1
|
Imtiaz A, Shimonaka S, Uddin MN, Elahi M, Ishiguro K, Hasegawa M, Hattori N, Motoi Y. Selection of lansoprazole from an FDA-approved drug library to inhibit the Alzheimer's disease seed-dependent formation of tau aggregates. Front Aging Neurosci 2024; 16:1368291. [PMID: 38633982 PMCID: PMC11022852 DOI: 10.3389/fnagi.2024.1368291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/15/2024] [Indexed: 04/19/2024] Open
Abstract
The efficacy of current treatments is still insufficient for Alzheimer's disease (AD), the most common cause of Dementia. Out of the two pathological hallmarks of AD amyloid-β plaques and neurofibrillary tangles, comprising of tau protein, tau pathology strongly correlates with the symptoms of AD. Previously, screening for inhibitors of tau aggregation that target recombinant tau aggregates have been attempted. Since a recent cryo-EM analysis revealed distinct differences in the folding patterns of heparin-induced recombinant tau filaments and AD tau filaments, this study focused on AD seed-dependent tau aggregation in drug repositioning for AD. We screened 763 compounds from an FDA-approved drug library using an AD seed-induced tau aggregation in SH-SY5Y cell-based assay. In the first screening, 180 compounds were selected, 72 of which were excluded based on the results of lactate dehydrogenase assay. In the third screening with evaluations of soluble and insoluble tau, 38 compounds were selected. In the fourth screening with 3 different AD seeds, 4 compounds, lansoprazole, calcipotriene, desogestrel, and pentamidine isethionate, were selected. After AD seed-induced real-time quaking-induced conversion, lansoprazole was selected as the most suitable drug for repositioning. The intranasal administration of lansoprazole for 4 months to AD seed-injected mice improved locomotor activity and reduced both the amount of insoluble tau and the extent of phosphorylated tau-positive areas. Alanine replacement of the predicted binding site to an AD filament indicated the involvement of Q351, H362, and K369 in lansoprazole and C-shaped tau filaments. These results suggest the potential of lansoprazole as a candidate for drug repositioning to an inhibitor of tau aggregate formation in AD.
Collapse
Affiliation(s)
- Ahmed Imtiaz
- Department of Diagnosis, Prevention and Treatment of Dementia, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
- Department of Neurology, Juntendo University School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Shotaro Shimonaka
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Mohammad Nasir Uddin
- Department of Biochemistry & Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science & Technology University, Tangail, Bangladesh
| | - Montasir Elahi
- Center for Birth Defect Research, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Koichi Ishiguro
- Department of Neurology, Juntendo University School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Masato Hasegawa
- Department of Brain and Neuroscience, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yumiko Motoi
- Medical Center for Dementia, Juntendo University Hospital, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
2
|
Çakır M, Saçmacı H. The relationship of salusins with Parkinson's Disease, Alzheimer's Disease, and acute ischemic stroke: A preliminary study. Neurosci Lett 2024; 824:137683. [PMID: 38350537 DOI: 10.1016/j.neulet.2024.137683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
Neuroinflammation, oxidative stress, and apoptosis play important roles in the pathophysiology of Alzheimer's Disease (AD), Parkinson's Disease (PD), and Acute Ischemic Stroke (AIS). Salusin-α and salusin-β peptides, which were shown to be present in many tissues, including the central nervous system, were also shown to be associated with apoptosis, inflammation, and oxidative stress. In the present study, the relationship between Salusin-α and salusin-β peptides and AD, PD, and AIS were investigated. A total of 179 people were included in the present study, including 46 AD, 44 PD, 42 AIS, and 47 controls. Plasma Salusin-α and salusin-β levels were measured with the ELISA Method. The plasma salusin-β levels of AD, PD, and AIS patients were lower than the control group at significant levels (p < 0.05). It was also found that there were correlations between salusin-α and salusin-β levels and age, triglyceride, LDL-c, total cholesterol, and hemoglobin levels. In this study, we found that salusin- β, an endogenous neuropeptide, was associated with AD, PD and AIS. The low level of salusin-β in these diseases in which neuronal damage occurs may be related to the neuroprotective properties of this endogenous peptide. Further studies are needed to fully understand the relationship between salusin-β and the pathophysiology of these diseases.
Collapse
Affiliation(s)
- Murat Çakır
- Department of Physiology, Faculty of Medicine, University of Yozgat Bozok, Yozgat, 66200, Turkey.
| | - Hikmet Saçmacı
- Department of Neurology, Faculty of Medicine, University of Yozgat Bozok, Yozgat, 66200, Turkey.
| |
Collapse
|
3
|
Tapias V, González-Andrés P, Peña LF, Barbero A, Núñez L, Villalobos C. Therapeutic Potential of Heterocyclic Compounds Targeting Mitochondrial Calcium Homeostasis and Signaling in Alzheimer's Disease and Parkinson's Disease. Antioxidants (Basel) 2023; 12:1282. [PMID: 37372013 DOI: 10.3390/antiox12061282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/24/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the two most common neurodegenerative diseases in the elderly. The key histopathological features of these diseases are the presence of abnormal protein aggregates and the progressive and irreversible loss of neurons in specific brain regions. The exact mechanisms underlying the etiopathogenesis of AD or PD remain unknown, but there is extensive evidence indicating that excessive generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS), along with a depleted antioxidant system, mitochondrial dysfunction, and intracellular Ca2+ dyshomeostasis, plays a vital role in the pathophysiology of these neurological disorders. Due to an improvement in life expectancy, the incidence of age-related neurodegenerative diseases has significantly increased. However, there is no effective protective treatment or therapy available but rather only very limited palliative treatment. Therefore, there is an urgent need for the development of preventive strategies and disease-modifying therapies to treat AD/PD. Because dysregulated Ca2+ metabolism drives oxidative damage and neuropathology in these diseases, the identification or development of compounds capable of restoring Ca2+ homeostasis and signaling may provide a neuroprotective avenue for the treatment of neurodegenerative diseases. In addition, a set of strategies to control mitochondrial Ca2+ homeostasis and signaling has been reported, including decreased Ca2+ uptake through voltage-operated Ca2+ channels (VOCCs). In this article, we review the modulatory effects of several heterocyclic compounds on Ca2+ homeostasis and trafficking, as well as their ability to regulate compromised mitochondrial function and associated free-radical production during the onset and progression of AD or PD. This comprehensive review also describes the chemical synthesis of the heterocycles and summarizes the clinical trial outcomes.
Collapse
Affiliation(s)
- Victor Tapias
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Paula González-Andrés
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Laura F Peña
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Asunción Barbero
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Lucía Núñez
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Carlos Villalobos
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
| |
Collapse
|
4
|
Lebouvier T, Chen Y, Duriez P, Pasquier F, Bordet R. Antihypertensive agents in Alzheimer's disease: beyond vascular protection. Expert Rev Neurother 2019; 20:175-187. [PMID: 31869274 DOI: 10.1080/14737175.2020.1708195] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Introduction: Midlife hypertension has been consistently linked with increased risk of cognitive decline and Alzheimer's disease (AD). Observational studies and randomized trials show that the use of antihypertensive therapy is associated with a lesser incidence or prevalence of cognitive impairment and dementia. However, whether antihypertensive agents specifically target the pathological process of AD remains elusive.Areas covered: This review of literature provides an update on the clinical and preclinical arguments supporting anti-AD properties of antihypertensive drugs. The authors focused on validated all classes of antihypertensive treatments such as angiotensin-converting enzyme inhibitors (ACEi), angiotensin receptor blockers (ARB), calcium channel blockers (CCB), β-blockers, diuretics, neprilysin inhibitors, and other agents. Three main mechanisms can be advocated: action on the concurrent vascular pathology, action on the vascular component of Alzheimer's pathophysiology, and action on nonvascular targets.Expert opinion: In 2019, while there is no doubt that hypertension should be treated in primary prevention of vascular disease and in secondary prevention of stroke and mixed dementia, the place of antihypertensive agents in the secondary prevention of 'pure' AD remains an outstanding question.
Collapse
Affiliation(s)
- Thibaud Lebouvier
- Inserm URM_S1172, University of Lille, Lille, France.,DISTALZ, University of Lille, Lille, France
| | - Yaohua Chen
- DISTALZ, University of Lille, Lille, France.,Inserm, CHU Lille, University of Lille, Lille, France
| | | | - Florence Pasquier
- DISTALZ, University of Lille, Lille, France.,Inserm, CHU Lille, University of Lille, Lille, France
| | - Régis Bordet
- Inserm, CHU Lille, University of Lille, Lille, France
| |
Collapse
|
5
|
Gonzalez D, Arribas RL, Viejo L, Lajarin-Cuesta R, de los Rios C. Substituent effect of N-benzylated gramine derivatives that prevent the PP2A inhibition and dissipate the neuronal Ca2+ overload, as a multitarget strategy for the treatment of Alzheimer’s disease. Bioorg Med Chem 2018; 26:2551-2560. [DOI: 10.1016/j.bmc.2018.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/06/2018] [Accepted: 04/07/2018] [Indexed: 11/28/2022]
|
6
|
Abstract
Turns out I have been a major contributor to the Journal of Alzheimer's Disease over its 20-year history. As such, I was invited to provide a review of my work over the years. What follows is a retrospective of how the Alzheimer-related research of a Ph.D. (i.e., not an M.D.) transitioned from basic to clinical, and moved from bench to bedside and back again.I have included some of the more humorous and poignant twists along the way that some older players may find familiar and I hope might inspire some younger players to hang in there.
Collapse
Affiliation(s)
- Thomas B. Shea
- Laboratory for Neuroscience, Department of Biological Sciences, UMass Lowell, Lowell, MA, USA
| |
Collapse
|
7
|
Yang CC, Kuai XX, Gao WB, Yu JC, Wang Q, Li L, Zhang L. Morroniside-Induced PP2A Activation Antagonizes Tau Hyperphosphorylation in a Cellular Model of Neurodegeneration. J Alzheimers Dis 2016; 51:33-44. [PMID: 26836014 DOI: 10.3233/jad-150728] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Cui-cui Yang
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University; Beijing Institute for Brain disorder; Beijing Engineering Research Center for Nerve System Drugs; Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Xue-xian Kuai
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University; Beijing Institute for Brain disorder; Beijing Engineering Research Center for Nerve System Drugs; Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wen-bin Gao
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University; Beijing Institute for Brain disorder; Beijing Engineering Research Center for Nerve System Drugs; Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jian-chun Yu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin Li
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University; Beijing Institute for Brain disorder; Beijing Engineering Research Center for Nerve System Drugs; Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Lan Zhang
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University; Beijing Institute for Brain disorder; Beijing Engineering Research Center for Nerve System Drugs; Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| |
Collapse
|
8
|
A novel tacrine-dihydropyridine hybrid (-)SCR1693 induces tau dephosphorylation and inhibits Aβ generation in cells. Eur J Pharmacol 2015; 754:134-9. [PMID: 25732864 DOI: 10.1016/j.ejphar.2015.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 02/12/2015] [Accepted: 02/12/2015] [Indexed: 11/21/2022]
Abstract
AChE inhibitors are the first choice for the treatment of Alzheimer׳s disease (AD), but they could only delay the progression of cognitive and behavioral dysfunction, and fail to reverse neuronal damage. Calcium channel blockers have been identified to have protective effect on neurons. Thus, therapy targeting both AChE and calcium channels is supposed to be more effective in AD treatment. In the present study, we explored the effect of a synthesized juxtaposition of an AChE inhibitor and a Calcium channel blocker (named (-)SCR1693) on tau phosphophorylation and Aβ generation. The results showed that: (1) Compared with higher concentrations, (-)SCR1693 incubation in low concentrations such as 0.4, 2, 4μM for 24h did not affect the cell viability of HEK293/tau (HEK293 cells stably transfected with human tau40) and N2a/APP (N2a cells stably transfected with human APP) cells; (2) long-term treatment of cells with (-)SCR1693 (0.4, 2, 5μM) (24h) induced tau dephosphorylation and reduced the total tau level in HEK293/tau cells. Short-term treatment (6h) also resulted in tau dephosphorylation, but did not reduce the total tau level; and (3) (-)SCR1693 (0.4, 2, 4μM) incubation inhibited Aβ generation and release dramatically in N2a/APP cells. We conclude that the novel tacrine-dihydropyridine hybrid (-)SCR1693 in low concentrations could reduce total and phosphorylated tau levels, inhibit the generation and release of Aβ in cells. Thus, (-)SCR1693 may be a potential candidate for effectively treating AD.
Collapse
|
9
|
Medina M, Avila J, Villanueva N. Use of okadaic acid to identify relevant phosphoepitopes in pathology: a focus on neurodegeneration. Mar Drugs 2013; 11:1656-68. [PMID: 23697949 PMCID: PMC3707166 DOI: 10.3390/md11051656] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/02/2013] [Accepted: 04/16/2013] [Indexed: 12/24/2022] Open
Abstract
Protein phosphorylation is involved in the regulation of a wide variety of physiological processes and is the result of a balance between protein kinase and phosphatase activities. Biologically active marine derived compounds have been shown to represent an interesting source of novel compounds that could modify that balance. Among them, the marine toxin and tumor promoter, okadaic acid (OA), has been shown as an inhibitor of two of the main cytosolic, broad-specificity protein phosphatases, PP1 and PP2A, thus providing an excellent cell-permeable probe for examining the role of protein phosphorylation, and PP1 and PP2A in particular, in any physiological or pathological process. In the present work, we review the use of okadaic acid to identify specific phosphoepitopes mainly in proteins relevant for neurodegeneration. We will specifically highlight those cases of highly dynamic phosphorylation-dephosphorylation events and the ability of OA to block the high turnover phosphorylation, thus allowing the detection of modified residues that could be otherwise difficult to identify. Finally, its effect on tau hyperhosphorylation and its relevance in neurodegenerative pathologies such as Alzheimer’s disease and related dementia will be discussed.
Collapse
Affiliation(s)
- Miguel Medina
- CIBERNED (Center for Networked Biomedical Research in Neurodegenerative Diseases), Valderrebollo 5, Madrid 28041, Spain; E-Mail:
| | - Jesús Avila
- CIBERNED (Center for Networked Biomedical Research in Neurodegenerative Diseases), Valderrebollo 5, Madrid 28041, Spain; E-Mail:
- Center of Molecular Biology “Severo Ochoa” CSIC-UAM, Nicolás Cabrera 1, Madrid 28049, Spain
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-91-196-4803; Fax: +34-91-196-4715
| | - Nieves Villanueva
- National Center of Microbiology (CNM), Carlos III Institute of Health (ISCIII), Crta. Majadahonda-Pozuelo km 2, Majadahonda, Madrid 28220, Spain; E-Mail:
| |
Collapse
|
10
|
Kamat P, Rai S, Swarnkar S, Shukla R, Ali S, Najmi A, Nath C. Okadaic acid-induced Tau phosphorylation in rat brain: Role of NMDA receptor. Neuroscience 2013; 238:97-113. [DOI: 10.1016/j.neuroscience.2013.01.075] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/25/2013] [Accepted: 01/30/2013] [Indexed: 12/12/2022]
|
11
|
Lee S, Shea TB. Regulation of tau proteolysis by phosphatases. Brain Res 2012; 1495:30-6. [PMID: 23159717 DOI: 10.1016/j.brainres.2012.10.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 10/09/2012] [Accepted: 10/11/2012] [Indexed: 01/06/2023]
Abstract
One pathological hallmark of Alzheimer's disease is the accumulation of highly phosphorylated tau. Since tau phosphorylation inhibits its proteolysis, we examined the impact of endogenous phosphatase activities on tau proteolysis by homogenization of cultured cells and 3xTg-AD mouse brain followed by incubation with or without phosphatase inhibitors. Incubation without phosphatase inhibitors significantly increased tau immunoreactivity against antibody C3 (which reacts with tau truncated at D421), and increased the generation of tau breakdown products. These changes were augmented by lithium treatment and inhibited by constitutively active GSK3β. These findings underscore that tau proteolysis is regulated by a balance of kinase and phosphatase activities.
Collapse
Affiliation(s)
- Sangmook Lee
- University of Massachusetts Lowell, Department of Biological Sciences, Center for Cellular Neurobiology and Neurodegeneration Research, One University Avenue, Lowell, MA 01854, USA
| | | |
Collapse
|
12
|
Hu JP, Xie JW, Wang CY, Wang T, Wang X, Wang SL, Teng WP, Wang ZY. Valproate reduces tau phosphorylation via cyclin-dependent kinase 5 and glycogen synthase kinase 3 signaling pathways. Brain Res Bull 2011; 85:194-200. [DOI: 10.1016/j.brainresbull.2011.03.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 03/03/2011] [Accepted: 03/11/2011] [Indexed: 01/30/2023]
|
13
|
Rod photoreceptor cell death is induced by okadaic acid through activation of PKC and L-type voltage-dependent Ca2+ channels and prevented by IGF-1. Neurochem Int 2010; 57:128-35. [DOI: 10.1016/j.neuint.2010.04.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 04/14/2010] [Accepted: 04/29/2010] [Indexed: 02/02/2023]
|
14
|
Zhang Z, Simpkins JW. Okadaic acid induces tau phosphorylation in SH-SY5Y cells in an estrogen-preventable manner. Brain Res 2010; 1345:176-81. [PMID: 20457142 PMCID: PMC2913890 DOI: 10.1016/j.brainres.2010.04.074] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 04/22/2010] [Accepted: 04/27/2010] [Indexed: 11/17/2022]
Abstract
One of the pathological hallmarks of Alzheimer's disease (AD) is neurofibrillary tangles (NFTs), which are composed of abnormally hyperphosphorylated tau, but the mechanism of tau hyperphosphorylation in AD is still unclear. To investigate the effects of estrogens on tau phosphorylation, SH-SY5Y cells were treated with okadaic acid (OA), a serine/threonine phosphatase inhibitor, to induce tau phosphorylation and the effects of estrogen were observed by co-treatment with 17beta-estradiol (E2). We found that OA induced in vitro tau hyperphosphorylation, which was prevented by E2 in a dose-dependent manner. This effect of E2 was partially blocked by an estrogen receptor (ER) antagonist, ICI 182,780. In addition to tau hyperphosphorylation, inhibition of serine/threonine phosphorylation induced upregulation of cdk5 levels, which was attenuated by E2 in a manner that was counteracted by ICI 182,780. Our results show that cdk5 is involved in OA-induced tau hyperphosphorylation, and estrogens ameliorate the tau hyperphosphorylation, which may be mediated in part by ER.
Collapse
Affiliation(s)
- Zhang Zhang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | |
Collapse
|
15
|
The Activation of Excitatory Amino Acid Receptors Is Involved in tau Phosphorylation Induced by Cold Water Stress*. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2009.00600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Baig S, van Helmond Z, Love S. Tau hyperphosphorylation affects Smad 2/3 translocation. Neuroscience 2009; 163:561-70. [DOI: 10.1016/j.neuroscience.2009.06.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 05/15/2009] [Accepted: 06/17/2009] [Indexed: 11/29/2022]
|
17
|
Chan AY, Alsaraby A, Shea TB. Folate deprivation increases tau phosphorylation by homocysteine-induced calcium influx and by inhibition of phosphatase activity: Alleviation by S-adenosyl methionine. Brain Res 2008; 1199:133-7. [PMID: 18279842 DOI: 10.1016/j.brainres.2008.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 12/28/2007] [Accepted: 01/03/2008] [Indexed: 12/22/2022]
Abstract
Several recent studies have indicated that increased levels of homocysteine (HC), including that resulting from deficiency in folate, increases tau phosphorylation. Some studies indicate that this is accomplished via HC-dependent activation of NMDA channels and resultant activation of calcium-dependent kinase pathways, while others suggest that the increase in tau phosphorylation is derived via HC-dependent inhibition of methylation of phosphatases and resultant inhibition of phosphatase activity. We demonstrate herein in SH-SY-5Y human neuroblastoma that both of these phenomena contribute to the increase in phospho-tau immunoreactivity following folate deprivation, and that supplementation with S-adenosyl methionine (SAM) prevents both the increase in kinase activity and the decrease in phosphatase activity. These findings demonstrate that the divergent neuropathological consequences of folate deprivation includes multiple pathways that converge upon tau phosphorylation, and further support the notion that dietary supplementation with SAM may reduce or delay neurodegeneration.
Collapse
Affiliation(s)
- Amy Y Chan
- Center for Cellular Neurobiology and Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts Lowell, One University Avenue, Lowell, MA 01854, USA
| | | | | |
Collapse
|
18
|
Koss DJ, Hindley KP, Riedel G, Platt B. Modulation of hippocampal calcium signalling and plasticity by serine/threonine protein phosphatases. J Neurochem 2007; 102:1009-23. [PMID: 17442047 DOI: 10.1111/j.1471-4159.2007.04579.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Kinases and phosphatases act antagonistically to maintain physiological phosphorylation/dephosphorylation at numerous intracellular sites critical for neuronal signalling. In this study, it was found that inhibition of serine/threonine phosphatases by exposure of hippocampal slices to okadaic acid (OA) or cantharidin (CA; 100 nmol/L) for 2 h resulted in reduced basal synaptic transmission and blocked the induction of synaptic plasticity in the form of long-term potentiation as determined by electrophysiological analysis. Fura-2 Ca(2+) imaging revealed a bidirectional modulation of N-methyl-D-aspartate (NMDA) -mediated Ca(2+) responses and reduced KCl-mediated Ca(2+) responses in neonatal cultured hippocampal neurons after phosphatase inhibition. While OA inhibited NMDA-induced Ca(2+) influx both acutely and after incubation, CA-enhanced receptor-mediated Ca(2+) signalling at low concentrations (1 nmol/L) but reduced NMDA and KCl-mediated Ca(2+) responses at higher concentrations (100 nmol/L). Changes in Ca(2+) signalling were accompanied by increased phosphorylation of cytoskeletal proteins tau and neurofilament and the NMDA receptor subunit NR1 in selective treatments. Incubation with OA (100 nmol/L) also led to the disruption of the microtubule network. This study highlights novel signalling effects of prolonged inhibition of protein phosphatases and suggests reduced post-synaptic signalling as a major mechanism for basal synaptic transmission and long-term potentiation impairments.
Collapse
Affiliation(s)
- David J Koss
- School of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, UK
| | | | | | | |
Collapse
|
19
|
Chen B, Cheng M, Hong DJ, Sun FY, Zhu CQ. Okadaic acid induced cyclin B1 expression and mitotic catastrophe in rat cortex. Neurosci Lett 2006; 406:178-82. [PMID: 16919876 DOI: 10.1016/j.neulet.2006.06.074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 06/03/2006] [Accepted: 06/20/2006] [Indexed: 10/24/2022]
Abstract
Accumulating evidence indicates that the aberrant re-entry of post-mitotic neurons into the G2/M phase of cell cycle and the resulting mitotic catastrophe may contribute to the pathogenesis of Alzheimer's disease. However, the cellular event that drives the differentiated neurons to abnormally enter G2/M phase remains elusive. Similarly, whether mitotic catastrophe is indeed one of the death pathways for differentiated neurons is not clear. Previous studies revealed that okadaic acid (OA), a phosphatase inhibitor that induces AD like pathological changes, evokes mitotic changes in neuroblastoma cells. In this study, we examined the in vivo effects of OA on cyclin B1 expression, the induction of mitosis, and subsequent mitotic catastrophe. We found that cyclin B1 expression in adult neurons was significantly increased after injecting OA into rat frontal cortex, which also increased tau protein phosphorylation. Interestingly, cyclin B1 and phosphorylated tau were well co-localized around the OA injection site, but were only partially co-localized in other brain regions. Staining with toluidine blue, Giemsa dye or propidium iodide revealed typical mitotic and mitotic catastrophe-like morphological changes with irregular arrangement of condensed chromatin and chromosome fibers in a few cells. Furthermore, the strong cyclin B1 staining in these cells suggests that cyclin B1 promoted G2 to M phase transition is required for the mitotic catastrophe. The detection of neuron-specific enolase in a portion of these cells demonstrated that at least part them are neuron. All together, our results suggest that the disturbance of the protein kinase-phosphatase system caused by OA is sufficient to induce neuronal cyclin B1 expression, force neurons into the mitotic phase of cell cycle, and cause mitotic catastrophe.
Collapse
Affiliation(s)
- Bo Chen
- National Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai, PR China
| | | | | | | | | |
Collapse
|