1
|
Kalinina A, Krekhno Z, Yee J, Lehmann H, Fournier NM. Effect of repeated seizures on spatial exploration and immediate early gene expression in the hippocampus and dentate gyrus. IBRO Neurosci Rep 2022; 12:73-80. [PMID: 35028638 PMCID: PMC8741423 DOI: 10.1016/j.ibneur.2021.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/25/2021] [Accepted: 12/30/2021] [Indexed: 12/05/2022] Open
Abstract
Immediate early genes (IEGs) are coordinately activated in response to neuronal activity and can cause activation of secondary response genes that modulate synaptic plasticity and mediate long-lasting changes in behaviour. Excessive neuronal stimulation induced by epileptic seizures induce rapid and dramatic changes in IEG expression. Although the impact of acute seizure activity on IEG expression has been well studied, less is known about the long-term effects of chronic seizures on IEG induction during seizure free periods where behavioural and cognitive impairments are frequently observed in people with epilepsy and in animal models of epilepsy. The present study sought out to examine the impact of chronic pentylenetetrazole evoked seizures (PTZ kindling) on spatial exploration induced in IEG expression (c-Fos, ΔFosB, Homer1a, Egr1, Npas4, Nr4a1) in the hippocampus (CA1 and CA3 subfields) and dentate gyrus of rats. Male rats underwent two weeks of PTZ kindling (every 2 days) or received vehicle injections and were placed into a novel open field arena for 30 min either 24 hrs or 4 weeks after the last treatment. Although exploratory activity was similar between PTZ kindled and vehicle controls when examined 24 hrs after the last treatment, we observed a significant reduction in spatial exploration induced expression of c-Fos, Egr1, and ΔFosB in the hippocampus and dentate gyrus, and reduced expression of Nr4a1 in the dentate gyrus and Homer1a in the hippocampus only. When testing was conducted after a 4-week recovery period, only c-Fos continued to show reduced expression after exposure a novel environment in previously PTZ kindled animals. Interestingly, these animals also showed reduced activity in the center region of the open field suggestive of heightened anxiety-like behaviour. Collectively, these results suggest that repeated seizures may lead to longterm downregulation in hippocampal IEG expression that can extend into seizure free periods thereby providing a critical mechanism for the development of cognitive and behavioural deficits that arise during chronic epilepsy
Collapse
Affiliation(s)
- Alena Kalinina
- Department of Psychology, Trent University, Peterborough, ON K9J 7B8, Canada
| | - Zakhar Krekhno
- Department of Psychology, Trent University, Peterborough, ON K9J 7B8, Canada
| | - Janet Yee
- Department of Psychology, Trent University, Peterborough, ON K9J 7B8, Canada
| | - Hugo Lehmann
- Department of Psychology, Trent University, Peterborough, ON K9J 7B8, Canada
| | - Neil M Fournier
- Department of Psychology, Trent University, Peterborough, ON K9J 7B8, Canada
| |
Collapse
|
2
|
Calefi AS, da Silva Fonseca JG, Cohn DWH, Honda BTB, Costola-de-Souza C, Tsugiyama LE, Quinteiro-Filho WM, Piantino Ferreira AJ, Palermo-Neto J. The gut-brain axis interactions during heat stress and avian necrotic enteritis. Poult Sci 2016; 95:1005-14. [DOI: 10.3382/ps/pew021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/15/2015] [Indexed: 01/23/2023] Open
|
3
|
Madsen TM, Bolwig TG, Mikkelsen JD. Differential regulation of c-Fos and FosB in the rat brain after amygdala kindling. Cell Mol Neurobiol 2006; 26:87-100. [PMID: 16633904 DOI: 10.1007/s10571-006-9202-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Accepted: 10/24/2005] [Indexed: 11/24/2022]
Abstract
Members of the inducible transcription factor Fos family, that are part of the AP-1 complex that binds to the corresponding promoter site, are implicated in the regulation of gene transcription after acute and chronic seizures. However, little is known about the temporal expression of the AP-1 transcription factors and if individual proteins composing this complex have distinct roles in development and maintenance of permanent epilepsy. In this study, the AP-1 binding capacity, its content of different Fos proteins, and the anatomical specificity, were analyzed 2 or 18 h after achieving full kindling in rats. The same analysis was performed in fully kindled animal receiving a new stimulus after a 3-week pause to determine the extent of stability of the AP-1 transcription factors. While both c-Fos and FosB were induced in all cortical areas after a single stimulus, only FosB-immunoreactivity remained after 18 h. A single stimulation to kindled animals left undisturbed for 3 weeks induced a long-lasting upregulation of AP-1 binding in the frontal cortex, but not in the hippocampus suggesting a permanent exposure of AP-1 heterocomplexes in the frontal cortex. Supershift assays showed that FosB is the dominant component of the long-term AP-1 complex. It is concluded that the AP-1 binding complex in fully kindled rats is composed of different proteins, and that FosB-containing AP-1 complexes mediate long-term effects in the frontal cortex.
Collapse
Affiliation(s)
- Torsten M Madsen
- Department of Psychiatry, Neuropsychiatry Laboratory, H:S Rigshospitalet, Denmark
| | | | | |
Collapse
|
4
|
Malkani S, Wallace KJ, Donley MP, Rosen JB. An egr-1 (zif268) antisense oligodeoxynucleotide infused into the amygdala disrupts fear conditioning. Learn Mem 2004; 11:617-24. [PMID: 15466317 PMCID: PMC523081 DOI: 10.1101/lm.73104] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Accepted: 06/29/2004] [Indexed: 11/25/2022]
Abstract
Studies of gene expression following fear conditioning have demonstrated that the inducible transcription factor, egr-1, is increased in the lateral nucleus of the amygdala shortly following fear conditioning. These studies suggest that egr-1 and its protein product Egr-1 in the amygdala are important for learning and memory of fear. To directly test this hypothesis, an egr-1 antisense oligodeoxynucleotide (antisense-ODN) was injected bilaterally into the amygdala prior to contextual fear conditioning. The antisense-ODN reduced Egr-1 protein in the amygdala and interfered with fear conditioning. A 250-pmole dose produced an 11% decrease in Egr-1 protein and reduced long-term memory of fear as measured by freezing in a retention test 24 h after conditioning, but left shock-induced freezing intact. A larger 500-pmole dose produced a 25% reduction in Egr-1 protein and significantly decreased both freezing immediately following conditioning and freezing in the retention test. A nonsense-ODN had no effect on postshock or retention test freezing. In addition, 500 pmole of antisense-ODN infused prior to the retention test in previously trained rats did not reduce freezing, indicating that antisense-ODN did not suppress conditioned fear behavior. Finally, rats infused with 500 pmole of antisense-ODN displayed unconditioned fear to a predator odor, demonstrating that unconditioned freezing was unaffected by the antisense-ODN. The data indicate that the egr-1 antisense-ODN interferes with learning and memory processes of fear without affecting freezing behavior and suggests that the inducible transcription factor Egr-1 within the amygdala plays important functions in long-term learning and memory of fear.
Collapse
Affiliation(s)
- Seema Malkani
- Program in Behavioral Neuroscience, Department of Psychology, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | |
Collapse
|
5
|
Kalynchuk LE, Davis AC, Gregus A, Taggart J, Chris Dodd C, Wintink AJ, Marchant EG. Hippocampal involvement in the expression of kindling-induced fear in rats. Neurosci Biobehav Rev 2001; 25:687-96. [PMID: 11801294 DOI: 10.1016/s0149-7634(01)00051-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Kindling dramatically increases fearful behavior in rats. Because kindling-induced fear increases in magnitude as rats receive more stimulations, kindling provides a superb opportunity to study the nature and neural mechanisms of fear sensitization. Interestingly, these changes in behavior are accompanied by increased binding to inhibitory receptors and decreased binding to excitatory receptors in the CA1 and dentate gyrus regions of the hippocampus. This led us to hypothesize that kindling-induced fear may result from an increased inhibitory tone within hippocampal circuits. To test this hypothesis, we investigated FOS protein immunoreactivity in hippocampal and amygdalar regions of kindled rats that were exposed to an unfamiliar open field. We found that FOS immunoreactivity was significantly decreased in the CA1 region, dentate gyrus, and perirhinal cortex of kindled rats compared to sham-stimulated rats. These results support our hypothesis that kindling-induced fear may be produced by inhibition within hippocampal circuits. They also suggest that neural changes within the hippocampus may be important for the sensitization of fear.
Collapse
Affiliation(s)
- L E Kalynchuk
- Department of Psychology, Life Sciences Center, Dalhousie University, NS, B3H 4J1, Halifax, Canada.
| | | | | | | | | | | | | |
Collapse
|
6
|
Khan A, Sommer W, Fuxe K, Akhtar S. Site-specific administration of antisense oligonucleotides using biodegradable polymer microspheres provides sustained delivery and improved subcellular biodistribution in the neostriatum of the rat brain. J Drug Target 2001; 8:319-34. [PMID: 11328659 DOI: 10.3109/10611860008997909] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Antisense oligonucleotides (ODNs) are being increasingly used in the central nervous system as biological tools, as drug-target validation agents and as potential therapeutic agents. Although the local delivery of naked ODNs to the brain can result in the desired biological effects, the duration of efficacy is relatively short lived due to the combined effects of rapid ODN degradation and elimination half-lives in vivo. In this study, we have examined the use of biodegradable polymer microspheres as a site-specific delivery system for targeting ODNs to the neostriatum of the rat brain. Model phosphorothioate backbone-modified ODNs were entrapped within poly(D,L-lactide-co-glycolide) (PLAGA) microspheres using a double emulsion-deposition method and the formulations characterised in terms of particle size, surface morphology, percent encapsulation efficiency, ODN loading and in vitro release profiles. For in vivo evaluation, PLAGA microspheres containing fluorescently-labelled ODNs were stereo-taxically administered to the neostriatum of the rat brain and biodistribution of ODNs monitored after 48 h. Administration of free fluorescently-labelled ODNs to the neostriatum resulted in a punctate cellular distribution of ODNs after 24 h with little or no ODN remaining in the neostriatum after 48 h. In comparison, fluorescently-labelled ODNs delivered using polymer microspheres were intensely visible in cells after 48 h post-administration and the fluorescence appeared to be diffuse covering both cytosolic and nuclear regions. Dual-label immunohistochemical analyses suggested that ODNs were mainly distributed to neuronal cells. These data indicate that site-specific administration of ODNs using biodegradable polymer microspheres will not only provide sustained delivery of nucleic acids but can also improve the cellular distribution of ODNs to brain cells. Sustained or controlled-release biodegradable polymer formulations, therefore, represent an attractive strategy for improved local delivery of ODNs to the CNS.
Collapse
Affiliation(s)
- A Khan
- Pharmaceutical Sciences Research Institute, Aston University, Birmingham B4 7ET, UK
| | | | | | | |
Collapse
|
7
|
Mohapel P, Zhang X, Gillespie GW, Chlan-Fourney J, Hannesson DK, Corley SM, Li XM, Corcoran ME. Kindling of claustrum and insular cortex: comparison to perirhinal cortex in the rat. Eur J Neurosci 2001; 13:1501-19. [PMID: 11328345 DOI: 10.1046/j.0953-816x.2001.01532.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The perirhinal cortex has recently been implicated in the kindling of limbic generalized seizures. The following experiments in rats tested the selectivity of the perirhinal cortex's epileptogenic properties by comparing its kindling profile with those of the adjacent insular cortex, posterior (dorsolateral) claustrum and amygdala. The first experiment examined the kindling and EEG profiles, and found that both the claustrum and insular cortex demonstrated rapid epileptogenic properties similar to the perirhinal cortex, including very rapid kindling rates and short latencies to convulsion. Furthermore, electrical stimulation of all three structures led to a two-phase progression through stage-5 seizures which had characteristics of both neocortical and amygdaloid kindling. In a second experiment rats were suspended in a harness to allow for more detailed documentation of both forelimb and hindlimb convulsions. With this procedure we were able to detect subtle yet unique differences in convulsion characteristics from each of the kindled sites and stage-5 seizure phases. Some of these convulsive parameters were correlated with changes in FosB/DeltaFosB protein and BDNF mRNA expression measured two hours after the last convulsion. Overall, it appears that the perirhinal cortex is not unique in its property of rapid epileptogenesis. Moreover, the posterior claustrum exhibited the fastest kindling and most vigorous patterns of clonus, suggesting that it may be even more intimately associated with the motor substrates responsible for limbic seizure generalization than is the perirhinal cortex.
Collapse
Affiliation(s)
- P Mohapel
- Departments of Psychology and Psychiatry, Neuropsychiatry Research Unit, University of Saskatechewan, 103 Wiggins Road, Saskatoon, SK, Canada
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Affiliation(s)
- W Sommer
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
9
|
Scalzitti JM, Hensler JG. Design and efficacy of serotonin-2A receptor antisense oligodeoxynucleotide. Methods Enzymol 1999; 314:76-89. [PMID: 10565006 DOI: 10.1016/s0076-6879(99)14096-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Affiliation(s)
- J M Scalzitti
- Department of Pharmacology, New York University Medical School, New York 10016, USA
| | | |
Collapse
|
10
|
Seidman S, Eckstein F, Grifman M, Soreq H. Antisense technologies have a future fighting neurodegenerative diseases. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 1999; 9:333-40. [PMID: 10463077 DOI: 10.1089/oli.1.1999.9.333] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Our growing understanding of the role that unfavorable patterns of gene expression play in the etiology of neurodegenerative disease emphasizes the need for strategies to selectively block the biosynthesis of harmful proteins in the brain. Antisense technologies are ideally suited to this purpose. Tailor-designed to target specific RNA, antisense oligonucleotides and ribozymes offer tools to suppress the production of proteins mediating neurodegeneration. Although technical limitations must still be overcome, the antisense approach represents a novel and exciting strategy for intervention in diseases of the central nervous system.
Collapse
Affiliation(s)
- S Seidman
- Department of Biological Chemistry, Hebrew University of Jerusalem, Israel
| | | | | | | |
Collapse
|
11
|
Guido ME, de Guido LB, Goguen D, Robertson HA, Rusak B. Daily rhythm of spontaneous immediate-early gene expression in the rat suprachiasmatic nucleus. J Biol Rhythms 1999; 14:275-80. [PMID: 10447307 DOI: 10.1177/074873099129000687] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nocturnal light induces the expression of various immediate-early genes (IEGs) in the suprachiasmatic nucleus (SCN), the primary pacemaker of the circadian system of mammals, and causes phase shifts of behavioral rhythms. In the hamster SCN, some IEGs show both sensitivity to light induction at night and a daily peak of spontaneous expression near dawn in different regions of the nucleus. To investigate whether both patterns of IEG expression are observed in the rat SCN, the authors studied the expression of NGFI-A, junB, c-fos, and fosB near the time of subjective dawn in rats entrained to a light-dark 12:12 cycle and then maintained in constant total darkness for approximately 48 h. They found that there were two independent rhythms of expression for junB and c-fos mRNAs in the SCN: (1) a rhythm of photic sensitivity expressed throughout the night and (2) a spontaneous rhythm of expression triggered around dawn and persisting for at least 2 h into the day. By contrast, fosB and NGFI-A transcripts were expressed only after light exposure at night and did not exhibit significant levels of spontaneous expression in the absence of photic input. These observations demonstrate that the circadian clock gates expression of two independent rhythms related to IEG expression in the rat SCN. The rhythm of sensitivity to nocturnal light exposure is expressed more strongly in the ventral SCN and may be related to photic entrainment. The second rhythm is triggered spontaneously in darkness around subjective dawn and is expressed in more dorsal parts of the SCN.
Collapse
Affiliation(s)
- M E Guido
- Department of Psychology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | |
Collapse
|
12
|
Zhang Y, Widmayer MA, Zhang B, Cui JK, Baskin DS. Suppression of post-ischemic-induced fos protein expression by an antisense oligonucleotide to c-fos mRNA leads to increased tissue damage. Brain Res 1999; 832:112-7. [PMID: 10375656 DOI: 10.1016/s0006-8993(99)01459-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Activation of c-fos, an immediate early gene, and the subsequent upregulation of Fos protein expression occur following neural injury, including focal cerebral ischemia (fci). Fos and Jun form a heterodimer known as activator protein 1, which regulates the expression of many late effector genes. To study the downstream effects of c-fos expression following ischemia, we suppressed the translation of c-fos by administering an antisense oligonucleotide (AO) to c-fos mRNA. Eighteen hours prior to fci, male, Long Evans (LE) rats received intraventricular injections of AO, mismatched AO (MS) or artificial cerebrospinal fluid (aCSF). Fci was induced by permanent right middle cerebral artery occlusion. At 24-h post-occlusion, neurological function was assessed, and the animals were sacrificed. The brains were removed and stained with triphenyltetrazolium chloride for infarct volume determination. Fos immunohistochemistry was performed in separate animals to determine the effects of treatment on Fos expression number of Fos positive cells. AO administration reduced the number of cells with fci-induced Fos expression by approximately 75%. No differences in neurological scores existed between any of the groups. AO-treated LE developed larger infarcts (40.1+/-1.0%, mean+/-S.D., p<0.001) than MS- or aCSF-treated controls (34.3+/-1.0%, 34.6+/-1.0%, respectively). These results suggest that c-fos activation and subsequent Fos protein expression exerts a neuroprotective effect, which is likely via upregulation of neurotrophins, following focal cerebral ischemia. This response, among others, may contribute to brain adaptation to injury that underlies functional recovery after stroke.
Collapse
Affiliation(s)
- Y Zhang
- Department of Neurosurgery, Baylor College of Medicine, Suite 944, 6560 Fannin Street, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
13
|
Chakravarty DN, Faingold CL. Differential roles in the neuronal network for audiogenic seizures are observed among the inferior colliculus subnuclei and the amygdala. Exp Neurol 1999; 157:135-41. [PMID: 10222116 DOI: 10.1006/exnr.1999.7047] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The inferior colliculus (IC) is established as the initiation site within the neuronal network for audiogenic seizures (AGS), but the relative importance of the IC subnuclei in AGS is controversial. The lateral and basolateral subdivisions of the amygdala are implicated in the expansion of the AGS network that occurs during AGS kindling. However, the role of the amygdala in the AGS network in nonkindled AGS is unknown. NMDA receptors are implicated in modulation of AGS and in neurotransmission in both the IC and amygdala. Therefore, changes in AGS severity in genetically epilepsy-prone rats (GEPR-9s) were examined after bilateral focal microinjection into IC subnuclei or lateral/basolateral subdivisions of the amygdala of a competitive NMDA receptor antagonist, 3-((+)-2-carboxypiperazine-4-yl)propyl-1-phosphonic acid (CPP). Blockade of AGS in IC central nucleus (ICc) and external cortex (ICx) was observed at identical doses of CPP, but these doses were ineffective in IC dorsal cortex (ICd). Microinjection of CPP into the amygdala did not produce significant changes in AGS severity except at doses 20 times those effective in IC. The latter data contrast with the anticonvulsant effects of amygdala microinjections on seizure severity in kindled AGS reported previously. The present data in concord with neuronal recording studies of these nuclei suggest that the ICc is the most critical site in AGS initiation, the ICx in propagation, and that the ICd plays a lesser role in the AGS network. The amygdala does not appear to play a requisite role in the neuronal network for AGS in animals that have not been subjected to AGS kindling.
Collapse
Affiliation(s)
- D N Chakravarty
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9629, USA
| | | |
Collapse
|