1
|
Ledonne A, Mercuri NB. On the Modulatory Roles of Neuregulins/ErbB Signaling on Synaptic Plasticity. Int J Mol Sci 2019; 21:ijms21010275. [PMID: 31906113 PMCID: PMC6981567 DOI: 10.3390/ijms21010275] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/27/2019] [Accepted: 12/29/2019] [Indexed: 12/14/2022] Open
Abstract
Neuregulins (NRGs) are a family of epidermal growth factor-related proteins, acting on tyrosine kinase receptors of the ErbB family. NRGs play an essential role in the development of the nervous system, since they orchestrate vital functions such as cell differentiation, axonal growth, myelination, and synapse formation. They are also crucially involved in the functioning of adult brain, by directly modulating neuronal excitability, neurotransmission, and synaptic plasticity. Here, we provide a review of the literature documenting the roles of NRGs/ErbB signaling in the modulation of synaptic plasticity, focusing on evidence reported in the hippocampus and midbrain dopamine (DA) nuclei. The emerging picture shows multifaceted roles of NRGs/ErbB receptors, which critically modulate different forms of synaptic plasticity (LTP, LTD, and depotentiation) affecting glutamatergic, GABAergic, and DAergic synapses, by various mechanisms. Further, we discuss the relevance of NRGs/ErbB-dependent synaptic plasticity in the control of brain processes, like learning and memory and the known involvement of NRGs/ErbB signaling in the modulation of synaptic plasticity in brain’s pathological conditions. Current evidence points to a central role of NRGs/ErbB receptors in controlling glutamatergic LTP/LTD and GABAergic LTD at hippocampal CA3–CA1 synapses, as well as glutamatergic LTD in midbrain DA neurons, thus supporting that NRGs/ErbB signaling is essential for proper brain functions, cognitive processes, and complex behaviors. This suggests that dysregulated NRGs/ErbB-dependent synaptic plasticity might contribute to mechanisms underlying different neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Ada Ledonne
- Department of Experimental Neuroscience, Santa Lucia Foundation, Via del Fosso di Fiorano, no 64, 00143 Rome, Italy;
- Correspondence: ; Tel.: +3906-501703160; Fax: +3906-501703307
| | - Nicola B. Mercuri
- Department of Experimental Neuroscience, Santa Lucia Foundation, Via del Fosso di Fiorano, no 64, 00143 Rome, Italy;
- Department of Systems Medicine, University of Rome “Tor Vergata”, Via Montpellier no 1, 00133 Rome, Italy
| |
Collapse
|
2
|
Rimer M. Extracellular signal-regulated kinases 1 and 2 regulate neuromuscular junction and myofiber phenotypes in mammalian skeletal muscle. Neurosci Lett 2019; 715:134671. [PMID: 31805372 DOI: 10.1016/j.neulet.2019.134671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 02/06/2023]
Abstract
The neuromuscular junction is the synapse between a motor neuron of the spinal cord and a skeletal muscle fiber in the periphery. Reciprocal interactions between these excitable cells, and between them and others cell types present within the muscle tissue, shape the development, homeostasis and plasticity of skeletal muscle. An important aim in the field is to understand the molecular mechanisms underlying these cellular interactions, which include identifying the nature of the signals and receptors involved but also of the downstream intracellular signaling cascades elicited by them. This review focuses on work that shows that skeletal muscle fiber-derived extracellular signal-regulated kinases 1 and 2 (ERK1/2), ubiquitous and prototypical intracellular mitogen-activated protein kinases, have modulatory roles in the maintenance of the neuromuscular synapse and in the acquisition and preservation of fiber type identity in skeletal muscle.
Collapse
Affiliation(s)
- Mendell Rimer
- Department of Neuroscience & Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center and Texas A&M Institute for Neuroscience, Bryan, TX 77807 USA.
| |
Collapse
|
3
|
Zhao L, Xiao Y, Xiu J, Tan LC, Guan ZZ. Protection against the Neurotoxic Effects of β-Amyloid Peptide on Cultured Neuronal Cells by Lovastatin Involves Elevated Expression of α7 Nicotinic Acetylcholine Receptors and Activating Phosphorylation of Protein Kinases. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1081-1093. [DOI: 10.1016/j.ajpath.2017.11.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/27/2017] [Accepted: 11/28/2017] [Indexed: 12/25/2022]
|
4
|
Ito K, Ohkawara B, Yagi H, Nakashima H, Tsushima M, Ota K, Konishi H, Masuda A, Imagama S, Kiyama H, Ishiguro N, Ohno K. Lack of Fgf18 causes abnormal clustering of motor nerve terminals at the neuromuscular junction with reduced acetylcholine receptor clusters. Sci Rep 2018; 8:434. [PMID: 29323161 PMCID: PMC5765005 DOI: 10.1038/s41598-017-18753-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/18/2017] [Indexed: 01/29/2023] Open
Abstract
FGF receptor 2 is involved in the formation of the neuromuscular junction (NMJ), but its in vivo ligand remains to be determined. Laser capture microdissection of the mouse spinal motor neurons (SMNs) revealed that Fgf18 mRNA is highly expressed in SMNs in adults. Expression of Fgf18 mRNA was the highest in the spinal cord at embryonic day (E) 15.5, which gradually decreased to postnatal day 7. FGF18 protein was localized at the NMJs of the tibialis anterior muscle at E18.5 and in adults. Fgf18−/− mice at E18.5 showed decreased expressions of the NMJ-specific Chrne and Colq genes in the diaphragm. In Fgf18−/− diaphragms, the synaptophysin-positive areas at the nerve terminals and the acetylcholine receptor (AChR)-positive areas at the motor endplates were both approximately one-third of those in wild-type embryos. Fgf18−/− diaphragms ultrastructurally showed abnormal aggregation of multiple nerve terminals making a gigantic presynapse with sparse synaptic vesicles, and simplified motor endplates. In Fgf18−/− diaphragms, miniature endplate potentials were low in amplitude with markedly reduced frequency. In C2C12 myotubes, FGF18 enhanced AChR clustering, which was blocked by inhibiting FGFRs or MEK1. We propose that FGF18 plays a pivotal role in AChR clustering and NMJ formation in mouse embryogenesis.
Collapse
Affiliation(s)
- Kenyu Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Departments of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideki Yagi
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Departments of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Nakashima
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Departments of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikito Tsushima
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Departments of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kyotaro Ota
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Departments of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Konishi
- Departments of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shiro Imagama
- Departments of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Kiyama
- Departments of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Ishiguro
- Departments of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
5
|
Wang S, Seaberg B, Paez-Colasante X, Rimer M. Defective Acetylcholine Receptor Subunit Switch Precedes Atrophy of Slow-Twitch Skeletal Muscle Fibers Lacking ERK1/2 Kinases in Soleus Muscle. Sci Rep 2016; 6:38745. [PMID: 27934942 PMCID: PMC5146667 DOI: 10.1038/srep38745] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 11/15/2016] [Indexed: 01/10/2023] Open
Abstract
To test the role of extracellular-signal regulated kinases 1 and 2 (ERK1/2) in slow-twitch, type 1 skeletal muscle fibers, we studied the soleus muscle in mice genetically deficient for myofiber ERK1/2. Young adult mutant soleus was drastically wasted, with highly atrophied type 1 fibers, denervation at most synaptic sites, induction of “fetal” acetylcholine receptor gamma subunit (AChRγ), reduction of “adult” AChRε, and impaired mitochondrial biogenesis and function. In weanlings, fiber morphology and mitochondrial markers were mostly normal, yet AChRγ upregulation and AChRε downregulation were observed. Synaptic sites with fetal AChRs in weanling muscle were ~3% in control and ~40% in mutants, with most of the latter on type 1 fibers. These results suggest that: (1) ERK1/2 are critical for slow-twitch fiber growth; (2) a defective γ/ε-AChR subunit switch, preferentially at synapses on slow fibers, precedes wasting of mutant soleus; (3) denervation is likely to drive this wasting, and (4) the neuromuscular synapse is a primary subcellular target for muscle ERK1/2 function in vivo.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Bonnie Seaberg
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Ximena Paez-Colasante
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Mendell Rimer
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, Texas, USA
| |
Collapse
|
6
|
Muscle-derived extracellular signal-regulated kinases 1 and 2 are required for the maintenance of adult myofibers and their neuromuscular junctions. Mol Cell Biol 2015; 35:1238-53. [PMID: 25605336 DOI: 10.1128/mcb.01071-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Ras-extracellular signal-regulated kinase 1 and 2 (ERK1/2) pathway appears to be important for the development, maintenance, aging, and pathology of mammalian skeletal muscle. Yet no gene targeting of Erk1/2 in muscle fibers in vivo has been reported to date. We combined a germ line Erk1 mutation with Cre-loxP Erk2 inactivation in skeletal muscle to produce, for the first time, mice lacking ERK1/2 selectively in skeletal myofibers. Animals lacking muscle ERK1/2 displayed stunted postnatal growth, muscle weakness, and a shorter life span. Their muscles examined in this study, sternomastoid and tibialis anterior, displayed fragmented neuromuscular synapses and a mixture of modest fiber atrophy and loss but failed to show major changes in fiber type composition or absence of cell surface dystrophin. Whereas the lack of only ERK1 had no effects on the phenotypes studied, the lack of myofiber ERK2 explained synaptic fragmentation in the sternomastoid but not the tibialis anterior and a decrease in the expression of the acetylcholine receptor (AChR) epsilon subunit gene mRNA in both muscles. A reduction in AChR protein was documented in line with the above mRNA results. Evidence of partial denervation was found in the sternomastoid but not the tibialis anterior. Thus, myofiber ERK1/2 are differentially required for the maintenance of myofibers and neuromuscular synapses in adult mice.
Collapse
|
7
|
Kim HG, Lee CK, Cho SM, Whang K, Cha BH, Shin JH, Song KH, Jeong SW. Neuregulin 1 up-regulates the expression of nicotinic acetylcholine receptors through the ErbB2/ErbB3-PI3K-MAPK signaling cascade in adult autonomic ganglion neurons. J Neurochem 2012. [PMID: 23199222 DOI: 10.1111/jnc.12109] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We investigated effects of Neuregulin 1 (NRG1) on the expression of nicotinic acetylcholine receptor (nAChR) in major pelvic ganglion (MPG) from adult rat. MPG neurons were found to express transcripts for type I and III NRG1s as well as α and β-type epidermal growth factor (EGF)-like domains. Of the four ErbB receptor isoforms, ErbB1, ErbB2, and ErbB3 were expressed in MPG neurons. Treating MPG with NRG1β significantly increased the transcript and protein level of the nAChR α3 and β4 subunits. Consistent with these molecular data, nicotinic currents (I(ACh) ) were significantly up-regulated in NRG1β-treated sympathetic and parasympathetic MPG neurons. In contrast, the type III NRG1 and the α form of the NRG1 failed to alter the I(ACh) . Inhibition of the ErbB2 tyrosine kinase completely abolished the effects of NRG1β on the I(ACh) . Stimulation of the ErbB receptors by NRG1β activated the phosphatidylinositol-3-kinase (PI3K) and mitogen-activated protein kinase (MAPK). Immunoblot analysis revealed that PI3K-mediated activation of Akt preceded Erk1/2 activation in NRG1β-treated MPG neurons. Furthermore, specific PI3K inhibitors abrogated the phosphorylation of Erk1/2, while inhibition of MEK did not prevent the phosphorylation of Akt. Taken together, these findings suggest that NRG1 up-regulates nAChR expression via the ErbB2/ErbB3-PI3K-MAPK signaling cascade and may be involved in maintaining the ACh-mediated synaptic transmission in adult autonomic ganglia.
Collapse
Affiliation(s)
- Han-Gyu Kim
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Phosphorylation/dephosphorylation of human SULT4A1: Role of Erk1 and PP2A. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:231-7. [DOI: 10.1016/j.bbamcr.2010.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 09/17/2010] [Accepted: 09/21/2010] [Indexed: 01/19/2023]
|
9
|
Rimer M. Modulation of agrin-induced acetylcholine receptor clustering by extracellular signal-regulated kinases 1 and 2 in cultured myotubes. J Biol Chem 2010; 285:32370-7. [PMID: 20696763 DOI: 10.1074/jbc.m110.144774] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Agrin released by motoneurons induces and/or maintains acetylcholine receptor (AChR) clustering and other aspects of postsynaptic differentiation at the vertebrate neuromuscular junction. Agrin acts by binding and activating a receptor complex containing LDL receptor protein 4 (Lrp4) and muscle-specific kinase (MuSK). Two critical downstream components of this signaling cascade, Dox-7 and rapsyn, have been identified. However, additional intracellular essential elements remain unknown. Prior observations by others and us suggested antagonistic interactions between agrin and neuregulin-1 (Nrg-1) signaling in cultured myotubes and developing muscle fibers in vivo. A hallmark of Nrg-1 signaling in skeletal muscle cells is the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2). ERK1/2 are also activated in most cells by phorbol 12-myristate 13-acetate, a classical inhibitor of agrin-induced AChR clustering in myotubes. Here, it was investigated whether agrin activates ERK1/2 directly and whether such activation modulates agrin-induced AChR clustering. Agrin induced a rapid but transient activation of ERK1/2 in myotubes that was Lrp4/MuSK-dependent. However, blocking this ERK1/2 activation did not prevent but potentiated AChR clustering induced by agrin. ERK1/2 activation was dispensable for Nrg-1-mediated inhibition of the AChR clustering activity of agrin, but was indispensable for such activity by phorbol 12-myristate 13-acetate. Together, these results suggest agrin-induced activation of ERK1/2 is a negative modulator of agrin signaling in skeletal muscle cells.
Collapse
Affiliation(s)
- Mendell Rimer
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, College Station, Texas 77843, USA.
| |
Collapse
|
10
|
Dong XP, Li XM, Gao TM, Zhang EE, Feng GS, Xiong WC, Mei L. Shp2 Is Dispensable in the Formation and Maintenance of the Neuromuscular Junction. Neurosignals 2006; 15:53-63. [PMID: 16837792 DOI: 10.1159/000094484] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 05/04/2006] [Indexed: 01/23/2023] Open
Abstract
SHP2, a protein tyrosine phosphatase with two SH2 domains, has been implicated in regulating acetylcholine receptor (AChR) gene expression and cluster formation in cultured muscle cells. To understand the role of SHP2 in neuromuscular junction (NMJ) formation in vivo, we generated mus cle-specific deficient mice by using a loxP/Cre strategy since Shp2 null mutation causes embryonic lethality. Shp2(floxed/floxed) mice were crossed with mice expressing the Cre gene under the control of the human skeletal alpha-actin (HSA) promoter. Expression of SHP2 was reduced or diminished specifically in skeletal muscles of the conditional knockout (CKO) mice. The mutant mice were viable and fertile, without apparent muscle defects. The mRNA of the AChR alpha subunit and AChR clusters in CKO mice were localized in a narrow central region surrounding the phrenic nerve primary branches, without apparent change in intensity. AChR clusters colocalized with markers of synaptic vesicles and Schwann cells, suggesting proper differentiation of presynaptic terminals and Schwann cells. In comparison with age-matched littermates, no apparent difference was observed in the size and length of AChR clusters in CKO mice. Both the frequency and amplitude of mEPPs in CKO mice were similar to those in controls, suggesting normal neurotransmission when SHP2 was deficient. These results suggest that Shp2 is not required for NMJ formation and/or maintenance.
Collapse
Affiliation(s)
- Xian-Ping Dong
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Dai P, Xiong WC, Mei L. Erbin inhibits RAF activation by disrupting the sur-8-Ras-Raf complex. J Biol Chem 2005; 281:927-33. [PMID: 16301319 DOI: 10.1074/jbc.m507360200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Erbin is a member of the LAP (leucine-rich repeat (LRR) and PDZ domain) family. It inhibits Ras-mediated activation of ERK in response to growth factors. In this study, we investigated the mechanisms by which Erbin regulates the Ras-Raf-MEK pathway. The N-terminal LRR domain was necessary and sufficient to inhibit neuregulin-activated expression of epsilon416-Luc, a reporter of ERK activation. On the other hand, Erbin had no effect on Ras activation, but it attenuated neuregulin-induced Raf activation, suggesting that Erbin may regulate Raf activation by Ras. Via the LRR domain, Erbin interacts with Sur-8, a scaffold protein necessary for the Ras-Raf complex. Expression of Erbin attenuated the interaction of Sur-8 with active Ras and Raf. Moreover, Erbin-shRNA, which suppressed Erbin expression at mRNA and protein levels, increased the interaction of Sur-8 with Ras and Raf, ERK activation, and neuregulin-induced expression of endogenous acetylcholine receptor epsilon-subunit mRNA. These results demonstrate a regulatory role of Erbin in the Ras-Raf-MEK pathway, suggesting that Erbin may inhibit ERK activation by disrupting the Sur-8-Ras/Raf interaction.
Collapse
Affiliation(s)
- Penggao Dai
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, 30912, USA
| | | | | |
Collapse
|
12
|
Kim CH, Xiong WC, Mei L. Inhibition of MuSK expression by CREB interacting with a CRE-like element and MyoD. Mol Cell Biol 2005; 25:5329-38. [PMID: 15964791 PMCID: PMC1156998 DOI: 10.1128/mcb.25.13.5329-5338.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The type I receptor-like protein tyrosine kinase MuSK is essential for the neuromuscular junction formation. MuSK expression is tightly regulated during development, but the underlying mechanisms were unclear. Here we identified a novel mechanism by which MuSK expression may be regulated. A cyclic AMP response element (CRE)-like element in the 5'-flanking region of the MuSK gene binds to CREB1 (CRE-binding protein 1). Mutation of this element increases the MuSK promoter activity, suggesting a role for CREB1 in attenuation of MuSK expression. Interestingly, CREB mutants unable to bind to DNA also inhibit MuSK promoter activity, suggesting a CRE-independent inhibitory mechanism. In agreement, CREB1 could inhibit a mutant MuSK transgene reporter whose CRE site was mutated. We provide evidence that CREB interacts directly with MyoD, a myogenic factor essential for MuSK expression in muscle cells. Suppression of CREB expression by small interfering RNA increases MuSK promoter activity. These results demonstrate an important role for CREB1 in the regulation of MuSK expression.
Collapse
Affiliation(s)
- Chang-Hoon Kim
- Program of Developmental Neurobiology, Institute of Molecular Medicine and Genetics, Medical College of Georgia, CB2803, 1120 15th Street, Augusta, Georgia 30912, USA
| | | | | |
Collapse
|
13
|
Lu G, Seta KA, Millhorn DE. Novel role for cyclin-dependent kinase 2 in neuregulin-induced acetylcholine receptor epsilon subunit expression in differentiated myotubes. J Biol Chem 2005; 280:21731-8. [PMID: 15824106 DOI: 10.1074/jbc.m412498200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) are a family of evolutionarily conserved serine/threonine kinases. CDK2 acts as a checkpoint for the G(1)/S transition in the cell cycle. Despite a down-regulation of CDK2 activity in postmitotic cells, many cell types, including muscle cells, maintain abundant levels of CDK2 protein. This led us to hypothesize that CDK2 may have a function in postmitotic cells. We show here for the first time that CDK2 can be activated by neuregulin (NRG) in differentiated C2C12 myotubes. In addition, this activity is required for expression of the acetylcholine receptor (AChR) epsilon subunit. The switch from the fetal AChRgamma subunit to the adult-type AChRepsilon is required for synapse maturation and the neuromuscular junction. Inhibition of CDK2 activity with either the specific CDK2 inhibitory peptide Tat-LFG or by RNA interference abolished neuregulin-induced AChRepsilon expression. Neuregulin-induced activation of CDK2 also depended on the ErbB receptor, MAPK, and PI3K, all of which have previously been shown to be required for AChRepsilon expression. Neuregulin regulated CDK2 activity through coordinating phosphorylation of CDK2 on Thr-160, accumulation of CDK2 in the nucleus, and down-regulation of the CDK2 inhibitory protein p27 in the nucleus. In addition, we also observed a novel mechanism of regulation of CDK2 activity by a low molecular weight variant of cyclin E in response to NRG. These findings establish CDK2 as an intermediate molecule that integrates NRG-activated signals from both the MAPK and PI3K pathways to AChRepsilon expression and reveal an undiscovered physiological role for CDK2 in postmitotic cells.
Collapse
Affiliation(s)
- Gang Lu
- Department of Genome Science, Genome Research Institute, University of Cincinnati, 2180 E. Galbraith Road, Cincinnati, OH 45237, USA
| | | | | |
Collapse
|
14
|
Kesavapany S, Li BS, Amin N, Zheng YL, Grant P, Pant HC. Neuronal cyclin-dependent kinase 5: role in nervous system function and its specific inhibition by the Cdk5 inhibitory peptide. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1697:143-53. [PMID: 15023357 DOI: 10.1016/j.bbapap.2003.11.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Accepted: 11/12/2003] [Indexed: 12/19/2022]
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a member of the cyclin-dependent kinase family that is involved in the regulation of the cell cycle. As their name suggests, the Cdks require association with activator proteins called cyclins for their activity. Cdk5, however, is unique to this family of proline-directed serine/threonine kinases on two accounts. Firstly, Cdk5 has not been found to function in the cell cycle and, although expressed in a number of tissues, its activity is restricted to the nervous system. Secondly, unlike the other members of the Cdk family, Cdk5 is not activated by association with a cyclin, although it can bind them. Instead, Cdk5 is activated by the activator proteins p35 and p39 that are structurally distinct from cyclins and have, for the most part, a neuronal-specific expression pattern. In the past decade of research on Cdk5, it is now established that Cdk5 activity is critical for the proper formation and function of the brain. Moreover, its role as a central kinase, phosphorylating its substrates in its 'cross-talk' control of other kinase and signal transduction pathways, has also been determined. In addition to the normal physiological role of Cdk5, the kinase has been implicated in certain neurodegenerative disorders. For example, Cdk5 associates with the proteolytic, more active p25 fragment that is derived through the cleavage of p35. In turn, the p25/Cdk5 complex aberrantly phosphorylates its substrates tau and neurofilaments, which has been implicated in the pathogenesis of these disorders. Here, we attempt to review the past decade of research on Cdk5 from our laboratory and others, on the roles of Cdk5 in nervous system function. Additionally, our research has recently uncovered a possible therapeutic avenue of research, focusing on inhibition of aberrant Cdk5 hyperactivity which may well be used to treat the symptoms of a number of neurodegenerative diseases. The elucidation of a specific inhibitor of p25/Cdk5, termed CIP, also inhibits p25/Cdk5-mediated tau phosphorylation. This may well provide us with avenues of research focusing on the inhibition of pathologically damaging p25/Cdk5 species.
Collapse
Affiliation(s)
- Sashi Kesavapany
- Cytoskeletal Protein Regulation Section, Laboratory of Neurochemistry, Building 36, Room 4D-28, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
15
|
Méjat A, Ravel-Chapuis A, Vandromme M, Schaeffer L. Synapse-specific gene expression at the neuromuscular junction. Ann N Y Acad Sci 2003; 998:53-65. [PMID: 14592863 DOI: 10.1196/annals.1254.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Agrin is the key neural factor that controls muscle postsynaptic differentiation, including the induction of synapse-specific transcription via neuregulins. In 1995, the promoter element responsible for the targeting of AChR delta and epsilon gene transcription to the skeletal muscle subsynaptic area was identified. This element, named N-box, recruits the Ets-related transcription factor GABP to AChR delta and epsilon promoters, and both the N-box and GABP are required to obtain transcriptional stimulation by neuregulins. The physiological importance of the N-box has been definitively established with the discovery of myasthenic families carrying single-point mutations in the N-box of the AChR epsilon gene promoter and showing reduced levels of AChR epsilon subunit expression. The control of synapse-specific transcription by agrin and neuregulins through the N-box and GABP is not restricted to the case of AChR genes. The same regulation holds true for the ACh esterase and utrophin genes, thus showing that nerve-induced transcriptional activation of several synapse-specific genes is triggered by a common mechanism involving agrin, neuregulins, and ultimately the N-box and Ets-related transcription factors.
Collapse
Affiliation(s)
- Alexandre Méjat
- Equipe Différenciation Neuromusculaire, UMR 5161 CNRS/ENS, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | |
Collapse
|
16
|
Abstract
MuSK is a receptor tyrosine kinase essential for neuromuscular junction formation. Expression of the MuSK gene is tightly regulated during development and at the neuromuscular junction. However, little is known about molecular mechanisms regulating its gene expression. Here we report a characterization of the promoter of the mouse MuSK gene. The transcription of MuSK starts at multiple sites with a major site 51 nt upstream of the translation start site. We have identified an E-box-like cis-element that is both required and sufficient for differentiation-dependent transcription. Interestingly, the promoter activity of the MuSK gene did not respond to neuregulin, a factor believed to mediate the synapse-specific transcription of acetylcholine receptor subunit genes. Rather, MuSK expression is increased in muscle cells stimulated with Wnt or at conditions when the Wnt signaling was activated. These results suggest a novel mechanism for the MuSK synapse-specific expression.
Collapse
Affiliation(s)
- Chang-Hoon Kim
- Department of Neurobiology, University of Alabama at Birmingham, Civitan International Research Center, 35294, USA
| | | | | |
Collapse
|
17
|
ATP acts via P2Y1 receptors to stimulate acetylcholinesterase and acetylcholine receptor expression: transduction and transcription control. J Neurosci 2003. [PMID: 12805285 DOI: 10.1523/jneurosci.23-11-04445.2003] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
At the vertebrate neuromuscular junction ATP is known to stabilize acetylcholine in the synaptic vesicles and to be co-released with it. We have shown previously that a nucleotide receptor, the P2Y1 receptor, is localized at the junction, and we propose that this mediates a trophic role for synaptic ATP there. Evidence in support of this and on its mechanism is given here. With the use of chick or mouse myotubes expressing promoter-reporter constructs from genes of acetylcholinesterase (AChE) or of the acetylcholine receptor subunits, P2Y1 receptor agonists were shown to stimulate the transcription of each of those genes. The pathway to activation of the AChE gene was shown to involve protein kinase C and intracellular Ca 2+ release. Application of dominant-negative or constitutively active mutants, or inhibitors of specific kinases, showed that it further proceeds via some of the known intermediates of extracellular signal-regulated kinase phosphorylation. In both chick and mouse myotubes this culminates in activation of the transcription factor Elk-1, confirmed by gel mobility shift assays and by the nuclear accumulation of phosphorylated Elk-1. All of the aforementioned activations by agonist were amplified when the content of P2Y1 receptors was boosted by transfection, and the activations were blocked by a P2Y1-selective antagonist. Two Elk-1 binding site sequences present in the AChE gene promoter were jointly sufficient to drive ATP-induced reporter gene transcription. Thus ATP regulates postsynaptic gene expression via a pathway to a selective transcription factor activation.
Collapse
|
18
|
Abstract
Neuregulin (NRG) regulates synapse formation and synaptic plasticity, but little is known about the regulation of NRG signaling at synapses. Here we show that the NRG receptor ErbB4 was localized in anatomically defined postsynaptic densities in the brain. In cultured cortical neurons, ErbB4 was recruited to the neuronal lipid raft fraction after stimulation by NRG. Along with ErbB4, adaptor proteins Grb2 and Shc were translocated to lipid rafts by NRG stimulation. In transfected human embryonic kidney 293 cells, the partitioning of ErbB4 into a detergent-insoluble fraction that includes lipid rafts was increased by PSD-95 (postsynaptic density-95), through interaction of the ErbB4 C terminus with the PDZ [PSD-95/Discs large/zona occludens-1] domains of PSD-95. Disruption of lipid rafts inhibited NRG-induced activation of Erk and prevented NRG-induced blockade of induction of long-term potentiation at hippocampal CA1 synapses. Thus, our results indicate that NRG stimulation causes translocation of ErbB4 into lipid rafts and that lipid rafts are necessary for signaling by ErbB4.
Collapse
|
19
|
Huang YZ, Wang Q, Won S, Luo ZG, Xiong WC, Mei L. Compartmentalized NRG signaling and PDZ domain-containing proteins in synapse structure and function. Int J Dev Neurosci 2002; 20:173-85. [PMID: 12175853 DOI: 10.1016/s0736-5748(02)00011-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The synapse-specific synthesis of the acetylcholine receptor (AChR) is mediated by multiple mechanisms including compartmentalized signaling induced by neuregulin (NRG). This paper presents evidence that NRG receptors--ErbB receptor tyrosine kinases interact with distinct PDZ domain-containing proteins that are localized at the neuromuscular junction (NMJ). ErbB4 associates with the PSD-95 (also known as SAP90)-family members including PSD-95, SAP97, and SAP102 whereas ErbB2 interacts with Erbin and PICK1. Although, ErbB kinases are concentrated at the NMJ, they are not colocalized with the AChR in cultured muscle cells even in the presence of agrin. Co-expression of PSD-95 causes ErbB4 to form clusters in COS cells. We propose that PDZ domain-containing proteins play a role in anchoring ErbB proteins at the neuromuscular junction, and/or mediating downstream signaling pathways. Such mechanisms could be important for the maintenance and function of the synapse.
Collapse
Affiliation(s)
- Yang Z Huang
- Department of Neurobiology, Pathology, Physical Medicine and Rehabilitation, University of Alabama at Birmingham, 35294-0021, USA
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Concomitant with innervation, genes coding for components of the neuromuscular junction become exclusively expressed in subsynaptic nuclei. A six-base pair element, the N box, can confer synapse-specific transcription to the acetylcholine nicotinic receptor delta and epsilon subunit, utrophin, and acetylcholine esterase genes. N box-dependent synaptic expression is stimulated by the nerve-derived signal agrin and the trophic factor neuregulin, which triggers the MAPK and JNK signaling pathways, to ultimately allow activation by the N box binding Ets transcription factor GABP.
Collapse
Affiliation(s)
- L Schaeffer
- Laboratoire de Neurobiologie Moléculaire, CNRS URA 2182 "Récepteurs et Cognition", Institut Pasteur, 25 rue du Dr Roux, 75724 Cedex 15, Paris, France
| | | | | |
Collapse
|
21
|
Fu AK, Fu WY, Cheung J, Tsim KW, Ip FC, Wang JH, Ip NY. Cdk5 is involved in neuregulin-induced AChR expression at the neuromuscular junction. Nat Neurosci 2001; 4:374-81. [PMID: 11276227 DOI: 10.1038/86019] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Here we describe an important involvement of Cdk5/p35 in regulating the gene expression of acetylcholine receptor (AChR) at the neuromuscular synapse. Cdk5 and p35 were prominently expressed in embryonic muscle, and concentrated at the neuromuscular junction in adulthood. Neuregulin increased the p35-associated Cdk5 kinase activity in the membrane fraction of cultured C2C12 myotubes. Co-immunoprecipitation studies revealed the association between Cdk5, p35 and ErbB receptors in muscle and cultured myotubes. Inhibition of Cdk5 activity not only blocked the NRG-induced AChR transcription, but also attenuated ErbB activation in cultured myotubes. In light of our finding that overexpression of p35 alone led to an increase in AChR promoter activity in muscle, Cdk5 activation is sufficient to mediate the up-regulation of AChR gene expression. Taken together, these results reveal the unexpected involvement of Cdk5/p35 in neuregulin signaling at the neuromuscular synapse.
Collapse
Affiliation(s)
- A K Fu
- Department of Biochemistry, Biotechnology Research Institute, Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
At chemical synapses, neurotransmitter receptors are concentrated in the postsynaptic membrane. During the development of the neuromuscular junction, motor neurons induce aggregation of acetylcholine receptors (AChRs) underneath the nerve terminal by the redistribution of existing AChRs and preferential transcription of the AChR subunit genes in subsynaptic myonuclei. Neural agrin, when expressed in nonsynaptic regions of muscle fibers in vivo, activates both mechanisms resulting in the assembly of a fully functional postsynaptic apparatus. Several lines of evidence indicate that synaptic transcription of AChR genes is primarily dependent on a promoter element called N-box. The Ets-related transcription factor growth-associated binding protein (GABP) binds to this motif and has thus been suggested to regulate synaptic gene expression. Here, we assessed the role of GABP in synaptic gene expression and in the formation of postsynaptic specializations in vivo by perturbing its function during postsynaptic differentiation induced by neural agrin. We find that neural agrin-mediated activation of the AChR epsilon subunit promoter is abolished by the inhibition of GABP function. Importantly, the number of AChR aggregates formed in response to neural agrin was strongly reduced. Moreover, aggregates of acetylcholine esterase and utrophin, two additional components of the postsynaptic apparatus, were also reduced. Together, these results are the first direct in vivo evidence that GABP regulates synapse-specific gene expression at the neuromuscular junction and that GABP is required for the formation of a functional postsynaptic apparatus.
Collapse
|
23
|
Won S, Si J, Colledge M, Ravichandran KS, Froehner SC, Mei L. Neuregulin-increased expression of acetylcholine receptor epsilon-subunit gene requires ErbB interaction with Shc. J Neurochem 1999; 73:2358-68. [PMID: 10582594 DOI: 10.1046/j.1471-4159.1999.0732358.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Selective transcription of acetylcholine receptor (AChR) subunit genes by neuregulin is one of the mechanisms involved in the synaptic localization of AChRs to the neuromuscular junction. Neuregulin stimulates ErbB receptor tyrosine kinases and subsequently activates the Ras/ERK pathway, which is required for neuregulin-mediated induction of AChR subunit genes in muscle cells and synapse-specific expression in vivo. Here we investigated the neuregulin transduction mechanism that leads to ERK activation after ErbB receptor tyrosine phosphorylation. Neuregulin increases the association of the adaptor proteins Grb2 and Shc with both ErbB2 and ErbB3 in C2C12 muscle cells. Dephosphorylation of the tyrosine-phosphorylated ErbB proteins abolished their association with both Grb2 and Shc, suggesting a tyrosine phosphorylation-dependent interaction. The interaction of Shc with the ErbB receptors is mediated by Shc's phosphotyrosine-binding domain. In addition, neuregulin increased tyrosine phosphorylation of Shc. Mutagenesis approaches demonstrated that tyrosine phosphorylation of Shc is required for neuregulin induction of AChR subunit gene expression. Taken together, these data indicate that the interaction of ErbB receptors with Grb2 alone is insufficient for neuregulin-activated transcription, but that ErbB receptor signaling via Shc is necessary and important.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport
- Amino Acid Substitution
- Animals
- COS Cells
- Cells, Cultured/drug effects
- Chlorocebus aethiops
- Dimerization
- GRB2 Adaptor Protein
- Genes, Reporter
- Genes, erbB-2
- MAP Kinase Signaling System/drug effects
- Macromolecular Substances
- Mice
- Muscle, Skeletal/cytology
- Muscle, Skeletal/drug effects
- Mutagenesis, Site-Directed
- Neuregulin-1/pharmacology
- Neuromuscular Junction/metabolism
- Proteins/genetics
- Proteins/metabolism
- Proteins/physiology
- Receptor, ErbB-2/chemistry
- Receptor, ErbB-2/physiology
- Receptor, ErbB-3/chemistry
- Receptor, ErbB-3/physiology
- Receptors, Cholinergic/biosynthesis
- Receptors, Cholinergic/genetics
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/pharmacology
- Shc Signaling Adaptor Proteins
- Src Homology 2 Domain-Containing, Transforming Protein 1
- Transfection
Collapse
Affiliation(s)
- S Won
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, USA
| | | | | | | | | | | |
Collapse
|
24
|
Essential roles of c-JUN and c-JUN N-terminal kinase (JNK) in neuregulin-increased expression of the acetylcholine receptor epsilon-subunit. J Neurosci 1999. [PMID: 10493750 DOI: 10.1523/jneurosci.19-19-08498.1999] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuregulin is a neural factor implicated in upregulation of acetylcholine receptor (AChR) synthesis at the neuromuscular junction. Previous studies have demonstrated that the extracellular signal-regulated kinase (ERK) subgroup of MAP kinases is required for neuregulin-induced AChR gene expression. We report here that the neuregulin-mediated increase in AChR epsilon-subunit mRNA was a delayed response in C2C12 muscle cells. Neuregulin induced expression of immediate early genes c-jun and c-fos, which followed and depended on the ERK activation. Treatment of muscle cells with cycloheximide to inhibit c-JUN synthesis at the protein level and suppression of c-JUN function by a dominant-negative mutant blocked neuregulin-induced expression of the epsilon-subunit gene, indicating an essential role of c-JUN in neuregulin signaling. Furthermore, neuregulin activated c-JUN N-terminal kinase (JNK) in C2C12 muscle cells. Blockade of JNK activation by overexpressing dominant-negative MKK4 inhibited epsilon-promoter activation. Moreover, overexpression of the JNK dominant-negative mutant inhibited neuregulin-mediated expression of the epsilon-transgene and endogenous epsilon-mRNA. Taken together, our results demonstrate important roles of c-JUN and JNK in neuregulin-mediated expression of the AChR epsilon-subunit gene and suggest that neuregulin activates multiple signaling cascades that converge to regulate AChR epsilon-subunit gene expression.
Collapse
|