1
|
Wang Y, Dong J, Wang Y, Wei W, Song B, Shan Z, Teng W, Chen J. Developmental Hypothyroxinemia and Hypothyroidism Reduce Parallel Fiber-Purkinje Cell Synapses in Rat Offspring by Downregulation of Neurexin1/Cbln1/GluD2 Tripartite Complex. Biol Trace Elem Res 2016; 173:465-74. [PMID: 27033232 DOI: 10.1007/s12011-016-0664-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 02/23/2016] [Indexed: 01/19/2023]
Abstract
Iodine is a significant micronutrient. Iodine deficiency (ID)-induced hypothyroxinemia and hypothyroidism during developmental period can cause cerebellar dysfunction. However, mechanisms are still unclear. Therefore, the present research aims to study effects of developmental hypothyroxinemia caused by mild ID and hypothyroidism caused by severe ID or methimazole (MMZ) on parallel fiber-Purkinje cell (PF-PC) synapses in filial cerebellum. Maternal hypothyroxinemia and hypothyroidism models were established in Wistar rats using ID diet and deionized water supplemented with different concentrations of potassium iodide or MMZ water. Birth weight and cerebellum weight were measured. We also examined PF-PC synapses using immunofluorescence, and western blot analysis was conducted to investigate the activity of Neurexin1/cerebellin1 (Cbln1)/glutamate receptor d2 (GluD2) tripartite complex. Our results showed that hypothyroxinemia and hypothyroidism decreased birth weight and cerebellum weight and reduced the PF-PC synapses on postnatal day (PN) 14 and PN21. Accordingly, the mean intensity of vesicular glutamate transporter (VGluT1) and Calbindin immunofluorescence was reduced in mild ID, severe ID, and MMZ groups. Moreover, maternal hypothyroxinemia and hypothyroidism reduced expression of Neurexin1/Cbln1/GluD2 tripartite complex. Our study supports the hypothesis that developmental hypothyroxinemia and hypothyroidism reduce PF-PC synapses, which may be attributed to the downregulation of Neurexin1/Cbln1/GluD2 tripartite complex.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, People's Republic of China
| | - Jing Dong
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, People's Republic of China
| | - Yi Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, People's Republic of China
| | - Wei Wei
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, People's Republic of China
| | - Binbin Song
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, People's Republic of China
| | - Zhongyan Shan
- Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Weiping Teng
- Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jie Chen
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, People's Republic of China.
| |
Collapse
|
2
|
Petruzziello F, Falasca S, Andren PE, Rainer G, Zhang X. Chronic nicotine treatment impacts the regulation of opioid and non-opioid peptides in the rat dorsal striatum. Mol Cell Proteomics 2013; 12:1553-62. [PMID: 23436905 DOI: 10.1074/mcp.m112.024828] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The chronic use of nicotine, the main psychoactive ingredient of tobacco smoking, alters diverse physiological processes and consequently generates physical dependence. To understand the impact of chronic nicotine on neuropeptides, which are potential molecules associated with dependence, we conducted qualitative and quantitative neuropeptidomics on the rat dorsal striatum, an important brain region implicated in the preoccupation/craving phase of drug dependence. We used extensive LC-FT-MS/MS analyses for neuropeptide identification and LC-FT-MS in conjunction with stable isotope addition for relative quantification. The treatment with chronic nicotine for 3 months led to moderate changes in the levels of endogenous dorsal striatum peptides. Five enkephalin opioid peptides were up-regulated, although no change was observed for dynorphin peptides. Specially, nicotine altered levels of nine non-opioid peptides derived from precursors, including somatostatin and cerebellin, which potentially modulate neurotransmitter release and energy metabolism. This broad but selective impact on the multiple peptidergic systems suggests that apart from the opioid peptides, several other peptidergic systems are involved in the preoccupation/craving phase of drug dependence. Our finding permits future evaluation of the neurochemical circuits modulated by chronic nicotine exposure and provides a number of novel molecules that could serve as potential therapeutic targets for treating drug dependence.
Collapse
Affiliation(s)
- Filomena Petruzziello
- Visual Cognition Laboratory, Department of Medicine, University of Fribourg, Chemin de Musee 5, Fribourg CH-1700, Switzerland
| | | | | | | | | |
Collapse
|
3
|
Yuzaki M. Cbln1 and its family proteins in synapse formation and maintenance. Curr Opin Neurobiol 2011; 21:215-20. [DOI: 10.1016/j.conb.2011.01.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 01/29/2011] [Accepted: 01/31/2011] [Indexed: 01/27/2023]
|
4
|
Aerbajinai W, Lee YT, Wojda U, Barr VA, Miller JL. Cloning and characterization of a gene expressed during terminal differentiation that encodes a novel inhibitor of growth. J Biol Chem 2003; 279:1916-21. [PMID: 14593112 DOI: 10.1074/jbc.m305634200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report here the cloning and initial characterization of a novel growth-related gene (EEG-1) that is located on the short arm of chromosome 12. Two spliced transcripts were cloned from human bone marrow and human erythroid progenitor cells: EEG-1L containing a 4350-nucleotide open reading frame encoding a putative protein of 1077 amino acids including a C1q-like globular domain, and an alternatively spliced transcript lacking exon 5 (EEG-1S) encodes a significantly smaller coding region and no C1q-like domain. Quantitative PCR revealed expression of both EEG-1 transcripts in all analyzed tissues. Plasmids encoding green fluorescent protein-tagged genes (GFP-EEG-1) were transfected into Chinese hamster ovary cells for localization and functional assays. In contrast to the diffuse cellular localization of the GFP control, GFP-EEG-1L was detected throughout the cytoplasm and excluded from the nucleus, and GFP-EEG-1S co-localized with aggregated mitochondria. Transfection of both isoforms was associated with significantly increased levels of apoptosis. Stable transfection assays additionally demonstrated decreased growth in those cells expressing EEG-1 at higher levels. Quantitative PCR analyses of mRNA obtained from differentiating erythroid cells from blood donors were performed to determine the transcriptional pattern of EEG-1 during erythropoiesis. EEG-1 expression was highly regulated with increased expression at the stage of differentiation associated with the onset of global nuclear condensation and reduced cell proliferation. We propose that the regulated expression of EEG-1 is involved in the orchestrated regulation of growth that occurs as erythroblasts shift from a highly proliferative state toward their terminal phase of differentiation.
Collapse
Affiliation(s)
- Wulin Aerbajinai
- Laboratory of Chemical Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Building 10, NIH, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
5
|
Brown VM, Ossadtchi A, Khan AH, Yee S, Lacan G, Melega WP, Cherry SR, Leahy RM, Smith DJ. Multiplex three-dimensional brain gene expression mapping in a mouse model of Parkinson's disease. Genome Res 2002; 12:868-84. [PMID: 12045141 PMCID: PMC1383741 DOI: 10.1101/gr.229002] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
To facilitate high-throughput 3D imaging of brain gene expression, a new method called voxelation has been developed. Spatially registered voxels (cubes) are analyzed, resulting in multiple volumetric maps of gene expression analogous to the images reconstructed in biomedical imaging systems. Using microarrays, 40 voxel images for 9000 genes were acquired from brains of both normal mice and mice in which a pharmacological model of Parkinson's disease (PD) had been induced by methamphetamine. Quality-control analyses established the reproducibility of the voxelation procedure. The investigation revealed a common network of coregulated genes shared between the normal and PD brain, and allowed identification of putative control regions responsible for these networks. In addition, genes involved in cell/cell interactions were found to be prominently regulated in the PD brains. Finally, singular value decomposition (SVD), a mathematical method used to provide parsimonious explanations of complex data sets, identified gene vectors and their corresponding images that distinguished between normal and PD brain structures, most pertinently the striatum.
Collapse
Affiliation(s)
- Vanessa M Brown
- Department of Molecular and Medical Pharmacology, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci U S A 2001; 98. [PMID: 11172066 PMCID: PMC29372 DOI: 10.1073/pnas.041591798] [Citation(s) in RCA: 667] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adipocyte complement-related protein (30 kDa) (Acrp30), a secreted protein of unknown function, is exclusively expressed in differentiated adipocytes; its mRNA is decreased in obese humans and mice. Here we describe novel pharmacological properties of the protease-generated globular head domain of Acrp30 (gAcrp30). Acute treatment of mice with gAcrp30 significantly decreased the elevated levels of plasma free fatty acids caused either by administration of a high fat test meal or by i.v. injection of Intralipid. This effect of gAcrp30 was caused, at least in part, by an acute increase in fatty acid oxidation by muscle. As a result, daily administration of a very low dose of gAcrp30 to mice consuming a high-fat/sucrose diet caused profound and sustainable weight reduction without affecting food intake. Thus, gAcrp30 is a novel pharmacological compound that controls energy homeostasis and exerts its effect primarily at the peripheral level.
Collapse
|
7
|
Fruebis J, Tsao TS, Javorschi S, Ebbets-Reed D, Erickson MR, Yen FT, Bihain BE, Lodish HF. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci U S A 2001; 98:2005-10. [PMID: 11172066 PMCID: PMC29372 DOI: 10.1073/pnas.98.4.2005] [Citation(s) in RCA: 1080] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adipocyte complement-related protein (30 kDa) (Acrp30), a secreted protein of unknown function, is exclusively expressed in differentiated adipocytes; its mRNA is decreased in obese humans and mice. Here we describe novel pharmacological properties of the protease-generated globular head domain of Acrp30 (gAcrp30). Acute treatment of mice with gAcrp30 significantly decreased the elevated levels of plasma free fatty acids caused either by administration of a high fat test meal or by i.v. injection of Intralipid. This effect of gAcrp30 was caused, at least in part, by an acute increase in fatty acid oxidation by muscle. As a result, daily administration of a very low dose of gAcrp30 to mice consuming a high-fat/sucrose diet caused profound and sustainable weight reduction without affecting food intake. Thus, gAcrp30 is a novel pharmacological compound that controls energy homeostasis and exerts its effect primarily at the peripheral level.
Collapse
Affiliation(s)
- J Fruebis
- Genset Corporation, Functional Genomics, 875 Prospect Street, No. 206, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Precerebellin (Cbln1) is the precursor of the brain-specific hexadecapeptide cerebellin. Although cerebellin has properties of a conventional neuropeptide, its function is controversial because Cbln1 has structural features characteristic of circulating atypical collagens. Cbln1 is related to the three subunits of the complement C1q complex. Therefore, we hypothesized that Cbln1 participated in analogous heteromeric complexes with precerebellin-related proteins. Using LexA-Cbln1 as bait in a yeast two-hybrid screen, we isolated a cDNA encoding a novel Cbln1-related protein, designated Cbln3. The gene encoding cbln3 had the same intron-exon structure as cbln1 but mapped to a different mouse chromosome (14). The deduced amino acid sequence of Cbln3 was 55% identical to Cbln1 and also contained a C1q signature domain and signal sequence for secretion. In addition to binding avidly to Cbln3, Cbln1 also formed homomeric complexes. In contrast, Cbln3 homomeric association was weak. These interactions exhibited specificity because C1qB bound to neither Cbln1 nor Cbln3. Like cbln1, cbln3 was expressed in the cerebellum and dorsal cochlear nucleus in which it was detected in granule neurons. Because Cbln1 and Cbln3 are coexpressed in the brain and interact avidly, they may function as a secreted heteromeric complex in vivo.
Collapse
|