical HHM as a special case. The validity and applicability of the HHM to mammalian neurons can be achieved by picking the appropriate ΔV1/2 parameter in a significantly broad range of values. For such large variations, in contrast to the classical HHM, the h and n gates’ dynamics may be uncoupled - i.e. the n gates may no longer be considered in mere linear correspondence to the h gates. ΔV1/2variation leads to a multitude of dynamic regimes—e.g. models with either 1 fixed point (FP) or with 3 FP’s. These may also coexist with stable and/or unstable periodic orbits. Hence, depending on the initial conditions, the system may behave as either purely excitable or as an oscillator. ΔV1/2 variation leads to significant changes in the metabolic efficiency of an action potential (AP). Lower ΔV1/2 values yield a larger range of AP response frequencies, and hence provide for more flexible neural coding. Such lower values also contribute to faster AP conduction velocities along neural fibers of otherwise comparable-diameter. The 3 FP case brings about an absolute rheobase current. In comparison in the classical HHM the rheobase current is only relative - i.e. excitability is lost after a finite amount of elapsed stimulation time. Lower ΔV1/2 values translate in lower threshold currents from the resting state.
Collapse
Affiliation(s)
- Nedialko I. Krouchev
- Polystim Neurotechnologies, Ecole Polytechnique, Montreal (Quebec), Canada
- * E-mail:
| | - Frank Rattay
- Institute for Analysis and Scientific Computing, University of Technology, Vienna, Austria
| | - Mohamad Sawan
- Polystim Neurotechnologies, Ecole Polytechnique, Montreal (Quebec), Canada
| | - Alain Vinet
- Institut de Genie Biomedical, Universite de Montreal, Montreal (Quebec), Canada
| |
Collapse
|
27
|
Patel RR, Barbosa C, Xiao Y, Cummins TR. Human Nav1.6 Channels Generate Larger Resurgent Currents than Human Nav1.1 Channels, but the Navβ4 Peptide Does Not Protect Either Isoform from Use-Dependent Reduction. PLoS One 2015; 10:e0133485. [PMID: 26182346 PMCID: PMC4504674 DOI: 10.1371/journal.pone.0133485] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 06/28/2015] [Indexed: 11/24/2022] Open
Abstract
Voltage-gated sodium channels are responsible for the initiation and propagation of action potentials (APs). Two brain isoforms, Nav1.1 and Nav1.6, have very distinct cellular and subcellular expression. Specifically, Nav1.1 is predominantly expressed in the soma and proximal axon initial segment of fast-spiking GABAergic neurons, while Nav1.6 is found at the distal axon initial segment and nodes of Ranvier of both fast-spiking GABAergic and excitatory neurons. Interestingly, an auxiliary voltage-gated sodium channel subunit, Navβ4, is also enriched in the axon initial segment of fast-spiking GABAergic neurons. The C-terminal tail of Navβ4 is thought to mediate resurgent sodium current, an atypical current that occurs immediately following the action potential and is predicted to enhance excitability. To better understand the contribution of Nav1.1, Nav1.6 and Navβ4 to high frequency firing, we compared the properties of these two channel isoforms in the presence and absence of a peptide corresponding to part of the C-terminal tail of Navβ4. We used whole-cell patch clamp recordings to examine the biophysical properties of these two channel isoforms in HEK293T cells and found several differences between human Nav1.1 and Nav1.6 currents. Nav1.1 channels exhibited slower closed-state inactivation but faster open-state inactivation than Nav1.6 channels. We also observed a greater propensity of Nav1.6 to generate resurgent currents, most likely due to its slower kinetics of open-state inactivation, compared to Nav1.1. These two isoforms also showed differential responses to slow and fast AP waveforms, which were altered by the Navβ4 peptide. Although the Navβ4 peptide substantially increased the rate of recovery from apparent inactivation, Navβ4 peptide did not protect either channel isoform from undergoing use-dependent reduction with 10 Hz step-pulse stimulation or trains of slow or fast AP waveforms. Overall, these two channels have distinct biophysical properties that may differentially contribute to regulating neuronal excitability.
Collapse
Affiliation(s)
- Reesha R Patel
- Program in Medical Neuroscience, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Cindy Barbosa
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Yucheng Xiao
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Theodore R Cummins
- Program in Medical Neuroscience, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| |
Collapse
|
28
|
Liu C, Tan FCK, Xiao ZC, Dawe GS. Amyloid precursor protein enhances Nav1.6 sodium channel cell surface expression. J Biol Chem 2015; 290:12048-57. [PMID: 25767117 DOI: 10.1074/jbc.m114.617092] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Indexed: 12/19/2022] Open
Abstract
Amyloid precursor protein (APP) is commonly associated with Alzheimer disease, but its physiological function remains unknown. Nav1.6 is a key determinant of neuronal excitability in vivo. Because mouse models of gain of function and loss of function of APP and Nav1.6 share some similar phenotypes, we hypothesized that APP might be a candidate molecule for sodium channel modulation. Here we report that APP colocalized and interacted with Nav1.6 in mouse cortical neurons. Knocking down APP decreased Nav1.6 sodium channel currents and cell surface expression. APP-induced increases in Nav1.6 cell surface expression were Go protein-dependent, enhanced by a constitutively active Go protein mutant, and blocked by a dominant negative Go protein mutant. APP also regulated JNK activity in a Go protein-dependent manner. JNK inhibition attenuated increases in cell surface expression of Nav1.6 sodium channels induced by overexpression of APP. JNK, in turn, phosphorylated APP. Nav1.6 sodium channel surface expression was increased by T668E and decreased by T668A, mutations of APP695 mimicking and preventing Thr-668 phosphorylation, respectively. Phosphorylation of APP695 at Thr-668 enhanced its interaction with Nav1.6. Therefore, we show that APP enhances Nav1.6 sodium channel cell surface expression through a Go-coupled JNK pathway.
Collapse
Affiliation(s)
- Chao Liu
- From the Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, the Neurobiology and Ageing Programme, Life Sciences Institute and Singapore Institute for Neurotechnology (SINAPSE), Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456
| | - Francis Chee Kuan Tan
- From the Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, the Neurobiology and Ageing Programme, Life Sciences Institute and Singapore Institute for Neurotechnology (SINAPSE), Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456
| | - Zhi-Cheng Xiao
- the Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical College, Kunming 650031, China, and the Shunxi-Monash Immune Regeneration and Neuroscience Laboratories, Department of Anatomy and Developmental Biology, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| | - Gavin S Dawe
- From the Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, the Neurobiology and Ageing Programme, Life Sciences Institute and Singapore Institute for Neurotechnology (SINAPSE), Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456,
| |
Collapse
|
29
|
Balbi P, Martinoia S, Massobrio P. Axon-somatic back-propagation in detailed models of spinal alpha motoneurons. Front Comput Neurosci 2015; 9:15. [PMID: 25729362 PMCID: PMC4325909 DOI: 10.3389/fncom.2015.00015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 01/27/2015] [Indexed: 11/13/2022] Open
Abstract
Antidromic action potentials following distal stimulation of motor axons occasionally fail to invade the soma of alpha motoneurons in spinal cord, due to their passing through regions of high non-uniformity. Morphologically detailed conductance-based models of cat spinal alpha motoneurons have been developed, with the aim to reproduce and clarify some aspects of the electrophysiological behavior of the antidromic axon-somatic spike propagation. Fourteen 3D morphologically detailed somata and dendrites of cat spinal alpha motoneurons have been imported from an open-access web-based database of neuronal morphologies, NeuroMorpho.org, and instantiated in neurocomputational models. An axon hillock, an axonal initial segment and a myelinated axon are added to each model. By sweeping the diameter of the axonal initial segment (AIS) and the axon hillock, as well as the maximal conductances of sodium channels at the AIS and at the soma, the developed models are able to show the relationships between different geometric and electrophysiological configurations and the voltage attenuation of the antidromically traveling wave. In particular, a greater than usually admitted sodium conductance at AIS is necessary and sufficient to overcome the dramatic voltage attenuation occurring during antidromic spike propagation both at the myelinated axon-AIS and at the AIS-soma transitions.
Collapse
Affiliation(s)
- Pietro Balbi
- Department of Neurorehabilitation, Scientific Institute of Pavia via Boezio, IRCCS, 'Salvatore Maugeri' Foundation Pavia, Italy
| | - Sergio Martinoia
- Department of Informatics, Bioengineering, Robotics, System Engineering (DIBRIS), University of Genova Genova, Italy
| | - Paolo Massobrio
- Department of Informatics, Bioengineering, Robotics, System Engineering (DIBRIS), University of Genova Genova, Italy
| |
Collapse
|
30
|
Martin NJ, Ferreiro SF, Barbault F, Nicolas M, Lecellier G, Paetz C, Gaysinski M, Alonso E, Thomas OP, Botana LM, Raharivelomanana P. Indole alkaloids from the Marquesan plant Rauvolfia nukuhivensis and their effects on ion channels. PHYTOCHEMISTRY 2015; 109:84-95. [PMID: 25468537 DOI: 10.1016/j.phytochem.2014.10.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/12/2014] [Accepted: 10/20/2014] [Indexed: 06/04/2023]
Abstract
In addition to the already reported nukuhivensiums 1 and 2, 11 indole alkaloids were isolated from the bark of the plant Rauvolfia nukuhivensis, growing in the Marquesas archipelago. The known sandwicine (3), isosandwicine (4), spegatrine (8), lochneram (9), flavopereirine (13) have been found in this plant together with the norsandwicine (5), isonorsandwicine (6), Nb-methylisosandwicine (7), 10-methoxypanarine (10), nortueiaoine (11), tueiaoine (12). The structure elucidation was performed on the basis of a deep exploration of the NMR and HRESIMS data as well as comparison with literature data for similar compounds. Norsandwicine, 10-methoxypanarine, tueiaoine, and more importantly nukuhivensiums, were shown to significantly induce a reduction of IKr amplitude (HERG current). Molecular modelling through docking was performed in order to illustrate this result.
Collapse
Affiliation(s)
- Nicolas J Martin
- Laboratoire EIMS UMR 241 EIO, Université de la Polynésie française, BP 6570, 98702 Faa'a, Tahiti, French Polynesia.
| | - Sara F Ferreiro
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain.
| | - Florent Barbault
- Laboratoire ITODYS UMR CNRS 7086, Université Paris Diderot, Sorbonne Paris Cité, 15 rue J.-A. de Baïf, 75013 Paris, France.
| | - Mael Nicolas
- Laboratoire EIMS UMR 241 EIO, Université de la Polynésie française, BP 6570, 98702 Faa'a, Tahiti, French Polynesia.
| | - Gaël Lecellier
- Université de Versailles Saint Quentin en Yvelines, 55 Avenue des Etats-Unis, 78035 Versailles Cedex, France; Laboratoire d'Excellence "CORAIL" - Centre de Recherches Insulaires et Observatoire de l'Environnement (CRIOBE), BP 1013 - 98729, Papetoai, Moorea, French Polynesia.
| | - Christian Paetz
- MPI for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany.
| | - Marc Gaysinski
- Institut de Chimie de Nice-PCRE, UMR 7272 CNRS, Université de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice, France.
| | - Eva Alonso
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain.
| | - Olivier P Thomas
- Institut de Chimie de Nice-PCRE, UMR 7272 CNRS, Université de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice, France; Institut Méditerranéen de Biodiversité et d́Ecologie marine et continentale, UMR 7263 CNRS - IRD - Aix-Marseille Université - UAPV, Station Marine d́Endoume, Rue de la Batterie des Lions, 13007 Marseille, France.
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain.
| | - Phila Raharivelomanana
- Laboratoire EIMS UMR 241 EIO, Université de la Polynésie française, BP 6570, 98702 Faa'a, Tahiti, French Polynesia.
| |
Collapse
|
31
|
Gilchrist J, Dutton S, Diaz-Bustamante M, McPherson A, Olivares N, Kalia J, Escayg A, Bosmans F. Nav1.1 modulation by a novel triazole compound attenuates epileptic seizures in rodents. ACS Chem Biol 2014; 9:1204-12. [PMID: 24635129 PMCID: PMC4027953 DOI: 10.1021/cb500108p] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 03/17/2014] [Indexed: 12/19/2022]
Abstract
Here, we report the discovery of a novel anticonvulsant drug with a molecular organization based on the unique scaffold of rufinamide, an anti-epileptic compound used in a clinical setting to treat severe epilepsy disorders such as Lennox-Gastaut syndrome. Although accumulating evidence supports a working mechanism through voltage-gated sodium (Nav) channels, we found that a clinically relevant rufinamide concentration inhibits human (h)Nav1.1 activation, a distinct working mechanism among anticonvulsants and a feature worth exploring for treating a growing number of debilitating disorders involving hNav1.1. Subsequent structure-activity relationship experiments with related N-benzyl triazole compounds on four brain hNav channel isoforms revealed a novel drug variant that (1) shifts hNav1.1 opening to more depolarized voltages without further alterations in the gating properties of hNav1.1, hNav1.2, hNav1.3, and hNav1.6; (2) increases the threshold to action potential initiation in hippocampal neurons; and (3) greatly reduces the frequency of seizures in three animal models. Altogether, our results provide novel molecular insights into the rational development of Nav channel-targeting molecules based on the unique rufinamide scaffold, an outcome that may be exploited to design drugs for treating disorders involving particular Nav channel isoforms while limiting adverse effects.
Collapse
Affiliation(s)
- John Gilchrist
- Department
of Physiology, Johns Hopkins University,
School of Medicine, Baltimore, Maryland 21205, United States
| | - Stacey Dutton
- Department
of Human Genetics, Emory University, School
of Medicine, Atlanta, Georgia 30022, United
States
| | - Marcelo Diaz-Bustamante
- Lieber
Institute for Brain Development, Johns Hopkins
University, School of Medicine, Baltimore, Maryland 21205, United States
| | - Annie McPherson
- Department
of Human Genetics, Emory University, School
of Medicine, Atlanta, Georgia 30022, United
States
| | - Nicolas Olivares
- Lieber
Institute for Brain Development, Johns Hopkins
University, School of Medicine, Baltimore, Maryland 21205, United States
| | - Jeet Kalia
- Indian
Institute of Science Education and Research Pune, Pune, Maharashtra 411 008, India
| | - Andrew Escayg
- Department
of Human Genetics, Emory University, School
of Medicine, Atlanta, Georgia 30022, United
States
| | - Frank Bosmans
- Department
of Physiology, Johns Hopkins University,
School of Medicine, Baltimore, Maryland 21205, United States
- Solomon
H. Snyder Department of Neuroscience, Johns
Hopkins University, School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
32
|
Qiao X, Sun G, Clare JJ, Werkman TR, Wadman WJ. Properties of human brain sodium channel α-subunits expressed in HEK293 cells and their modulation by carbamazepine, phenytoin and lamotrigine. Br J Pharmacol 2014; 171:1054-67. [PMID: 24283699 PMCID: PMC3925043 DOI: 10.1111/bph.12534] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 11/08/2013] [Accepted: 11/21/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Voltage-activated Na(+) channels contain one distinct α-subunit. In the brain NaV 1.1, NaV 1.2, NaV 1.3 and NaV 1.6 are the four most abundantly expressed α-subunits. The antiepileptic drugs (AEDs) carbamazepine, phenytoin and lamotrigine have voltage-gated Na(+) channels as their primary therapeutic targets. This study provides a systematic comparison of the biophysical properties of these four α-subunits and characterizes their interaction with carbamazepine, phenytoin and lamotrigine. EXPERIMENTAL APPROACH Na(+) currents were recorded in voltage-clamp mode in HEK293 cells stably expressing one of the four α-subunits. KEY RESULTS NaV 1.2 and NaV 1.3 subunits have a relatively slow recovery from inactivation, compared with the other subunits and NaV 1.1 subunits generate the largest window current. Lamotrigine evokes a larger maximal shift of the steady-state inactivation relationship than carbamazepine or phenytoin. Carbamazepine shows the highest binding rate to the α-subunits. Lamotrigine binding to NaV 1.1 subunits is faster than to the other α-subunits. Lamotrigine unbinding from the α-subunits is slower than that of carbamazepine and phenytoin. CONCLUSIONS AND IMPLICATIONS The four Na(+) channel α-subunits show subtle differences in their biophysical properties, which, in combination with their (sub)cellular expression patterns in the brain, could contribute to differences in neuronal excitability. We also observed differences in the parameters that characterize AED binding to the Na(+) channel subunits. Particularly, lamotrigine binding to the four α-subunits suggests a subunit-specific response. Such differences will have consequences for the clinical efficacy of AEDs. Knowledge of the biophysical and binding parameters could be employed to optimize therapeutic strategies and drug development.
Collapse
Affiliation(s)
- Xin Qiao
- Center for NeuroScience, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, The Netherlands
| | - Guangchun Sun
- Center for NeuroScience, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, The Netherlands
| | | | - Taco R Werkman
- Center for NeuroScience, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, The Netherlands
| | - Wytse J Wadman
- Center for NeuroScience, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, The Netherlands
| |
Collapse
|
33
|
He B, Soderlund DM. Functional expression of Rat Nav1.6 voltage-gated sodium channels in HEK293 cells: modulation by the auxiliary β1 subunit. PLoS One 2014; 9:e85188. [PMID: 24404202 PMCID: PMC3880341 DOI: 10.1371/journal.pone.0085188] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 12/02/2013] [Indexed: 12/27/2022] Open
Abstract
The Nav1.6 voltage-gated sodium channel α subunit isoform is abundantly expressed in the adult rat brain. To assess the functional modulation of Nav1.6 channels by the auxiliary β1 subunit we expressed the rat Nav1.6 sodium channel α subunit by stable transformation in HEK293 cells either alone or in combination with the rat β1 subunit and assessed the properties of the reconstituted channels by recording sodium currents using the whole-cell patch clamp technique. Coexpression with the β1 subunit accelerated the inactivation of sodium currents and shifted the voltage dependence of channel activation and steady-state fast inactivation by approximately 5–7 mV in the direction of depolarization. By contrast the β1 subunit had no effect on the stability of sodium currents following repeated depolarizations at high frequencies. Our results define modulatory effects of the β1 subunit on the properties of rat Nav1.6-mediated sodium currents reconstituted in HEK293 cells that differ from effects measured previously in the Xenopus oocyte expression system. We also identify differences in the kinetic and gating properties of the rat Nav1.6 channel expressed in the absence of the β1 subunit compared to the properties of the orthologous mouse and human channels expressed in this system.
Collapse
Affiliation(s)
- Bingjun He
- College of Life Sciences, Nankai University, Tianjin, China
| | - David M. Soderlund
- Department of Entomology, Cornell University, Geneva, New York, United States of America
- * E-mail: .
| |
Collapse
|
34
|
Boucher PA, Joós B, Morris CE. Coupled left-shift of Nav channels: modeling the Na⁺-loading and dysfunctional excitability of damaged axons. J Comput Neurosci 2012; 33:301-19. [PMID: 22476614 DOI: 10.1007/s10827-012-0387-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 01/25/2012] [Accepted: 02/12/2012] [Indexed: 11/29/2022]
Abstract
Injury to neural tissue renders voltage-gated Na⁺ (Nav) channels leaky. Even mild axonal trauma initiates Na⁺-loading, leading to secondary Ca²⁺-loading and white matter degeneration. The nodal isoform is Nav1.6 and for Nav1.6-expressing HEK-cells, traumatic whole cell stretch causes an immediate tetrodotoxin-sensitive Na⁺-leak. In stretch-damaged oocyte patches, Nav1.6 current undergoes damage-intensity dependent hyperpolarizing- (left-) shifts, but whether left-shift underlies injured-axon Nav-leak is uncertain. Nav1.6 inactivation (availability) is kinetically limited by (coupled to) Nav activation, yielding coupled left-shift (CLS) of the two processes: CLS should move the steady-state Nav1.6 "window conductance" closer to typical firing thresholds. Here we simulated excitability and ion homeostasis in free-running nodes of Ranvier to assess if hallmark injured-axon behaviors--Na⁺-loading, ectopic excitation, propagation block--would occur with Nav-CLS. Intact/traumatized axolemma ratios were varied, and for some simulations Na/K pumps were included, with varied in/outside volumes. We simulated saltatory propagation with one mid-axon node variously traumatized. While dissipating the [Na⁺] gradient and hyperactivating the Na/K pump, Nav-CLS generated neuropathic pain-like ectopic bursts. Depending on CLS magnitude, fraction of Nav channels affected, and pump intensity, tonic or burst firing or nodal inexcitability occurred, with [Na⁺] and [K⁺] fluctuating. Severe CLS-induced inexcitability did not preclude Na⁺-loading; in fact, the steady-state Na⁺-leaks elicited large pump currents. At a mid-axon node, mild CLS perturbed normal anterograde propagation, and severe CLS blocked saltatory propagation. These results suggest that in damaged excitable cells, Nav-CLS could initiate cellular deterioration with attendant hyper- or hypo-excitability. Healthy-cell versions of Nav-CLS, however, could contribute to physiological rhythmic firing.
Collapse
|
35
|
Zaharenko AJ, Schiavon E, Ferreira WA, Lecchi M, de Freitas JC, Richardson M, Wanke E. Characterization of selectivity and pharmacophores of type 1 sea anemone toxins by screening seven Na(v) sodium channel isoforms. Peptides 2012; 34:158-67. [PMID: 21802465 DOI: 10.1016/j.peptides.2011.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/07/2011] [Accepted: 07/07/2011] [Indexed: 12/01/2022]
Abstract
During their evolution, animals have developed a set of cysteine-rich peptides capable of binding various extracellular sites of voltage-gated sodium channels (VGSC). Sea anemone toxins that target VGSCs delay their inactivation process, but little is known about their selectivities. Here we report the investigation of three native type 1 toxins (CGTX-II, δ-AITX-Bcg1a and δ-AITX-Bcg1b) purified from the venom of Bunodosoma cangicum. Both δ-AITX-Bcg1a and δ-AITX-Bcg1b toxins were fully sequenced. The three peptides were evaluated by patch-clamp technique among Nav1.1-1.7 isoforms expressed in mammalian cell lines, and their preferential targets are Na(v)1.5>1.6>1.1. We also evaluated the role of some supposedly critical residues in the toxins which would interact with the channels, and observed that some substitutions are not critical as expected. In addition, CGTX-II and δ-AITX-Bcg1a evoke different shifts in activation/inactivation Boltzmann curves in Nav1.1 and 1.6. Moreover, our results suggest that the interaction region between toxins and VGSCs is not restricted to the supposed site 3 (S3-S4 linker of domain IV), and this may be a consequence of distinct surface of contact of each peptide vs. targeted channel. Our data suggest that the contact surfaces of each peptide may be related to their surface charges, as CGTX-II is more positive than δ-AITX-Bcg1a and δ-AITX-Bcg1b.
Collapse
|
36
|
Schiavon E, Pedraza-Escalona M, Gurrola GB, Olamendi-Portugal T, Corzo G, Wanke E, Possani LD. Negative-shift activation, current reduction and resurgent currents induced by β-toxins from Centruroides scorpions in sodium channels. Toxicon 2011; 59:283-93. [PMID: 22200496 DOI: 10.1016/j.toxicon.2011.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 12/03/2011] [Accepted: 12/06/2011] [Indexed: 12/19/2022]
Abstract
The β-toxins purified from the New World scorpion venoms of the Centruroides species affect several voltage-gated sodium channels (VGSCs) and thus are essential tools not only for the discrimination of different channel sub-types but also for studying the structure-function relationship between channels and toxins. This communication reports the results obtained with four different peptides purified from three species of Centruroides scorpions and assayed on seven distinct isoforms of VGSC (Na(v)1.1-Na(v)1.7) by specific functional analysis conducted through single cell electrophysiology. The toxins studied were CssII from Centruroides suffusus suffusus, Cll1 and Cll2 from Centruroides limpidus limpidus and a novel toxin from Centruroides noxius, which was characterized for the first time here. It has 67 amino acid residues and four disulfide bridges with a molecular mass of 7626 Da. Three different functional features were identified: current reduction of macroscopic conductance, left shift of the voltage-dependent activation and induction of resurgent currents at negative voltages following brief, strong depolarizations. The isoforms which revealed to be more affected resulted to be Na(v)1.6 > 1.1 > 1.2 and, for the first time, a β-toxin is here shown to induce resurgent current also in isoforms different from Na(v)1.6. Additionally, these results were analyzed with molecular modelling. In conclusion, although the four toxins have a high degree of identity, they display tri-modal function, each of which shows selectivity among the different sub-types of Na+ -channels. Thus, they are invaluable as tools for structure-function studies of β-toxins and offer a basis for the design of novel ion channel-specific drugs.
Collapse
Affiliation(s)
- Emanuele Schiavon
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, 20126 Milano, Italy.
| | | | | | | | | | | | | |
Collapse
|
37
|
Kaczorowski GJ, Garcia ML, Bode J, Hess SD, Patel UA. The importance of being profiled: improving drug candidate safety and efficacy using ion channel profiling. Front Pharmacol 2011; 2:78. [PMID: 22171219 PMCID: PMC3236397 DOI: 10.3389/fphar.2011.00078] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 11/19/2011] [Indexed: 11/13/2022] Open
Abstract
Profiling of putative lead compounds against a representative panel of relevant enzymes, receptors, ion channels, and transporters is a pragmatic approach to establish a preliminary view of potential issues that might later hamper development. An early idea of which off-target activities must be minimized can save valuable time and money during the preclinical lead optimization phase if pivotal questions are asked beyond the usual profiling at hERG. The best data for critical evaluation of activity at ion channels is obtained using functional assays, since binding assays cannot detect all interactions and do not provide information on whether the interaction is that of an agonist, antagonist, or allosteric modulator. For ion channels present in human cardiac muscle, depending on the required throughput, manual-, or automated-patch-clamp methodologies can be easily used to evaluate compounds individually to accurately reveal any potential liabilities. The issue of expanding screening capacity against a cardiac panel has recently been addressed by developing a series of robust, high-throughput, cell-based counter-screening assays employing fluorescence-based readouts. Similar assay development approaches can be used to configure panels of efficacy assays that can be used to assess selectivity within a family of related ion channels, such as Nav1.X channels. This overview discusses the benefits of in vitro assays, specific decision points where profiling can be of immediate benefit, and highlights the development and validation of patch-clamp and fluorescence-based profiling assays for ion channels (for examples of fluorescence-based assays, see Bhave et al., 2010; and for high-throughput patch-clamp assays see Mathes, 2006; Schrøder et al., 2008).
Collapse
|
38
|
Black JA, Waxman SG. Sodium channels and microglial function. Exp Neurol 2011; 234:302-15. [PMID: 21985863 DOI: 10.1016/j.expneurol.2011.09.030] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/09/2011] [Accepted: 09/26/2011] [Indexed: 12/19/2022]
Abstract
Microglia are resident immune cells that provide continuous surveillance within the central nervous system (CNS) and respond to perturbations of brain and spinal cord parenchyma with an array of effector functions, including proliferation, migration, phagocytosis, secretions of multiple cytokines/chemokines and promotion of repair. To sense alterations within their environment, microglia express a large number of cell surface receptors, ion channels and adhesion molecules, which activate complex and dynamic signaling pathways. In the present chapter, we review studies that demonstrate that microglia in vivo and in vitro express specific voltage-gated sodium channel isoforms, and that blockade of sodium channel activity can attenuate several effector functions of microglia. These studies also provide strong evidence that Nav1.6 is the predominant sodium channel isoform expressed in microglia and that its activity contributes to the response of microglia to multiple activating signals.
Collapse
Affiliation(s)
- Joel A Black
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06511, USA.
| | | |
Collapse
|
39
|
Differential state-dependent modification of rat Na(v)1.6 sodium channels expressed in human embryonic kidney (HEK293) cells by the pyrethroid insecticides tefluthrin and deltamethrin. Toxicol Appl Pharmacol 2011; 257:377-87. [PMID: 21983428 DOI: 10.1016/j.taap.2011.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 09/16/2011] [Accepted: 09/20/2011] [Indexed: 11/23/2022]
Abstract
We expressed rat Na(v)1.6 sodium channels in combination with the rat β1 and β2 auxiliary subunits in human embryonic kidney (HEK293) cells and evaluated the effects of the pyrethroid insecticides tefluthrin and deltamethrin on expressed sodium currents using the whole-cell patch clamp technique. Both pyrethroids produced concentration-dependent, resting modification of Na(v)1.6 channels, prolonging the kinetics of channel inactivation and deactivation to produce persistent "late" currents during depolarization and tail currents following repolarization. Both pyrethroids also produced concentration dependent hyperpolarizing shifts in the voltage dependence of channel activation and steady-state inactivation. Maximal shifts in activation, determined from the voltage dependence of the pyrethroid-induced late and tail currents, were ~25mV for tefluthrin and ~20mV for deltamethrin. The highest attainable concentrations of these compounds also caused shifts of ~5-10mV in the voltage dependence of steady-state inactivation. In addition to their effects on the voltage dependence of inactivation, both compounds caused concentration-dependent increases in the fraction of sodium current that was resistant to inactivation following strong depolarizing prepulses. We assessed the use-dependent effects of tefluthrin and deltamethrin on Na(v)1.6 channels by determining the effect of trains of 1 to 100 5-ms depolarizing prepulses at frequencies of 20 or 66.7Hz on the extent of channel modification. Repetitive depolarization at either frequency increased modification by deltamethrin by ~2.3-fold but had no effect on modification by tefluthrin. Tefluthrin and deltamethrin were equally potent as modifiers of Na(v)1.6 channels in HEK293 cells using the conditions producing maximal modification as the basis for comparison. These findings show that the actions of tefluthrin and deltamethrin of Na(v)1.6 channels in HEK293 cells differ from the effects of these compounds on Na(v)1.6 channels in Xenopus oocytes and more closely reflect the actions of pyrethroids on channels in their native neuronal environment.
Collapse
|
40
|
Fletcher EV, Kullmann DM, Schorge S. Alternative splicing modulates inactivation of type 1 voltage-gated sodium channels by toggling an amino acid in the first S3-S4 linker. J Biol Chem 2011; 286:36700-8. [PMID: 21890636 PMCID: PMC3196094 DOI: 10.1074/jbc.m111.250225] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Voltage-gated sodium channels underlie the upstroke of action potentials and are fundamental to neuronal excitability. Small changes in the behavior of these channels are sufficient to change neuronal firing and trigger seizures. These channels are subject to highly conserved alternative splicing, affecting the short linker between the third transmembrane segment (S3) and the voltage sensor (S4) in their first domain. The biophysical consequences of this alternative splicing are incompletely understood. Here we focus on type 1 sodium channels (Nav1.1) that are implicated in human epilepsy. We show that the functional consequences of alternative splicing are highly sensitive to recording conditions, including the identity of the major intracellular anion and the recording temperature. In particular, the inactivation kinetics of channels containing the alternate exon 5N are more sensitive to intracellular fluoride ions and to changing temperature than channels containing exon 5A. Moreover, Nav1.1 channels containing exon 5N recover from inactivation more rapidly at physiological temperatures. Three amino acids differ between exons 5A and 5N. However, the changes in sensitivity and stability of inactivation were reproduced by a single conserved change from aspartate to asparagine in channels containing exon 5A, which was sufficient to make them behave like channels containing the complete exon 5N sequence. These data suggest that splicing at this site can modify the inactivation of sodium channels and reveal a possible interaction between splicing and anti-epileptic drugs that stabilize sodium channel inactivation.
Collapse
Affiliation(s)
- Emily V Fletcher
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London WC1N 3BG, United Kingdom
| | | | | |
Collapse
|
41
|
Ding S, Wei W, Zhou FM. Molecular and functional differences in voltage-activated sodium currents between GABA projection neurons and dopamine neurons in the substantia nigra. J Neurophysiol 2011; 106:3019-34. [PMID: 21880943 DOI: 10.1152/jn.00305.2011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
GABA projection neurons (GABA neurons) in the substantia nigra pars reticulata (SNr) and dopamine projection neurons (DA neurons) in substantia nigra pars compacta (SNc) have strikingly different firing properties. SNc DA neurons fire low-frequency, long-duration spikes, whereas SNr GABA neurons fire high-frequency, short-duration spikes. Since voltage-activated sodium (Na(V)) channels are critical to spike generation, the different firing properties raise the possibility that, compared with DA neurons, Na(V) channels in SNr GABA neurons have higher density, faster kinetics, and less cumulative inactivation. Our quantitative RT-PCR analysis on immunohistochemically identified nigral neurons indicated that mRNAs for pore-forming Na(V)1.1 and Na(V)1.6 subunits and regulatory Na(V)β1 and Na(v)β4 subunits are more abundant in SNr GABA neurons than SNc DA neurons. These α-subunits and β-subunits are key subunits for forming Na(V) channels conducting the transient Na(V) current (I(NaT)), persistent Na current (I(NaP)), and resurgent Na current (I(NaR)). Nucleated patch-clamp recordings showed that I(NaT) had a higher density, a steeper voltage-dependent activation, and a faster deactivation in SNr GABA neurons than in SNc DA neurons. I(NaT) also recovered more quickly from inactivation and had less cumulative inactivation in SNr GABA neurons than in SNc DA neurons. Furthermore, compared with nigral DA neurons, SNr GABA neurons had a larger I(NaR) and I(NaP). Blockade of I(NaP) induced a larger hyperpolarization in SNr GABA neurons than in SNc DA neurons. Taken together, these results indicate that Na(V) channels expressed in fast-spiking SNr GABA neurons and slow-spiking SNc DA neurons are tailored to support their different spiking capabilities.
Collapse
Affiliation(s)
- Shengyuan Ding
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, TN 38163, USA
| | | | | |
Collapse
|
42
|
Cruz JS, Silva DF, Ribeiro LA, Araújo IGA, Magalhães N, Medeiros A, Freitas C, Araujo IC, Oliveira FA. Resurgent Na+ current: a new avenue to neuronal excitability control. Life Sci 2011; 89:564-9. [PMID: 21683085 DOI: 10.1016/j.lfs.2011.05.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 05/04/2011] [Accepted: 05/19/2011] [Indexed: 10/18/2022]
Abstract
Integrative and firing properties are important characteristics of neuronal circuits and these responses are determined in large part by the repertoire of ion channels they express, which can vary considerably between cell types. Recently, a new mode of operation of voltage dependent sodium channels has been described that generates a so-called resurgent Na+ current. Accumulating evidence suggests resurgent Na current participates in the generation of sub-threshold inward Na+ current causing membrane depolarization which provides the necessary drive to fire high-frequency action potentials. Recent studies indicate that resurgent Na+ current could be a more widespread feature than previously thought.
Collapse
Affiliation(s)
- Jader S Cruz
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Divergent actions of the pyrethroid insecticides S-bioallethrin, tefluthrin, and deltamethrin on rat Na(v)1.6 sodium channels. Toxicol Appl Pharmacol 2010; 247:229-37. [PMID: 20624410 DOI: 10.1016/j.taap.2010.07.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 07/02/2010] [Accepted: 07/04/2010] [Indexed: 12/19/2022]
Abstract
We expressed rat Na(v)1.6 sodium channels in combination with the rat beta(1) and beta(2) auxiliary subunits in Xenopus laevis oocytes and evaluated the effects of the pyrethroid insecticides S-bioallethrin, deltamethrin, and tefluthrin on expressed sodium currents using the two-electrode voltage clamp technique. S-Bioallethrin, a type I structure, produced transient modification evident in the induction of rapidly decaying sodium tail currents, weak resting modification (5.7% modification at 100 microM), and no further enhancement of modification upon repetitive activation by high-frequency trains of depolarizing pulses. By contrast deltamethrin, a type II structure, produced sodium tail currents that were ~9-fold more persistent than those caused by S-bioallethrin, barely detectable resting modification (2.5% modification at 100 microM), and 3.7-fold enhancement of modification upon repetitive activation. Tefluthrin, a type I structure with high mammalian toxicity, exhibited properties intermediate between S-bioallethrin and deltamethrin: intermediate tail current decay kinetics, much greater resting modification (14.1% at 100 microM), and 2.8-fold enhancement of resting modification upon repetitive activation. Comparison of concentration-effect data showed that repetitive depolarization increased the potency of tefluthrin approximately 15-fold and that tefluthrin was approximately 10-fold more potent than deltamethrin as a use-dependent modifier of Na(v)1.6 sodium channels. Concentration-effect data from parallel experiments with the rat Na(v)1.2 sodium channel coexpressed with the rat beta(1) and beta(2) subunits in oocytes showed that the Na(v)1.6 isoform was at least 15-fold more sensitive to tefluthrin and deltamethrin than the Na(v)1.2 isoform. These results implicate sodium channels containing the Na(v)1.6 isoform as potential targets for the central neurotoxic effects of pyrethroids.
Collapse
|
44
|
Chatelier A, Zhao J, Bois P, Chahine M. Biophysical characterisation of the persistent sodium current of the Nav1.6 neuronal sodium channel: a single-channel analysis. Pflugers Arch 2010; 460:77-86. [DOI: 10.1007/s00424-010-0801-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 02/02/2010] [Accepted: 02/05/2010] [Indexed: 12/26/2022]
|
45
|
Perisomatic voltage-gated sodium channels actively maintain linear synaptic integration in principal neurons of the medial superior olive. J Neurosci 2010; 30:2039-50. [PMID: 20147532 DOI: 10.1523/jneurosci.2385-09.2010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Principal neurons of the medial superior olive (MSO) compute azimuthal sound location by integrating phase-locked inputs from each ear. While previous experimental and modeling studies have proposed that voltage-gated sodium channels (VGSCs) play an important role in synaptic integration in the MSO, these studies appear at odds with the unusually weak active backpropagation of action potentials into the soma and dendrites. To understand the spatial localization and biophysical properties of VGSCs, we isolated sodium currents in MSO principal neurons in gerbil brainstem slices. Nucleated and cell-attached patches revealed that VGSC density at the soma is comparable to that of many other neuron types, but channel expression is largely absent from the dendrites. Further, while somatic VGSCs activated with conventional voltage dependence (V(1/2) = -30 mV), they exhibited an unusually negative range of steady-state inactivation (V(1/2) = -77 mV), leaving approximately 92% of VGSCs inactivated at the resting potential (approximately -58 mV). In current-clamp experiments, non-inactivated VGSCs were sufficient to amplify subthreshold EPSPs near action potential threshold, counterbalancing the suppression of EPSP peaks by low voltage-activated potassium channels. EPSP amplification was restricted to the perisomatic region of the neuron, and relatively insensitive to preceding inhibition. Finally, computational modeling showed that the exclusion of VGSCs from the dendrites equalizes somatic EPSP amplification across synaptic locations and lowered the threshold for bilateral versus unilateral excitatory synaptic inputs. Together, these findings suggest that the pattern of sodium channel expression in MSO neurons contributes to these neurons' selectivity for coincident binaural inputs.
Collapse
|
46
|
Schiavon E, Stevens M, Zaharenko AJ, Konno K, Tytgat J, Wanke E. Voltage-gated sodium channel isoform-specific effects of pompilidotoxins. FEBS J 2010; 277:918-30. [PMID: 20059541 DOI: 10.1111/j.1742-4658.2009.07533.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pompilidotoxins (PMTXs, alpha and beta) are small peptides consisting of 13 amino acids purified from the venom of the solitary wasps Anoplius samariensis (alpha-PMTX) and Batozonellus maculifrons (beta-PMTX). They are known to facilitate synaptic transmission in the lobster neuromuscular junction, and to slow sodium channel inactivation. By using beta-PMTX, alpha-PMTX and four synthetic analogs with amino acid changes, we conducted a thorough study of the effects of PMTXs on sodium current inactivation in seven mammalian voltage-gated sodium channel (VGSC) isoforms and one insect VGSC (DmNa(v)1). By evaluating three components of which the inactivating current is composed (fast, slow and steady-state components), we could distinguish three distinct groups of PMTX effects. The first group concerned the insect and Na(v)1.6 channels, which showed a large increase in the steady-state current component without any increase in the slow component. Moreover, the dose-dependent increase in this steady-state component was correlated with the dose-dependent decrease in the fast component. A second group of effects concerned the Na(v)1.1, Na(v)1.2, Na(v)1.3 and Na(v)1.7 isoforms, which responded with a large increase in the slow component, and showed only a small steady-state component. As with the first group of effects, the slow component was dose-dependent and correlated with the decrease in the fast component. Finally, a third group of effects concerned Na(v)1.4 and Na(v)1.5, which did not show any change in the slow or steady-state component. These data shed light on the complex and intriguing behavior of VGSCs in response to PMTXs, helping us to better understand the molecular determinants explaining isoform-specific effects.
Collapse
Affiliation(s)
- Emanuele Schiavon
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | | | | | | | | | | |
Collapse
|
47
|
Redaelli E, Cassulini RR, Silva DF, Clement H, Schiavon E, Zamudio FZ, Odell G, Arcangeli A, Clare JJ, Alagón A, de la Vega RCR, Possani LD, Wanke E. Target promiscuity and heterogeneous effects of tarantula venom peptides affecting Na+ and K+ ion channels. J Biol Chem 2009; 285:4130-4142. [PMID: 19955179 DOI: 10.1074/jbc.m109.054718] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Venom-derived peptide modulators of ion channel gating are regarded as essential tools for understanding the molecular motions that occur during the opening and closing of ion channels. In this study, we present the characterization of five spider toxins on 12 human voltage-gated ion channels, following observations about the target promiscuity of some spider toxins and the ongoing revision of their "canonical" gating-modifying mode of action. The peptides were purified de novo from the venom of Grammostola rosea tarantulas, and their sequences were confirmed by Edman degradation and mass spectrometry analysis. Their effects on seven tetrodotoxin-sensitive Na(+) channels, the three human ether-à-go-go (hERG)-related K(+) channels, and two human Shaker-related K(+) channels were extensively characterized by electrophysiological techniques. All the peptides inhibited ion conduction through all the Na(+) channels tested, although with distinctive patterns. The peptides also affected the three pharmaceutically relevant hERG isoforms differently. At higher concentrations, all peptides also modified the gating of the Na(+) channels by shifting the activation to more positive potentials, whereas more complex effects were recorded on hERG channels. No effects were evident on the two Shaker-related K(+) channels at concentrations well above the IC(50) value for the affected channels. Given the sequence diversity of the tested peptides, we propose that tarantula toxins should be considered both as multimode and target-promiscuous ion channel modulators; both features should not be ignored when extracting mechanistic interpretations about ion channel gating. Our observations could also aid in future structure-function studies and might help the development of novel ion channel-specific drugs.
Collapse
Affiliation(s)
- Elisa Redaelli
- From the Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, 20126 Milan, Italy
| | - Rita Restano Cassulini
- From the Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, 20126 Milan, Italy; the Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, México
| | - Deyanira Fuentes Silva
- the Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán DF 04510, México
| | - Herlinda Clement
- the Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, México
| | - Emanuele Schiavon
- From the Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, 20126 Milan, Italy
| | - Fernando Z Zamudio
- the Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, México
| | - George Odell
- the Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, México
| | - Annarosa Arcangeli
- the Dipartimento di Patologia e Oncologia Sperimentali, Università di Firenze, Viale Morgagni 50, 50134 Firenze, Italy
| | - Jeffrey J Clare
- Gene Expression and Protein Biochemistry, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Herts SG1 2NY, United Kingdom, and
| | - Alejandro Alagón
- the Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, México
| | - Ricardo C Rodríguez de la Vega
- the Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, México; the Structural and Computational Biology/Genome Biology Units, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg 69117, Germany
| | - Lourival D Possani
- the Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, México
| | - Enzo Wanke
- From the Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, 20126 Milan, Italy.
| |
Collapse
|
48
|
Krishnan AV, Lin CSY, Park SB, Kiernan MC. Axonal ion channels from bench to bedside: a translational neuroscience perspective. Prog Neurobiol 2009; 89:288-313. [PMID: 19699774 DOI: 10.1016/j.pneurobio.2009.08.002] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 08/17/2009] [Accepted: 08/17/2009] [Indexed: 12/13/2022]
Abstract
Over recent decades, the development of specialised techniques such as patch clamping and site-directed mutagenesis have established the contribution of neuronal ion channel dysfunction to the pathophysiology of common neurological conditions including epilepsy, multiple sclerosis, spinal cord injury, peripheral neuropathy, episodic ataxia, amyotrophic lateral sclerosis and neuropathic pain. Recently, these insights from in vitro studies have been translated into the clinical realm. In keeping with this progress, novel clinical axonal excitability techniques have been developed to provide information related to the activity of a variety of ion channels, energy-dependent pumps and ion exchange processes activated during impulse conduction in peripheral axons. These non-invasive techniques have been extensively applied to the study of the biophysical properties of human peripheral nerves in vivo and have provided important insights into axonal ion channel function in health and disease. This review will provide a translational perspective, focusing on an overview of the investigational method, the clinical utility in assessing the biophysical basis of ectopic symptom generation in peripheral nerve disease and a review of the major findings of excitability studies in acquired and inherited neurological disease states.
Collapse
Affiliation(s)
- Arun V Krishnan
- Translational Neuroscience Facility, University of New South Wales, Randwick, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
49
|
Wang JA, Lin W, Morris T, Banderali U, Juranka PF, Morris CE. Membrane trauma and Na+ leak from Nav1.6 channels. Am J Physiol Cell Physiol 2009; 297:C823-34. [PMID: 19657055 DOI: 10.1152/ajpcell.00505.2008] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During brain trauma, white matter experiences shear and stretch forces that, without severing axons, nevertheless trigger their secondary degeneration. In central nervous system (CNS) trauma models, voltage-gated sodium channel (Nav) blockers are neuroprotective. This, plus the rapid tetrodotoxin-sensitive Ca2+ overload of stretch-traumatized axons, points to "leaky" Nav channels as a pivotal early lesion in brain trauma. Direct effects of mechanical trauma on neuronal Nav channels have not, however, been tested. Here, we monitor immediate responses of recombinant neuronal Nav channels to stretch, using patch-clamp and Na+-dye approaches. Trauma constituted either bleb-inducing aspiration of cell-attached oocyte patches or abrupt uniaxial stretch of cells on an extensible substrate. Nav1.6 channel transient current displayed irreversible hyperpolarizing shifts of steady-state inactivation [availability(V)] and of activation [g(V)] and, thus, of window current. Left shift increased progressively with trauma intensity. For moderately intense patch trauma, a approximately 20-mV hyperpolarizing shift was registered. Nav1.6 voltage sensors evidently see lower energy barriers posttrauma, probably because of the different bilayer mechanics of blebbed versus intact membrane. Na+ dye-loaded human embryonic kidney (HEK) cells stably transfected with alphaNav1.6 were subjected to traumatic brain injury-like stretch. Cytoplasmic Na+ levels abruptly increased and the trauma-induced influx had a significant tetrodotoxin-sensitive component. Nav1.6 channel responses to cell and membrane trauma are therefore consistent with the hypothesis that mechanically induced Nav channel leak is a primary lesion in traumatic brain injury. Nav1.6 is the CNS node of Ranvier Nav isoform. When, during head trauma, nodes experienced bleb-inducing membrane damage of varying intensities, nodal Nav1.6 channels should immediately "leak" over a broadly left-smeared window current range.
Collapse
Affiliation(s)
- Jun A Wang
- Neuroscience, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
50
|
Welch N, Lin W, Juranka P, Morris C, Stys P. Traditional AMPA receptor antagonists partially block Nav1.6-mediated persistent current. Neuropharmacology 2008; 55:1165-71. [DOI: 10.1016/j.neuropharm.2008.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Revised: 07/09/2008] [Accepted: 07/13/2008] [Indexed: 11/29/2022]
|