1
|
Hou YT, Wu CC, Wang WT, Yang WT, Liao YH, Chen CY. Monitoring Cultured Rat Hepatocytes Using RNA-Seq In Vitro. Int J Mol Sci 2023; 24:ijms24087534. [PMID: 37108701 PMCID: PMC10139060 DOI: 10.3390/ijms24087534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Compared to other techniques, RNA sequencing (RNA-Seq) has the advantage of having details of the expression abundance of all transcripts in a single run. In this study, we used RNA-Seq to monitor the maturity and dynamic characteristics of in vitro hepatocyte cultures. Hepatocytes, including mature hepatocytes and small hepatocytes, were analyzed in vitro using RNA-Seq and quantitative polymerase chain reaction (qPCR). The results demonstrated that the gene expression profiles measured by RNA-Seq showed a similar trend to the expression profiles measured by qPCR, and can be used to infer the success of in vitro hepatocyte cultures. The results of the differential analysis, which compared mature hepatocytes against small hepatocytes, revealed 836 downregulated and 137 upregulated genes. In addition, the success of the hepatocyte cultures could be explained by the gene list screened from the adopted gene enrichment test. In summary, we demonstrated that RNA-Seq could become an effective method for monitoring the whole transcriptome of hepatocyte cultures and provide a more comprehensive list of factors related to the differentiation of small hepatocytes into mature hepatocytes. This monitoring system not only shows high potential in medical applications but may also be a novel method for the clinical diagnosis of liver-related diseases.
Collapse
Affiliation(s)
- Yung-Te Hou
- Department of Biomechatronics Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Chia-Chun Wu
- Department of Biomechatronics Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Wen-Ting Wang
- Department of Biomechatronics Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Wen-Tse Yang
- Department of Biomechatronics Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Ying-Hsiu Liao
- Department of Biomechatronics Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Chien-Yu Chen
- Department of Biomechatronics Engineering, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
2
|
Kibar G, Dutta S, Rege K, Usta OB. Evaluation of drug carrier hepatotoxicity using primary cell culture models. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 48:102651. [PMID: 36623713 PMCID: PMC10492629 DOI: 10.1016/j.nano.2023.102651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/17/2022] [Accepted: 12/25/2022] [Indexed: 01/09/2023]
Abstract
This study aims to establish a primary rat hepatocyte culture model to evaluate dose-dependent hepatotoxic effects of drug carriers (lipopolymer nanoparticles; LPNs) temporal. Primary rat hepatocyte cell cultures were used to determine half-maximal Inhibition Concentrations (IC50) of the drug-carrier library. Drug-carrier library, at concentrations <50 μg/mL, is benign to primary rat hepatocytes as determined using albumin and urea secretions. Albumin, as a hepatic biomarker, exhibited a more sensitive and faster outcome, compared to urea, for the determination of the IC50 value of LPNs. Temporal measurements of hepatic biomarkers including urea and albumin, and rigorous physicochemical (hydrodynamic diameter, surface charge, etc.) characterization, should be combined to evaluate the hepatotoxicity of drug carrier libraries in screens.
Collapse
Affiliation(s)
- Güneş Kibar
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Shriners Hospitals for Children, Boston, MA 02114, USA; Department of Materials Science and Engineering, Adana Alparslan Turkes Science and Technology University, Adana 01250, Turkey
| | - Subhadeep Dutta
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Kaushal Rege
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA; Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA; Biological Design Graduate Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287, USA.
| | - O Berk Usta
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Shriners Hospitals for Children, Boston, MA 02114, USA.
| |
Collapse
|
3
|
Weaver JR, Odanga JJ, Wolf KK, Piekos S, Biven M, Taub M, LaRocca J, Thomas C, Byer-Alcorace A, Chen J, Lee JB, LeCluyse EL. The morphology, functionality, and longevity of a novel all human hepatic cell-based tri-culture system. Toxicol In Vitro 2023; 86:105504. [DOI: 10.1016/j.tiv.2022.105504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
|
4
|
Cuvellier M, Rose S, Ezan F, Jarry U, De Oliveira H, Bruyère A, Drieu La Rochelle C, Legagneux V, Langouet S, Baffet G. In vitro long term differentiation and functionality of three-dimensional bioprinted primary human hepatocytes: application for in vivo engraftment. Biofabrication 2022; 14. [PMID: 35696992 DOI: 10.1088/1758-5090/ac7825] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/13/2022] [Indexed: 11/12/2022]
Abstract
In recent decades, 3D in vitro cultures of primary human hepatocytes (PHH) have been increasingly developed to establish models capable of faithfully mimicking main liver functions. The use of 3D bioprinting, capable of recreating structures composed of cells embedded in matrix with controlled microarchitectures, is an emergent key feature for tissue engineering. In this work, we used an extrusion-based system to print PHH in a methacrylated gelatin matrix (GelMa). PHH bioprinted in GelMa rapidly organized into polarized hollow spheroids and were viable for at least 28 days of culture. These PHH were highly differentiated with maintenance of liver differentiation genes over time, as demonstrated by transcriptomic analysis and functional approaches. The cells were polarized with localization of apico/canalicular regions, and displayed activities of phase I and II biotransformation enzymes that could be regulated by inducers. Furthermore, the implantation of the bioprinted structures in mice demonstrated their capability to vascularize, and their ability to maintain human hepatic specific functions for at least 28 days was illustrated by albumin secretion and debrisoquine metabolism. This model could hold great promise for human liver tissue generation and its use in future biotechnological developments.
Collapse
Affiliation(s)
- Marie Cuvellier
- Irset (Institut de recherche en santé́ environnement et travail) - UMR_S 1085, 2 Av du Pr Léon Bernard, Rennes, 35000, FRANCE
| | - Sophie Rose
- Irset (Institut de recherche en santé́ environnement et travail) - UMR_S 1085, 2 Av du pr Léon Bernard, Rennes, 35000, FRANCE
| | - Frédéric Ezan
- Irset (Institut de recherche en santé́ environnement et travail) - UMR_S 1085, 2 Av du pr Léon Bernard, Rennes, 35000, FRANCE
| | - Ulrich Jarry
- Unité de Pharmacologie Préclinique, Rennes, France, Biotrial Pharmacology, 7-9 Rue Jean-Louis Bertrand, Rennes, 35000, FRANCE
| | - Hugo De Oliveira
- , Université de Bordeaux, Bioingénierie tissulaire, rue Léo Saignat, Bordeaux, 33076, FRANCE
| | - Arnaud Bruyère
- Irset (Institut de recherche en santé́ environnement et travail) - UMR_S 1085, 2 Av. du Pr Léon Bernard, Rennes, 35000, FRANCE
| | - Christophe Drieu La Rochelle
- Unité de Pharmacologie Préclinique, Rennes, France, Biotrial Pharmacology, 7-9 Rue Jean-Louis Bertrand, Rennes, 35000, FRANCE
| | - Vincent Legagneux
- Irset (Institut de recherche en santé́ environnement et travail) - UMR_S 1085, 2 Av. du Pr Léon Bernard, Rennes, 35000, FRANCE
| | - Sophie Langouet
- Irset (Institut de recherche en santé́ environnement et travail) - UMR_S 1085, 2 Av. du Pr Léon Bernard, Rennes, 35000, FRANCE
| | - Georges Baffet
- Irset (Institut de recherche en santé́ environnement et travail) - UMR_S 1085, 2 Av. du Pr Léon Bernard, Rennes, 35000, FRANCE
| |
Collapse
|
5
|
YOSHIDA T, KOBAYASHI M, UOMOTO S, OHSHIMA K, HARA E, KATOH Y, TAKAHASHI N, HARADA T, USUI T, ELBADAWY M, SHIBUTANI M. The Potential of Organoids in Toxicologic Pathology: Role of toxicologic pathologists in <i>in vitro</i> chemical hepatotoxicity assessment. J Toxicol Pathol 2022; 35:225-235. [PMID: 35832897 PMCID: PMC9256002 DOI: 10.1293/tox.2022-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/28/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Toshinori YOSHIDA
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Mio KOBAYASHI
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Suzuka UOMOTO
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Kanami OHSHIMA
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Emika HARA
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Yoshitaka KATOH
- Laboratory of Pathology, Toxicology Division, The Institute of Environmental Toxicology, 4321 Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Naofumi TAKAHASHI
- Laboratory of Pathology, Toxicology Division, The Institute of Environmental Toxicology, 4321 Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Takanori HARADA
- Laboratory of Pathology, Toxicology Division, The Institute of Environmental Toxicology, 4321 Uchimoriya-machi, Joso-shi, Ibaraki 303-0043, Japan
| | - Tatsuya USUI
- Laboratory of Veterinary Pharmacology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Mohamed ELBADAWY
- Laboratory of Veterinary Pharmacology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Makoto SHIBUTANI
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| |
Collapse
|
6
|
Cuvellier M, Ezan F, Oliveira H, Rose S, Fricain JC, Langouët S, Legagneux V, Baffet G. 3D culture of HepaRG cells in GelMa and its application to bioprinting of a multicellular hepatic model. Biomaterials 2020; 269:120611. [PMID: 33385685 DOI: 10.1016/j.biomaterials.2020.120611] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 11/24/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022]
Abstract
Bioprinting is an emergent technology that has already demonstrated the capacity to create complex and/or vascularized multicellular structures with defined and organized architectures, in a reproducible and high throughput way. Here, we present the implementation of a complex liver model by the development of a three-dimensional extrusion bioprinting process, including parameters for matrix polymerization of methacrylated gelatin, using two hepatic cell lines, Huh7 and HepaRG. The printed structures exhibited long-term viability (28 days), proliferative ability, a relevant hepatocyte phenotype and functions equivalent to or better than those of their 2D counterparts using standard DMSO treatment. This work served as a basis for the bioprinting of complex multicellular models associating the hepatic parenchymal cells, HepaRG, with stellate cells (LX-2) and endothelial cells (HUVECs), able of colonizing the surface of the structure and thus recreating a pseudo endothelial barrier. When bioprinted in 3D monocultures, LX-2 expression was modulated by TGFβ-1 toward the induction of myofibroblastic genes such as ACTA2 and COL1A1. In 3D multicellular bioprinted structures comprising HepaRG, LX-2 and endothelial cells, we evidenced fibrillar collagen deposition, which is never observed in monocultures of either HepaRG or LX-2 alone. These observations indicate that a precise control of cellular communication is required to recapitulate key steps of fibrogenesis. Bioprinted 3D co-cultures therefore open up new perspectives in studying the molecular and cellular basis of fibrosis development and provide better access to potential inducers and inhibitors of collagen expression and deposition.
Collapse
Affiliation(s)
- Marie Cuvellier
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé́, Environnement et Travail) - UMR_S, 1085, Rennes, France.
| | - Frédéric Ezan
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé́, Environnement et Travail) - UMR_S, 1085, Rennes, France
| | - Hugo Oliveira
- Université de Bordeaux, Bioingénierie Tissulaire, 146, Rue Léo Saignat, 33076, Bordeaux, France; Inserm U1026, Bioingénierie Tissulaire, 146, Rue Léo Saignat, 33076, Bordeaux, France
| | - Sophie Rose
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé́, Environnement et Travail) - UMR_S, 1085, Rennes, France
| | - Jean-Christophe Fricain
- Université de Bordeaux, Bioingénierie Tissulaire, 146, Rue Léo Saignat, 33076, Bordeaux, France; Inserm U1026, Bioingénierie Tissulaire, 146, Rue Léo Saignat, 33076, Bordeaux, France; CHU Bordeaux, Services D'Odontologie et de Santé Buccale, F-33076, Bordeaux, France
| | - Sophie Langouët
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé́, Environnement et Travail) - UMR_S, 1085, Rennes, France
| | - Vincent Legagneux
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé́, Environnement et Travail) - UMR_S, 1085, Rennes, France
| | - Georges Baffet
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé́, Environnement et Travail) - UMR_S, 1085, Rennes, France.
| |
Collapse
|
7
|
Gupta R, Schrooders Y, Hauser D, van Herwijnen M, Albrecht W, Ter Braak B, Brecklinghaus T, Castell JV, Elenschneider L, Escher S, Guye P, Hengstler JG, Ghallab A, Hansen T, Leist M, Maclennan R, Moritz W, Tolosa L, Tricot T, Verfaillie C, Walker P, van de Water B, Kleinjans J, Caiment F. Comparing in vitro human liver models to in vivo human liver using RNA-Seq. Arch Toxicol 2020; 95:573-589. [PMID: 33106934 PMCID: PMC7870774 DOI: 10.1007/s00204-020-02937-6] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/12/2020] [Indexed: 01/29/2023]
Abstract
The liver plays an important role in xenobiotic metabolism and represents a primary target for toxic substances. Many different in vitro cell models have been developed in the past decades. In this study, we used RNA-sequencing (RNA-Seq) to analyze the following human in vitro liver cell models in comparison to human liver tissue: cancer-derived cell lines (HepG2, HepaRG 3D), induced pluripotent stem cell-derived hepatocyte-like cells (iPSC-HLCs), cancerous human liver-derived assays (hPCLiS, human precision cut liver slices), non-cancerous human liver-derived assays (PHH, primary human hepatocytes) and 3D liver microtissues. First, using CellNet, we analyzed whether these liver in vitro cell models were indeed classified as liver, based on their baseline expression profile and gene regulatory networks (GRN). More comprehensive analyses using non-differentially expressed genes (non-DEGs) and differential transcript usage (DTU) were applied to assess the coverage for important liver pathways. Through different analyses, we noticed that 3D liver microtissues exhibited a high similarity with in vivo liver, in terms of CellNet (C/T score: 0.98), non-DEGs (10,363) and pathway coverage (highest for 19 out of 20 liver specific pathways shown) at the beginning of the incubation period (0 h) followed by a decrease during long-term incubation for 168 and 336 h. PHH also showed a high degree of similarity with human liver tissue and allowed stable conditions for a short-term cultivation period of 24 h. Using the same metrics, HepG2 cells illustrated the lowest similarity (C/T: 0.51, non-DEGs: 5623, and pathways coverage: least for 7 out of 20) with human liver tissue. The HepG2 are widely used in hepatotoxicity studies, however, due to their lower similarity, they should be used with caution. HepaRG models, iPSC-HLCs, and hPCLiS ranged clearly behind microtissues and PHH but showed higher similarity to human liver tissue than HepG2 cells. In conclusion, this study offers a resource of RNA-Seq data of several biological replicates of human liver cell models in vitro compared to human liver tissue.
Collapse
Affiliation(s)
- Rajinder Gupta
- Department of Toxicogenomics, School of Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands
| | - Yannick Schrooders
- Department of Toxicogenomics, School of Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands
| | - Duncan Hauser
- Department of Toxicogenomics, School of Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands
| | - Marcel van Herwijnen
- Department of Toxicogenomics, School of Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands
| | - Wiebke Albrecht
- Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), Dortmund, Germany
| | - Bas Ter Braak
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, PO Box 9503, 2300 RA, Leiden, The Netherlands
| | - Tim Brecklinghaus
- Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), Dortmund, Germany
| | - Jose V Castell
- Instituto de Investigación Sanitaria La Fe, Experimental Hepatology Unit, Valencia, Spain
| | - Leroy Elenschneider
- Fraunhofer Institute for Toxicology and Experimental Medicine Preclinical Pharmacology and In-Vitro Toxicology, Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany
| | - Sylvia Escher
- Fraunhofer Institute for Toxicology and Experimental Medicine Preclinical Pharmacology and In-Vitro Toxicology, Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany
| | - Patrick Guye
- InSphero AG, Wagistrasse 27, 8952, Schlieren, Switzerland
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), Dortmund, Germany
| | - Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), Dortmund, Germany
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Tanja Hansen
- Fraunhofer Institute for Toxicology and Experimental Medicine Preclinical Pharmacology and In-Vitro Toxicology, Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department Inaugurated, Doerenkamp-Zbinden Foundation, University of Konstanz, Konstanz, Germany
| | - Richard Maclennan
- Cyprotex Discovery, No 24 Mereside, Alderley Park, Cheshire, SK10 4TG, UK
| | | | - Laia Tolosa
- Instituto de Investigación Sanitaria La Fe, Unidad Hepatología Experimental, Valencia, Spain
| | - Tine Tricot
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Catherine Verfaillie
- Stem Cell Institute, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Paul Walker
- Cyprotex Discovery, No 24 Mereside, Alderley Park, Cheshire, SK10 4TG, UK
| | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, PO Box 9503, 2300 RA, Leiden, The Netherlands
| | - Jos Kleinjans
- Department of Toxicogenomics, School of Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands
| | - Florian Caiment
- Department of Toxicogenomics, School of Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
8
|
Hagiwara R, Oki Y, Matsumaru T, Ibayashi S, Kano K. Generation of metabolically functional hepatocyte-like cells from dedifferentiated fat cells by Foxa2, Hnf4a and Sall1 transduction. Genes Cells 2020; 25:811-824. [PMID: 33064855 PMCID: PMC7894465 DOI: 10.1111/gtc.12814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/10/2020] [Accepted: 10/10/2020] [Indexed: 01/17/2023]
Abstract
Mature adipocyte-derived dedifferentiated fat (DFAT) cells have been identified to possess similar multipotency to mesenchymal stem cells, but a method for converting DFAT cells into hepatocytes was previously unknown. Here, using comprehensive analysis of gene expression profiles, we have extracted three transcription factors, namely Foxa2, Hnf4a and Sall1 (FHS), that can convert DFAT cells into hepatocytes. Hepatogenic induction has converted FHS-infected DFAT cells into an epithelial-like morphological state and promoted the expression of hepatocyte-specific features. Furthermore, the DFAT-derived hepatocyte-like (D-Hep) cells catalyzed the detoxification of several compounds. These results indicate that the transduction of DFAT cells with three genes, which were extracted by comprehensive gene expression analysis, efficiently generated D-Hep cells with detoxification abilities similar to those of primary hepatocytes. Thus, D-Hep cells may be useful as a new cell source for surrogate hepatocytes and may be applied to drug discovery studies, such as hepatotoxicity screening and drug metabolism tests.
Collapse
Affiliation(s)
- Reiko Hagiwara
- Laboratory of Cell and Tissue Biology, Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Yoshinao Oki
- Laboratory of Cell and Tissue Biology, Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Takashi Matsumaru
- Laboratory of Cell and Tissue Biology, Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Shiho Ibayashi
- Laboratory of Cell and Tissue Biology, Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Japan
| |
Collapse
|
9
|
|
10
|
Zhang X, Jiang T, Chen D, Wang Q, Zhang LW. Three-dimensional liver models: state of the art and their application for hepatotoxicity evaluation. Crit Rev Toxicol 2020; 50:279-309. [DOI: 10.1080/10408444.2020.1756219] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xihui Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, P. R. China
| | - Tianyan Jiang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, P. R. China
| | - Dandan Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, P. R. China
| | - Qi Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control (NIFDC), China Food and Drug Administration (CFDA), Beijing, P. R. China
| | - Leshuai W. Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, P. R. China
| |
Collapse
|
11
|
Gijbels E, Vanhaecke T, Vinken M. Establishment of Sandwich Cultures of Primary Human Hepatocytes. Methods Mol Biol 2019; 1981:325-333. [PMID: 31016664 DOI: 10.1007/978-1-4939-9420-5_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Primary hepatocytes and their adherent cultures are still considered as the golden standard in the field of liver-based in vitro modeling. However, they cope with progressive deterioration of their in vivo-like morphological and functional phenotype. Among the various strategies that are used to counteract this dedifferentiation process is the seeding and cultivation of freshly isolated or cryopreserved hepatocytes between two layers of extracellular matrix scaffolds. This so-called sandwich culture system allows to restore cell-extracellular matrix interactions and thereby to delay dedifferentiation. The practical setup of the sandwich culture system of primary hepatocytes is described in this chapter.
Collapse
Affiliation(s)
- Eva Gijbels
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
12
|
Chen C, Pla‐Palacín I, Baptista PM, Shang P, Oosterhoff LA, van Wolferen ME, Penning LC, Geijsen N, Spee B. Hepatocyte-like cells generated by direct reprogramming from murine somatic cells can repopulate decellularized livers. Biotechnol Bioeng 2018; 115:2807-2816. [PMID: 29959867 PMCID: PMC6221165 DOI: 10.1002/bit.26784] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/08/2018] [Accepted: 06/26/2018] [Indexed: 12/30/2022]
Abstract
Direct reprogramming represents an easy technique to generate induced hepatocytes (iHeps) from somatic cells. However, current protocols are accompanied by several drawbacks as iHeps are heterogenous and lack fully mature phenotypes of primary hepatocytes. Here, we established a polycistronic expression system to induce the direct reprogramming of mouse embryonic fibroblasts towards hepatocytes. The resulting iHeps are homogenous and display key properties of primary hepatocytes, such as expression of hepatocyte markers, albumin secretion, and presence of liver transaminases. iHeps also possess the capacity to repopulate decellularized liver tissue and exhibit enhanced hepatic maturation. As such, we present a novel strategy to generate homogenous and functional iHeps for applications in tissue engineering and cell therapy.
Collapse
Affiliation(s)
- Chen Chen
- Department of Clinical Sciences of Companion AnimalsFaculty of Veterinary Medicine, Utrecht UniversityUtrechtThe Netherlands
- Hubrecht Institute‐KNAW and University Medical Centre UtrechtUtrechtThe Netherlands
| | - Iris Pla‐Palacín
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón)ZaragozaSpain
| | - Pedro M. Baptista
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón)ZaragozaSpain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas (CIBERehd)MadridSpain
- Fundación ARAIDZaragozaSpain
- Instituto de Investigación Sanitaria de la Fundación Jiménez DíazMadridSpain
- Department of Biomedical and Aerospace EngineeringUniversidad Carlos III de MadridMadridSpain
| | - Peng Shang
- Hubrecht Institute‐KNAW and University Medical Centre UtrechtUtrechtThe Netherlands
| | - Loes A. Oosterhoff
- Department of Clinical Sciences of Companion AnimalsFaculty of Veterinary Medicine, Utrecht UniversityUtrechtThe Netherlands
| | - Monique E. van Wolferen
- Department of Clinical Sciences of Companion AnimalsFaculty of Veterinary Medicine, Utrecht UniversityUtrechtThe Netherlands
| | - Louis C. Penning
- Department of Clinical Sciences of Companion AnimalsFaculty of Veterinary Medicine, Utrecht UniversityUtrechtThe Netherlands
| | - Niels Geijsen
- Department of Clinical Sciences of Companion AnimalsFaculty of Veterinary Medicine, Utrecht UniversityUtrechtThe Netherlands
- Hubrecht Institute‐KNAW and University Medical Centre UtrechtUtrechtThe Netherlands
| | - Bart Spee
- Department of Clinical Sciences of Companion AnimalsFaculty of Veterinary Medicine, Utrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
13
|
Vilas-Boas V, Cooreman A, Gijbels E, Van Campenhout R, Gustafson E, Ballet S, Annaert P, Cogliati B, Vinken M. Primary hepatocytes and their cultures for the testing of drug-induced liver injury. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2018; 85:1-30. [PMID: 31307583 DOI: 10.1016/bs.apha.2018.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Drug-induced liver injury is a major reason for discontinuation of drug development and withdrawal of drugs from the market. Intensive efforts in the last decades have focused on the establishment and finetuning of liver-based in vitro models for reliable prediction of hepatotoxicity triggered by drug candidates. Of those, primary hepatocytes and their cultures still are considered the gold standard, as they provide an acceptable reflection of the hepatic in vivo situation. Nevertheless, these in vitro systems cope with gradual deterioration of the differentiated morphological and functional phenotype. The present paper gives an overview of traditional and more recently introduced strategies to counteract this dedifferentiation process in an attempt to set up culture models that can be used for long-term testing purposes. The relevance and applicability of such optimized cultures of primary hepatocytes for the testing of drug-induced cholestatic liver injury is demonstrated.
Collapse
Affiliation(s)
- Vânia Vilas-Boas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Axelle Cooreman
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eva Gijbels
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Raf Van Campenhout
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Emma Gustafson
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
14
|
Anderson K, Wilkinson R, Grant M. Assessment of Liver Function in Primary Cultures of Hepatocytes Using Diethoxy (5,6) Chloromethylfluorescein and Confocal Laser Scanning Microscopy. Int J Artif Organs 2018. [DOI: 10.1177/039139889802100602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A method is presented which can be used to assess the function of hepatocytes in complex culture configurations without disrupting the integrity of the cell environment. It utilises a fluorescent probe for cytochrome P450 dependent mixed function oxidase (MFO) activity, diethoxy (5,6) chloromethylfluorescein, and confocal laser scanning microscopy. The MFO activity of individual cells in primary cultures of intact hepatocytes can be detected in situ, and quantified by image analysis. This may be a valuable means of monitoring the effect of culture conditions on the function of bioartificial liver devices, and could be used to assess the need for effective oxygenation of cells, the influence of shear stress and of exposure to patient serum during clinical use.
Collapse
Affiliation(s)
- K. Anderson
- Bioengineering Unit, Strathclyde University, Wolfson Centre, Glasgow - UK
| | - R. Wilkinson
- Bioengineering Unit, Strathclyde University, Wolfson Centre, Glasgow - UK
| | - M.H. Grant
- Bioengineering Unit, Strathclyde University, Wolfson Centre, Glasgow - UK
| |
Collapse
|
15
|
Komiyama M, Yoshimoto K, Sisido M, Ariga K. Chemistry Can Make Strict and Fuzzy Controls for Bio-Systems: DNA Nanoarchitectonics and Cell-Macromolecular Nanoarchitectonics. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20170156] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Makoto Komiyama
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8577
| | - Keitaro Yoshimoto
- Department of Life Sciences, Graduate School of Arts and Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902
| | - Masahiko Sisido
- Professor Emeritus, Research Core for Interdisciplinary Sciences, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530
| | - Katsuhiko Ariga
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0827
| |
Collapse
|
16
|
Ambrosino G, Basso SMM, Varotto S, Zardi E, Picardi A, D'Amico DF. Isolated Hepatocytes versus Hepatocyte Spheroids: In Vitro Culture of Rat Hepatocytes. Cell Transplant 2017; 14:397-401. [PMID: 16180658 DOI: 10.3727/000000005783982954] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The use of hepatocytes that express liver-specific functions to develop an artificial liver is promising. Unfortunately, the loss of specialized liver functions (dedifferentiation) is still a major problem. Different techniques, such as collagen entrapment, spherical multicellular aggregates (spheroids), and coculture of hepatocytes with extracellular matrix, have been used to improve the performance of hepatocytes in culture. The aim of this study was to compare two different models of hepatocyte isolation in culture: isolated hepatocytes (G1) and hepatocyte spheroids (60% hepatocytes, 40% nonparenchymal cells, and extracellular matrix) (G2). To test functional activity of hepatocytes, both synthetic and metabolic, production of albumin and benzodiazepine transformation into metabolites was tested. G2 showed a high albumin secretion, while a decrease after 15 days of culture in G1 was noted. Diazepam metabolites were higher in G2 than in G1 in all samples, but had statistical significance at days 14 and 21 (p < 0.01). The glycogen content, after 30 days of culture, was very low in G1 (14.2 ± 4.4%), while in G2 it was 72.1 ± 2.6% (p < 0.01). Our study confirms the effectiveness of a culture technique with extracellular matrix and nonparenchymal cells. Maintenance of a prolonged functional activity has been related to restoration of cell polarity and close cell-to-cell contact. We showed that isolated hepatocytes maintain their functional activity for a period significantly reduced, when compared to the hepatocyte spheroids. We confirmed the role of extracellular matrix as a crucial component to promote hepatocyte homeostasis, and the close link between cellular architecture and tissue-specific functions.
Collapse
Affiliation(s)
- Giovanni Ambrosino
- Department of Surgical and Gastroenterologic Sciences, Liver Transplant Unit, School of Medicine, University of Padova, Via Giustiniani 2, 35128 Padova, Italy.
| | | | | | | | | | | |
Collapse
|
17
|
Rajendran D, Hussain A, Yip D, Parekh A, Shrirao A, Cho CH. Long-term liver-specific functions of hepatocytes in electrospun chitosan nanofiber scaffolds coated with fibronectin. J Biomed Mater Res A 2017; 105:2119-2128. [PMID: 28371246 DOI: 10.1002/jbm.a.36072] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/16/2017] [Accepted: 03/22/2017] [Indexed: 12/22/2022]
Abstract
In this study, a new 3D liver model was developed using biomimetic nanofiber scaffolds and co-culture system consisting of hepatocytes and fibroblasts for the maintenance of long-term liver functions. The chitosan nanofiber scaffolds were fabricated by the electrospinning technique. To enhance cellular adhesion and spreading, the surfaces of the chitosan scaffolds were coated with fibronectin (FN) by adsorption and evaluated for various cell types. Cellular phenotype, protein expression, and liver-specific functions were extensively characterized by immunofluorescent and histochemical stainings, albumin enzyme-linked immunosorbent assay and Cytochrome p450 detoxification assays, and scanning electron microscopy. The electrospun chitosan scaffolds exhibited a highly porous and randomly oriented nanofibrous structure. The FN coating on the surface of the chitosan nanofibers significantly enhanced cell attachment and spreading, as expected, as surface modification with this cell adhesion molecule on the chitosan surface is important for focal adhesion formation and integrin binding. Comparison of hepatocyte mono-cultures and co-cultures in 3D culture systems indicated that the hepatocytes in co-cultures formed colonies and maintained their morphologies and functions for prolonged periods of time. The 3D liver tissue model developed in this study will provide useful tools toward the development of engineered liver tissues for drug screening and tissue engineering applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2119-2128, 2017.
Collapse
Affiliation(s)
- Divya Rajendran
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, 07102
| | - Ali Hussain
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, 07102
| | - Derek Yip
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, 07102
| | - Amit Parekh
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, 07102
| | - Anil Shrirao
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, 08854
| | - Cheul H Cho
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, 07102
| |
Collapse
|
18
|
Chen K, Wu M, Guo F, Li P, Chan CY, Mao Z, Li S, Ren L, Zhang R, Huang TJ. Rapid formation of size-controllable multicellular spheroids via 3D acoustic tweezers. LAB ON A CHIP 2016; 16:2636-43. [PMID: 27327102 PMCID: PMC4961479 DOI: 10.1039/c6lc00444j] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The multicellular spheroid is an important 3D cell culture model for drug screening, tissue engineering, and fundamental biological research. Although several spheroid formation methods have been reported, the field still lacks high-throughput and simple fabrication methods to accelerate its adoption in drug development industry. Surface acoustic wave (SAW) based cell manipulation methods, which are known to be non-invasive, flexible, and high-throughput, have not been successfully developed for fabricating 3D cell assemblies or spheroids, due to the limited understanding on SAW-based vertical levitation. In this work, we demonstrated the capability of fabricating multicellular spheroids in the 3D acoustic tweezers platform. Our method used drag force from microstreaming to levitate cells in the vertical direction, and used radiation force from Gor'kov potential to aggregate cells in the horizontal plane. After optimizing the device geometry and input power, we demonstrated the rapid and high-throughput nature of our method by continuously fabricating more than 150 size-controllable spheroids and transferring them to Petri dishes every 30 minutes. The spheroids fabricated by our 3D acoustic tweezers can be cultured for a week with good cell viability. We further demonstrated that spheroids fabricated by this method could be used for drug testing. Unlike the 2D monolayer model, HepG2 spheroids fabricated by the 3D acoustic tweezers manifested distinct drug resistance, which matched existing reports. The 3D acoustic tweezers based method can serve as a novel bio-manufacturing tool to fabricate complex 3D cell assembles for biological research, tissue engineering, and drug development.
Collapse
Affiliation(s)
- Kejie Chen
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Mengxi Wu
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Feng Guo
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Peng Li
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Chung Yu Chan
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Zhangming Mao
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Sixing Li
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Liqiang Ren
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Rui Zhang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Tony Jun Huang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
19
|
Lucendo-Villarin B, Rashidi H, Cameron K, Hay DC. Pluripotent stem cell derived hepatocytes: using materials to define cellular differentiation and tissue engineering. J Mater Chem B 2016; 4:3433-3442. [PMID: 27746914 PMCID: PMC5024673 DOI: 10.1039/c6tb00331a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/14/2016] [Indexed: 12/16/2022]
Abstract
Pluripotent stem cell derived liver cells (hepatocytes) represent a promising alternative to primary tissue for biological and clinical applications. To date, most hepatocyte maintenance and differentiation systems have relied upon the use of animal derived components. This serves as a significant barrier to large scale production and application of stem cell derived hepatocytes. Recently, the use of defined biologics has overcome those limitations in two-dimensional monolayer culture. In order to improve the cell phenotype further, three-dimensional culture systems have been employed to better mimic the in vivo situation, drawing upon materials chemistry, engineering and biology. In this review we discuss efforts in the field, to differentiate pluripotent stem cells towards hepatocytes under defined conditions.
Collapse
Affiliation(s)
- B Lucendo-Villarin
- Medical Research Council Centre for Regenerative Medicine , University of Edinburgh , 5 Little France Drive , Edinburgh , EH16 4UU , Scotland , UK . ; Tel: +44(0)1316519500
| | - H Rashidi
- Medical Research Council Centre for Regenerative Medicine , University of Edinburgh , 5 Little France Drive , Edinburgh , EH16 4UU , Scotland , UK . ; Tel: +44(0)1316519500
| | - K Cameron
- Medical Research Council Centre for Regenerative Medicine , University of Edinburgh , 5 Little France Drive , Edinburgh , EH16 4UU , Scotland , UK . ; Tel: +44(0)1316519500
| | - D C Hay
- Medical Research Council Centre for Regenerative Medicine , University of Edinburgh , 5 Little France Drive , Edinburgh , EH16 4UU , Scotland , UK . ; Tel: +44(0)1316519500
| |
Collapse
|
20
|
Affiliation(s)
- Falguni Pati
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory KTH – Royal Institute of Technology Stockholm Schweden
| | - Jesper Gantelius
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory KTH – Royal Institute of Technology Stockholm Schweden
| | - Helene Andersson Svahn
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory KTH – Royal Institute of Technology Stockholm Schweden
| |
Collapse
|
21
|
Pati F, Gantelius J, Svahn HA. 3D Bioprinting of Tissue/Organ Models. Angew Chem Int Ed Engl 2016; 55:4650-65. [PMID: 26895542 DOI: 10.1002/anie.201505062] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Indexed: 12/17/2022]
Abstract
In vitro tissue/organ models are useful platforms that can facilitate systematic, repetitive, and quantitative investigations of drugs/chemicals. The primary objective when developing tissue/organ models is to reproduce physiologically relevant functions that typically require complex culture systems. Bioprinting offers exciting prospects for constructing 3D tissue/organ models, as it enables the reproducible, automated production of complex living tissues. Bioprinted tissues/organs may prove useful for screening novel compounds or predicting toxicity, as the spatial and chemical complexity inherent to native tissues/organs can be recreated. In this Review, we highlight the importance of developing 3D in vitro tissue/organ models by 3D bioprinting techniques, characterization of these models for evaluating their resemblance to native tissue, and their application in the prioritization of lead candidates, toxicity testing, and as disease/tumor models.
Collapse
Affiliation(s)
- Falguni Pati
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Jesper Gantelius
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Helene Andersson Svahn
- Division of Proteomics and Nanobiotechnology, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
22
|
Constrained spheroids for prolonged hepatocyte culture. Biomaterials 2016; 80:106-120. [DOI: 10.1016/j.biomaterials.2015.11.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 11/29/2015] [Indexed: 12/15/2022]
|
23
|
Schaefer M, Schänzle G, Bischoff D, Süssmuth RD. Upcyte Human Hepatocytes: a Potent In Vitro Tool for the Prediction of Hepatic Clearance of Metabolically Stable Compounds. ACTA ACUST UNITED AC 2015; 44:435-44. [PMID: 26712819 DOI: 10.1124/dmd.115.067348] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/23/2015] [Indexed: 11/22/2022]
Abstract
In vitro models based on primary human hepatocytes (PHH) have been advanced for clearance (CL) prediction of metabolically stable compounds, representing state-of-the-art assay systems for drug discovery and development. Yet, limited cell availability and large interindividual variability of metabolic profiles remain shortcomings of PHH. Upcyte human hepatocytes (UHH) represent a novel hepatic cell system derived from PHH, exhibiting proliferative capacity for approximately 35 population doublings. UHH from three donors were evaluated during culture for up to 18 days, investigating relative mRNA expression and in situ enzyme activity of cytochrome P450s (P450s), UDP-glucuronosyltransferases, and sulfotransferases. Furthermore, UHH were used for predicting hepatic CL of 21 marketed low to intermediate CL drugs. In a typical experiment, expansion from 3.9 × 10(6) up to 8.5 × 10(7) cells was achieved during subculture. When maintained at confluence, transcripts of major P450s were expressed at donor-specific levels with sustained activities for the majority of isoforms, showing generally low CYP1A2 and high CYP2B6 activity levels. For donor 151-03, CL prediction based on depletion experiments resulted in an average fold error of 2.0, and 80% of compounds being predicted within twofold to in vivo CL for a subset of 10 low CL drugs. UHH showed sustained and consistent activity of drug-metabolizing enzymes (DME), resulting in highly reproducible CL prediction performance. In conclusion, UHH show promising potential as alternative to PHH for standardized in vitro applications in discovery research based on their stable, hepatocyte-like DME phenotype and virtually unlimited cell availability.
Collapse
Affiliation(s)
- Michelle Schaefer
- Department of Drug Discovery Support / Metabolism and Bioanalysis, Boehringer Ingelheim Pharma, Biberach an der Riss, Germany (M.S., G.S., D.B.); and Department of Chemistry, Technische Universität Berlin, Berlin, Germany (R.D.S.)
| | - Gerhard Schänzle
- Department of Drug Discovery Support / Metabolism and Bioanalysis, Boehringer Ingelheim Pharma, Biberach an der Riss, Germany (M.S., G.S., D.B.); and Department of Chemistry, Technische Universität Berlin, Berlin, Germany (R.D.S.)
| | - Daniel Bischoff
- Department of Drug Discovery Support / Metabolism and Bioanalysis, Boehringer Ingelheim Pharma, Biberach an der Riss, Germany (M.S., G.S., D.B.); and Department of Chemistry, Technische Universität Berlin, Berlin, Germany (R.D.S.)
| | - Roderich D Süssmuth
- Department of Drug Discovery Support / Metabolism and Bioanalysis, Boehringer Ingelheim Pharma, Biberach an der Riss, Germany (M.S., G.S., D.B.); and Department of Chemistry, Technische Universität Berlin, Berlin, Germany (R.D.S.)
| |
Collapse
|
24
|
Maes M, Yanguas SC, Willebrords J, Vinken M. Models and methods for in vitro testing of hepatic gap junctional communication. Toxicol In Vitro 2015; 30:569-577. [PMID: 26420514 PMCID: PMC4685743 DOI: 10.1016/j.tiv.2015.09.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/11/2015] [Accepted: 09/24/2015] [Indexed: 12/17/2022]
Abstract
Inherent to their pivotal roles in controlling all aspects of the liver cell life cycle, hepatocellular gap junctions are frequently disrupted upon impairment of the homeostatic balance, as occurs during liver toxicity. Hepatic gap junctions, which are mainly built up by connexin32, are specifically targeted by tumor promoters and epigenetic carcinogens. This renders inhibition of gap junction functionality a suitable indicator for the in vitro detection of nongenotoxic hepatocarcinogenicity. The establishment of a reliable liver gap junction inhibition assay for routine in vitro testing purposes requires a cellular system in which gap junctions are expressed at an in vivo-like level as well as an appropriate technique to probe gap junction activity. Both these models and methods are discussed in the current paper, thereby focusing on connexin32-based gap junctions.
Collapse
Affiliation(s)
- Michaël Maes
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Sara Crespo Yanguas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Joost Willebrords
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| |
Collapse
|
25
|
Kawaharada K, Kawamata M, Ochiya T. Rat embryonic stem cells create new era in development of genetically manipulated rat models. World J Stem Cells 2015; 7:1054-1063. [PMID: 26328021 PMCID: PMC4550629 DOI: 10.4252/wjsc.v7.i7.1054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 01/15/2015] [Accepted: 07/17/2015] [Indexed: 02/07/2023] Open
Abstract
Embryonic stem (ES) cells are isolated from the inner cell mass of a blastocyst, and are used for the generation of gene-modified animals. In mice, the transplantation of gene-modified ES cells into recipient blastocysts leads to the creation of gene-targeted mice such as knock-in and knock-out mice; these gene-targeted mice contribute greatly to scientific development. Although the rat is considered a useful laboratory animal alongside the mouse, fewer gene-modified rats have been produced due to the lack of robust establishment methods for rat ES cells. A new method for establishing rat ES cells using signaling inhibitors was reported in 2008. By considering the characteristics of rat ES cells, recent research has made progress in improving conditions for the stable culture of rat ES cells in order to generate gene-modified rats efficiently. In this review, we summarize several advanced methods to maintain rat ES cells and generate gene-targeted rats.
Collapse
|
26
|
Xia L, Hong X, Sakban RB, Qu Y, Singh NH, McMillian M, Dallas S, Silva J, Sensenhauser C, Zhao S, Lim HK, Yu H. Cytochrome P450 induction response in tethered spheroids as a three-dimensional human hepatocytein vitromodel. J Appl Toxicol 2015. [DOI: 10.1002/jat.3189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Lei Xia
- Department of Physiology, Yong Loo Lin School of Medicine; National University of Singapore; MD9-04-11, 2 Medical Drive 117597 Singapore
| | - Xin Hong
- Department of Physiology, Yong Loo Lin School of Medicine; National University of Singapore; MD9-04-11, 2 Medical Drive 117597 Singapore
| | - Rashidah Binte Sakban
- Department of Physiology, Yong Loo Lin School of Medicine; National University of Singapore; MD9-04-11, 2 Medical Drive 117597 Singapore
- Institute of Bioengineering and Nanotechnology; A*STAR; The Nanos, #04-01, 31 Biopolis Way 138669 Singapore
| | - Yinghua Qu
- Institute of Bioengineering and Nanotechnology; A*STAR; The Nanos, #04-01, 31 Biopolis Way 138669 Singapore
| | - Nisha Hari Singh
- Institute of Bioengineering and Nanotechnology; A*STAR; The Nanos, #04-01, 31 Biopolis Way 138669 Singapore
| | - Michael McMillian
- Preclinical Development & Safety; Janssen Research & Development, LLC; Spring House PA USA
| | - Shannon Dallas
- Preclinical Development & Safety; Janssen Research & Development, LLC; Spring House PA USA
| | - Jose Silva
- Preclinical Development & Safety; Janssen Research & Development, LLC; Spring House PA USA
| | - Carlo Sensenhauser
- Preclinical Development & Safety; Janssen Research & Development, LLC; Spring House PA USA
| | - Sylvia Zhao
- China R&D and Scientific Affairs; Janssen Research and Development, LLC; Shanghai 200030 China
| | - Heng Keang Lim
- Preclinical Development & Safety; Janssen Research & Development, LLC; Spring House PA USA
| | - Hanry Yu
- Department of Physiology, Yong Loo Lin School of Medicine; National University of Singapore; MD9-04-11, 2 Medical Drive 117597 Singapore
- Institute of Bioengineering and Nanotechnology; A*STAR; The Nanos, #04-01, 31 Biopolis Way 138669 Singapore
- Mechanobiology Institute of Singapore, Temasek Laboratories; National University of Singapore; #05-01, 5A Engineering Drive 1 117411 Singapore
- Singapore-MIT Alliance; Computational and System Biology Program; E4-04-10, 4 Engineering Drive 3 117576 Singapore
- NUS Graduate School for Integrative Sciences and Engineering; Centre for Life Sciences (CeLS); 05-01, 28 Medical Drive 117576 Singapore. NUS Tissue Engineering Program, DSO Labs; National University of Singapore; 117597 Singapore. Singapore-MIT Alliance for Research and Technology; 1 CREATE Way, #10-01 CREATE Tower 138602 Singapore. Department of Biological Engineering; Massachusetts Institute of Technology; 77 Massachusetts Ave. Cambridge MA 02139 USA
| |
Collapse
|
27
|
Pancreatic Epithelial Cells Form Islet-Like Clusters in the Absence of Directed Migration. Cell Mol Bioeng 2015. [DOI: 10.1007/s12195-015-0396-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
28
|
Usta OB, McCarty WJ, Bale S, Hegde M, Jindal R, Bhushan A, Golberg I, Yarmush ML. Microengineered cell and tissue systems for drug screening and toxicology applications: Evolution of in-vitro liver technologies. TECHNOLOGY 2015; 3:1-26. [PMID: 26167518 PMCID: PMC4494128 DOI: 10.1142/s2339547815300012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The liver performs many key functions, the most prominent of which is serving as the metabolic hub of the body. For this reason, the liver is the focal point of many investigations aimed at understanding an organism's toxicological response to endogenous and exogenous challenges. Because so many drug failures have involved direct liver toxicity or other organ toxicity from liver generated metabolites, the pharmaceutical industry has constantly sought superior, predictive in-vitro models that can more quickly and efficiently identify problematic drug candidates before they incur major development costs, and certainly before they are released to the public. In this broad review, we present a survey and critical comparison of in-vitro liver technologies along a broad spectrum, but focus on the current renewed push to develop "organs-on-a-chip". One prominent set of conclusions from this review is that while a large body of recent work has steered the field towards an ever more comprehensive understanding of what is needed, the field remains in great need of several key advances, including establishment of standard characterization methods, enhanced technologies that mimic the in-vivo cellular environment, and better computational approaches to bridge the gap between the in-vitro and in-vivo results.
Collapse
Affiliation(s)
- O B Usta
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
| | - W J McCarty
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
| | - S Bale
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
| | - M Hegde
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
| | - R Jindal
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
| | - A Bhushan
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
| | - I Golberg
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA
| | - M L Yarmush
- Center for Engineering in Medicine at Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, 51 Blossom St., Boston, MA 02114, USA ; Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd., Piscataway, NJ 08854, USA
| |
Collapse
|
29
|
Abstract
Hepatocytes in sandwich configuration constitute of primary hepatocytes cultured between two layers of extracellular matrix. Sandwich-cultured hepatocytes maintain expression of liver-specific proteins and gradually form intact bile canaliculi with functional biliary excretion of endogenous compounds and xenobiotics. Both freshly isolated and cryopreserved hepatocytes can be used to establish sandwich cultures. Therefore, this preclinical model has become an invaluable in vitro tool to evaluate hepatobiliary drug transport, metabolism, hepatotoxicity, and drug interactions. In this chapter, commonly used procedures to cultivate primary hepatocytes from human and rat in sandwich configuration are described.
Collapse
Affiliation(s)
- Janneke Keemink
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, O&N2, Herestraat 49, Bus 921, Leuven, 3000, Belgium
| | | | | |
Collapse
|
30
|
Coecke S, Rogiers V, Bayliss M, Castell J, Doehmer J, Fabre G, Fry J, Kern A, Westmoreland C. The Use of Long-term Hepatocyte Cultures for Detecting Induction of Drug Metabolising Enzymes: The Current Status. Altern Lab Anim 2014; 27:579-638. [PMID: 25487865 DOI: 10.1177/026119299902700408] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this report, metabolically competent in vitro systems have been reviewed, in the context of drug metabolising enzyme induction. Based on the experience of the scientists involved, a thorough survey of the literature on metabolically competent long-term culture models was performed. Following this, a prevalidation proposal for the use of the collagen gel sandwich hepatocyte culture system for drug metabolising enzyme induction was designed, focusing on the induction of the cytochrome P450 enzymes as the principal enzymes of interest. The ultimate goal of this prevalidation proposal is to provide industry and academia with a metabolically competent in vitro alternative for long-term studies. In an initial phase, the prevalidation study will be limited to the investigation of induction. However, proposals for other long-term applications of these systems should be forwarded to the European Centre for the Validation of Alternative Methods for consideration. The prevalidation proposal deals with several issues, including: a) species; b) practical prevalidation methodology; c) enzyme inducers; and d) advantages of working with independent expert laboratories. Since it is preferable to include other alternative tests for drug metabolising enzyme induction, when such tests arise, it is recommended that they meet the same level of development as for the collagen gel sandwich long-term hepatocyte system. Those tests which do so should begin the prevalidation and validation process.
Collapse
Affiliation(s)
- S Coecke
- ECVAM, Institute for Health and Consumer Protection, European Commission Joint Research Centre, 21020 Ispra, Italy
| | - V Rogiers
- Department of Toxicology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - M Bayliss
- GlaxoWellcome Research and Development, Park Road, Ware, Hertfordshire SG12 ODP, UK
| | - J Castell
- Unidad de Hepatologia Experimental, Hospital Universitario La Fe, Avda de Campanar 21, 46009 Valencia, Spain
| | - J Doehmer
- Institut für Toxikologie und Umwelthygiene, Technische Universität München, Lazarettstrasse 62, 80636 Munich, Germany
| | - G Fabre
- Preclinical Metabolism and Pharmacokinetics, Sanofi Recherche, 34184 Montpellier, France
| | - J Fry
- School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH
| | - A Kern
- Drug Metabolism and Isotope Chemistry, Bayer, Aprather Weg 18a, 42096 Wuppertal, Germany
| | - C Westmoreland
- GlaxoWellcome Research and Development, Park Road, Ware, Hertfordshire SG12 ODP, UK
| |
Collapse
|
31
|
Illa X, Vila S, Yeste J, Peralta C, Gracia-Sancho J, Villa R. A novel modular bioreactor to in vitro study the hepatic sinusoid. PLoS One 2014; 9:e111864. [PMID: 25375141 PMCID: PMC4222955 DOI: 10.1371/journal.pone.0111864] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/05/2014] [Indexed: 02/08/2023] Open
Abstract
We describe a unique, versatile bioreactor consisting of two plates and a modified commercial porous membrane suitable for in vitro analysis of the liver sinusoid. The modular bioreactor allows i) excellent control of the cell seeding process; ii) cell culture under controlled shear stress stimulus, and; iii) individual analysis of each cell type upon completion of the experiment. The advantages of the bioreactor detailed here are derived from the modification of a commercial porous membrane with an elastomeric wall specifically moulded in order to define the cell culture area, to act as a gasket that will fit into the bioreactor, and to provide improved mechanical robustness. The device presented herein has been designed to simulate the in vivo organization of a liver sinusoid and tested by co-culturing endothelial cells (EC) and hepatic stellate cells (HSC). The results show both an optimal morphology of the endothelial cells as well as an improvement in the phenotype of stellate cells, most probably due to paracrine factors released from endothelial cells. This device is proposed as a versatile, easy-to-use co-culture system that can be applied to biomedical research of vascular systems, including the liver.
Collapse
Affiliation(s)
- Xavi Illa
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Bellaterra, Spain
- CIBER-BBN, Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - Sergi Vila
- Barcelona Hepatic Hemodynamic Laboratory, Institut d′Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBER-EHD), Barcelona, Spain
| | - Jose Yeste
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Bellaterra, Spain
- CIBER-BBN, Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | | | - Jordi Gracia-Sancho
- Barcelona Hepatic Hemodynamic Laboratory, Institut d′Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBER-EHD), Barcelona, Spain
| | - Rosa Villa
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Bellaterra, Spain
- CIBER-BBN, Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| |
Collapse
|
32
|
Che Abdullah CA, Azad CL, Ovalle-Robles R, Fang S, Lima MD, Lepró X, Collins S, Baughman RH, Dalton AB, Plant NJ, Sear RP. Primary liver cells cultured on carbon nanotube substrates for liver tissue engineering and drug discovery applications. ACS APPLIED MATERIALS & INTERFACES 2014; 6:10373-10380. [PMID: 24933259 DOI: 10.1021/am5018489] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Here, we explore the use of two- and three-dimensional scaffolds of multiwalled-carbon nanotubes (MWNTs) for hepatocyte cell culture. Our objective is to study the use of these scaffolds in liver tissue engineering and drug discovery. In our experiments, primary rat hepatocytes, the parenchymal (main functional) cell type in the liver, were cultured on aligned nanogrooved MWNT sheets, MWNT yarns, or standard 2-dimensional culture conditions as a control. We find comparable cell viability between all three culture conditions but enhanced production of the hepatocyte-specific marker albumin for cells cultured on MWNTs. The basal activity of two clinically relevant cytochrome P450 enzymes, CYP1A2 and CYP3A4, are similar on all substrates, but we find enhanced induction of CYP1A2 for cells on the MWNT sheets. Our data thus supports the use of these substrates for applications including tissue engineering and enhancing liver-specific functions, as well as in in vitro model systems with enhanced predictive capability in drug discovery and development.
Collapse
|
33
|
Yahya WNW, Kadri NA, Ibrahim F. Cell patterning for liver tissue engineering via dielectrophoretic mechanisms. SENSORS 2014; 14:11714-34. [PMID: 24991941 PMCID: PMC4168452 DOI: 10.3390/s140711714] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/20/2014] [Accepted: 06/25/2014] [Indexed: 12/27/2022]
Abstract
Liver transplantation is the most common treatment for patients with end-stage liver failure. However, liver transplantation is greatly limited by a shortage of donors. Liver tissue engineering may offer an alternative by providing an implantable engineered liver. Currently, diverse types of engineering approaches for in vitro liver cell culture are available, including scaffold-based methods, microfluidic platforms, and micropatterning techniques. Active cell patterning via dielectrophoretic (DEP) force showed some advantages over other methods, including high speed, ease of handling, high precision and being label-free. This article summarizes liver function and regenerative mechanisms for better understanding in developing engineered liver. We then review recent advances in liver tissue engineering techniques and focus on DEP-based cell patterning, including microelectrode design and patterning configuration.
Collapse
Affiliation(s)
- Wan Nurlina Wan Yahya
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Nahrizul Adib Kadri
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Fatimah Ibrahim
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
34
|
Du C, Narayanan K, Leong MF, Wan AC. Induced pluripotent stem cell-derived hepatocytes and endothelial cells in multi-component hydrogel fibers for liver tissue engineering. Biomaterials 2014; 35:6006-14. [DOI: 10.1016/j.biomaterials.2014.04.011] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/07/2014] [Indexed: 12/22/2022]
|
35
|
Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis. Nat Commun 2014; 5:4250. [PMID: 24977495 DOI: 10.1038/ncomms5250] [Citation(s) in RCA: 261] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/28/2014] [Indexed: 01/09/2023] Open
Abstract
Integration of multiple three-dimensional microtissues into microfluidic networks enables new insights in how different organs or tissues of an organism interact. Here, we present a platform that extends the hanging-drop technology, used for multi-cellular spheroid formation, to multifunctional complex microfluidic networks. Engineered as completely open, 'hanging' microfluidic system at the bottom of a substrate, the platform features high flexibility in microtissue arrangements and interconnections, while fabrication is simple and operation robust. Multiple spheroids of different cell types are formed in parallel on the same platform; the different tissues are then connected in physiological order for multi-tissue experiments through reconfiguration of the fluidic network. Liquid flow is precisely controlled through the hanging drops, which enable nutrient supply, substance dosage and inter-organ metabolic communication. The possibility to perform parallelized microtissue formation on the same chip that is subsequently used for complex multi-tissue experiments renders the developed platform a promising technology for 'body-on-a-chip'-related research.
Collapse
|
36
|
Abstract
This unit describes a process for isolation of intact, viable hepatocytes for use in integrated drug metabolism studies. Isolated hepatocytes are increasingly being used as a biological system for studying the in vitro metabolism of xenobiotics. The isolation of hepatocytes from laboratory animals and nontransplantable human livers donated for research activities involves a two-step enzymatic digestion of the liver tissue. Two methods for the perfusion of liver tissue are included: in situ perfusion and isolation of hepatocytes and perfusion of excised tissue. The basic protocol also includes suggestions for designing drug metabolism experiments using hepatocytes. The final protocol describes cryopreservation and long-term storage of isolated hepatocytes.
Collapse
Affiliation(s)
- D R Mudra
- XenoTech, LLC, Kansas City, Kansas, USA
| | | |
Collapse
|
37
|
De Bruyn T, Chatterjee S, Fattah S, Keemink J, Nicolaï J, Augustijns P, Annaert P. Sandwich-cultured hepatocytes: utility for in vitro exploration of hepatobiliary drug disposition and drug-induced hepatotoxicity. Expert Opin Drug Metab Toxicol 2013; 9:589-616. [PMID: 23452081 DOI: 10.1517/17425255.2013.773973] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The sandwich-cultured hepatocyte (SCH) model has become an invaluable in vitro tool for studying hepatic drug transport, metabolism, biliary excretion and toxicity. The relevant expression of many hepatocyte-specific functions together with the in vivo-like morphology favor SCHs over other preclinical models for evaluating hepatobiliary drug disposition and drug-induced hepatotoxicity. AREAS COVERED In this review, the authors highlight recommended procedures required for reproducibly culturing hepatocytes in sandwich configuration. It also provides an overview of the SCH model characteristics as a function of culture time. Lastly, the article presents a summary of the most prominent applications of the SCH model, including hepatic drug clearance prediction, drug-drug interaction potential and drug-induced hepatotoxicity. EXPERT OPINION When human (cryopreserved) hepatocytes are used to establish sandwich cultures, the model appears particularly valuable to quantitatively investigate clinically relevant mechanisms related to in vivo hepatobiliary drug disposition and hepatotoxicity. Nonetheless, the SCH model would largely benefit from better insight into the fundamental cell signaling mechanisms that are critical for long-term in vitro maintenance of the hepatocytic phenotype. Studies systematically exploring improved cell culture conditions (e.g., co-cultures or extracellular matrix modifications), as well as in vitro work identifying key transcription factors involved in hepatocyte differentiation are currently emerging.
Collapse
Affiliation(s)
- Tom De Bruyn
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, O&N2, Herestraat 49-bus-921, 3000 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
38
|
Ramboer E, Vanhaecke T, Rogiers V, Vinken M. Primary hepatocyte cultures as prominent in vitro tools to study hepatic drug transporters. Drug Metab Rev 2013; 45:196-217. [PMID: 23368091 DOI: 10.3109/03602532.2012.756010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Before any drug can be placed on the market, drug efficacy and safety must be ensured through rigorous testing. Animal models are used for this purpose, though currently increasing attention goes to the use of alternative in vitro systems. In particular, liver-based testing platforms that allow the prediction of pharmacokinetic (PK) and pharmacotoxicological properties during the early phase of drug development are of interest. They also enable the screening of potential effects on hepatic drug transporters. The latter are known to affect drug metabolism and disposition, thereby possibly underlying drug-drug interactions, which, in turn, may result in liver toxicity. Clearly, stable in vivo-like functional expression of drug transporters in hepatic in vitro settings is a prerequisite to be applicable in routine PK and pharmacotoxicological testing. In the first part of the article, an updated overview of hepatic drug transporters is provided, followed by a state-of-the-art review of drug-transporter production and activity in primary hepatocyte cultures (PHCs), being the gold-standard in vitro system. Specific focus is hereby put on strategies to maintain long-term functional expression, in casu of drug transporters, in these systems. In the second part, the use of PHCs to assess hepatobiliary transport and transporter-mediated interactions is outlined.
Collapse
Affiliation(s)
- Eva Ramboer
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | | | |
Collapse
|
39
|
Nelson LJ, Treskes P, Howie AF, Walker SW, Hayes PC, Plevris JN. Profiling the impact of medium formulation on morphology and functionality of primary hepatocytes in vitro. Sci Rep 2013; 3:2735. [PMID: 24061220 PMCID: PMC3781401 DOI: 10.1038/srep02735] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 09/03/2013] [Indexed: 12/28/2022] Open
Abstract
The characterization of fully-defined in vitro hepatic culture systems requires testing of functional and morphological variables to obtain the optimal trophic support, particularly for cell therapeutics including bioartificial liver systems (BALs). Using serum-free fully-defined culture medium formulations, we measured synthetic, detoxification and metabolic variables of primary porcine hepatocytes (PPHs)--integrated these datasets using a defined scoring system and correlated this hepatocyte biological activity index (HBAI) with morphological parameters. Hepatic-specific functions exceeded those of both primary human hepatocytes (PHHs) and HepaRG cells, whilst retaining biotransformation potential and in vivo-like ultrastructural morphology, suggesting PPHs as a potential surrogate for PHHs in various biotech applications. The HBAI permits assessment of global functional capacity allowing the rational choice of optimal trophic support for a defined operational task (including BALs, hepatocellular transplantation, and cytochrome P450 (CYP450) drug metabolism studies), mitigates risk associated with sub-optimal culture systems, and reduces time and cost of research and therapeutic applications.
Collapse
Affiliation(s)
- Leonard J. Nelson
- Hepatology Laboratory, University of Edinburgh, Chancellor's Building, Royal Infirmary of Edinburgh, EH16 4SB, Scotland, UK
| | - Philipp Treskes
- Hepatology Laboratory, University of Edinburgh, Chancellor's Building, Royal Infirmary of Edinburgh, EH16 4SB, Scotland, UK
| | - A. Forbes Howie
- Dept of Clinical Biochemistry, University of Edinburgh, Chancellor's Building, Royal Infirmary of Edinburgh, EH16 4SB, Scotland, UK
| | - Simon W. Walker
- Dept of Clinical Biochemistry, University of Edinburgh, Chancellor's Building, Royal Infirmary of Edinburgh, EH16 4SB, Scotland, UK
| | - Peter C. Hayes
- Hepatology Laboratory, University of Edinburgh, Chancellor's Building, Royal Infirmary of Edinburgh, EH16 4SB, Scotland, UK
| | - John N. Plevris
- Hepatology Laboratory, University of Edinburgh, Chancellor's Building, Royal Infirmary of Edinburgh, EH16 4SB, Scotland, UK
| |
Collapse
|
40
|
Bishi DK, Mathapati S, Venugopal JR, Guhathakurta S, Cherian KM, Ramakrishna S, Verma RS. Trans-differentiation of human mesenchymal stem cells generates functional hepatospheres on poly(l-lactic acid)-co-poly(ε-caprolactone)/collagen nanofibrous scaffolds. J Mater Chem B 2013; 1:3972-3984. [DOI: 10.1039/c3tb20241k] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
41
|
Fraczek J, Bolleyn J, Vanhaecke T, Rogiers V, Vinken M. Primary hepatocyte cultures for pharmaco-toxicological studies: at the busy crossroad of various anti-dedifferentiation strategies. Arch Toxicol 2012; 87:577-610. [PMID: 23242478 DOI: 10.1007/s00204-012-0983-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 11/19/2012] [Indexed: 01/24/2023]
Abstract
Continuously increasing understanding of the molecular triggers responsible for the onset of diseases, paralleled by an equally dynamic evolution of chemical synthesis and screening methods, offers an abundance of pharmacological agents with a potential to become new successful drugs. However, before patients can benefit of newly developed pharmaceuticals, stringent safety filters need to be applied to weed out unfavourable drug candidates. Cost effectiveness and the need to identify compound liabilities, without exposing humans to unnecessary risks, has stimulated the shift of the safety studies to the earliest stages of drug discovery and development. In this regard, in vivo relevant organotypic in vitro models have high potential to revolutionize the preclinical safety testing. They can enable automation of the process, to match the requirements of high-throughput screening approaches, while satisfying ethical considerations. Cultures of primary hepatocytes became already an inherent part of the preclinical pharmaco-toxicological testing battery, yet their routine use, particularly for long-term assays, is limited by the progressive deterioration of liver-specific features. The availability of suitable hepatic and other organ-specific in vitro models is, however, of paramount importance in the light of changing European legal regulations in the field of chemical compounds of different origin, which gradually restrict the use of animal studies for safety assessment, as currently witnessed in cosmetic industry. Fortunately, research groups worldwide spare no effort to establish hepatic in vitro systems. In the present review, both classical and innovative methodologies to stabilize the in vivo-like hepatocyte phenotype in culture of primary hepatocytes are presented and discussed.
Collapse
Affiliation(s)
- J Fraczek
- Department of Toxicology, Faculty of Medicine and Pharmacy, Centre for Pharmaceutical Research, Vrije Universiteit Brussel, Belgium.
| | | | | | | | | |
Collapse
|
42
|
Soldatow VY, Lecluyse EL, Griffith LG, Rusyn I. In vitro models for liver toxicity testing. Toxicol Res (Camb) 2012; 2:23-39. [PMID: 23495363 DOI: 10.1039/c2tx20051a] [Citation(s) in RCA: 320] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Over the years, various liver-derived in vitro model systems have been developed to enable investigation of the potential adverse effects of chemicals and drugs. Liver tissue slices, isolated microsomes, perfused liver, immortalized cell lines, and primary hepatocytes have been used extensively. Immortalized cell lines and primary isolated liver cells are currently most widely used in vitro models for liver toxicity testing. Limited throughput, loss of viability, and decreases in liver-specific functionality and gene expression are common shortcomings of these models. Recent developments in the field of in vitro hepatotoxicity include three-dimensional tissue constructs and bioartificial livers, co-cultures of various cell types with hepatocytes, and differentiation of stem cells into hepatic lineage-like cells. In an attempt to provide a more physiological environment for cultured liver cells, some of the novel cell culture systems incorporate fluid flow, micro-circulation, and other forms of organotypic microenvironments. Co-cultures aim to preserve liver-specific morphology and functionality beyond those provided by cultures of pure parenchymal cells. Stem cells, both embryonic- and adult tissue-derived, may provide a limitless supply of hepatocytes from multiple individuals to improve reproducibility and enable testing of the individual-specific toxicity. This review describes various traditional and novel in vitro liver models and provides a perspective on the challenges and opportunities afforded by each individual test system.
Collapse
Affiliation(s)
- Valerie Y Soldatow
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
43
|
Underhill GH, Peter G, Chen CS, Bhatia SN. Bioengineering Methods for Analysis of Cells In Vitro. Annu Rev Cell Dev Biol 2012; 28:385-410. [DOI: 10.1146/annurev-cellbio-101011-155709] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Galie Peter
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Christopher S. Chen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Sangeeta N. Bhatia
- Division of Health Sciences and Technology,
- Department of Electrical Engineering and Computer Science,
- The Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;
- Division of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115
| |
Collapse
|
44
|
LeCluyse EL, Witek RP, Andersen ME, Powers MJ. Organotypic liver culture models: meeting current challenges in toxicity testing. Crit Rev Toxicol 2012; 42:501-48. [PMID: 22582993 PMCID: PMC3423873 DOI: 10.3109/10408444.2012.682115] [Citation(s) in RCA: 239] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 03/26/2012] [Accepted: 03/30/2012] [Indexed: 02/07/2023]
Abstract
Prediction of chemical-induced hepatotoxicity in humans from in vitro data continues to be a significant challenge for the pharmaceutical and chemical industries. Generally, conventional in vitro hepatic model systems (i.e. 2-D static monocultures of primary or immortalized hepatocytes) are limited by their inability to maintain histotypic and phenotypic characteristics over time in culture, including stable expression of clearance and bioactivation pathways, as well as complex adaptive responses to chemical exposure. These systems are less than ideal for longer-term toxicity evaluations and elucidation of key cellular and molecular events involved in primary and secondary adaptation to chemical exposure, or for identification of important mediators of inflammation, proliferation and apoptosis. Progress in implementing a more effective strategy for in vitro-in vivo extrapolation and human risk assessment depends on significant advances in tissue culture technology and increasing their level of biological complexity. This article describes the current and ongoing need for more relevant, organotypic in vitro surrogate systems of human liver and recent efforts to recreate the multicellular architecture and hemodynamic properties of the liver using novel culture platforms. As these systems become more widely used for chemical and drug toxicity testing, there will be a corresponding need to establish standardized testing conditions, endpoint analyses and acceptance criteria. In the future, a balanced approach between sample throughput and biological relevance should provide better in vitro tools that are complementary with animal testing and assist in conducting more predictive human risk assessment.
Collapse
Affiliation(s)
- Edward L LeCluyse
- The Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC, USA.
| | | | | | | |
Collapse
|
45
|
Kostadinova A, Seifert B, Albrecht W, Malsch G, Groth T, Lendlein A, Altankov G. Novel Polymer Blends for the Preparation of Membranes for Biohybrid Liver Systems. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 20:821-39. [DOI: 10.1163/156856209x427005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Aneliya Kostadinova
- a Institute of Biophysics, Bulgarian Academy of Science, Akad. G. Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria
| | - Barbara Seifert
- b GKSS Research Center, Institute of Polymer Research, Kantstrasse 55, 14513 Teltow, Germany
| | - Wolfgang Albrecht
- c GKSS Research Center, Institute of Polymer Research, Kantstrasse 55, 14513 Teltow, Germany
| | - Guenter Malsch
- d GKSS Research Center, Institute of Polymer Research, Kantstrasse 55, 14513 Teltow, Germany
| | - Thomas Groth
- e Biomedical Materials Group, Dept. Pharmaceutics and Biopharmaceutics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 1, 06120 Halle (Saale), Germany
| | - Andreas Lendlein
- f GKSS Research Center, Institute of Polymer Research, Kantstrasse 55, 14513 Teltow, Germany
| | - George Altankov
- g ICREA and Institute for Bioengineering of Catalonia, Parc Scientific de Barcelona, Josep Samitier 1/5, 08028 Barcelona, Spain
| |
Collapse
|
46
|
Ostrovidov S, Sakai Y, Fujii T. Integration of a pump and an electrical sensor into a membrane-based PDMS microbioreactor for cell culture and drug testing. Biomed Microdevices 2012; 13:847-64. [PMID: 21728068 DOI: 10.1007/s10544-011-9555-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To the extent possible, artificial organs should have characteristics that match those of the in vivo system. To this end, microfabrication techniques allow us to create microenvironments that can help maintain cell organization and functionality in in vitro cultures. We present three new microbioreactors, each of which allows cells to be cultured in a perfused microenvironment similar to that found in vivo. Our microbioreactors use new technology that permits integration onto the chip (35 mm × 20 mm) of an electrical sensor, in addition to one or more pumping systems and associated perfusion circuitry. The monitoring of Caco-2 cell cultures using electrical impedance spectroscopy (EIS) has allowed us to measure the effects of cell growth, cellular barrier formation and the presence of chemical compounds and/or toxins. Specifically, we have investigated the ability of the electrical sensor to maintain appropriate sensitivity and precision. Our results show that the sensor was very sensitive not only to the presence or the absence of the cells, but also to changes in cell state. Our perfused microbioreactors are highly efficient miniaturized tools that are easy to operate. We anticipate that they will offer promising new opportunities in many types of cell culture research, including drug screening and tissue engineering.
Collapse
Affiliation(s)
- Serge Ostrovidov
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
| | | | | |
Collapse
|
47
|
Yoshimoto K, Kojima R, Takahashi E, Ichino M, Miyoshi H, Nagasaki Y. 3D Cell Co-culture System on Hydrogel Micro-Patterned Surface Fabricated by Photolithography. J PHOTOPOLYM SCI TEC 2012. [DOI: 10.2494/photopolymer.25.47] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Goral VN, Yuen PK. Microfluidic platforms for hepatocyte cell culture: new technologies and applications. Ann Biomed Eng 2011; 40:1244-54. [PMID: 22042626 DOI: 10.1007/s10439-011-0453-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 10/20/2011] [Indexed: 01/26/2023]
Abstract
In this article, we summarize the key elements of microfluidic platforms for mimicking in vivo hepatocyte cell culture and the major recent advances in this area. Specifically, we will give brief background and rationale for key design requirements for mimicking in vivo hepatocyte cell culture, and then summarize findings, applications, and limitations from microfluidic platforms that addressed these design requirements. Although no ideal microfluidic platform has so far been developed for fully mimicking in vivo hepatocyte cell culture, some approaches and designs have demonstrated great potential in this area.
Collapse
Affiliation(s)
- Vasiliy N Goral
- Science and Technology, Corning Incorporated, Corning, NY 14831-0001, USA
| | | |
Collapse
|
49
|
Dash M, Chiellini F, Ottenbrite R, Chiellini E. Chitosan—A versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 2011. [DOI: 10.1016/j.progpolymsci.2011.02.001] [Citation(s) in RCA: 1932] [Impact Index Per Article: 138.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
50
|
van Midwoud PM, Merema MT, Verweij N, Groothuis GMM, Verpoorte E. Hydrogel embedding of precision-cut liver slices in a microfluidic device improves drug metabolic activity. Biotechnol Bioeng 2011; 108:1404-12. [PMID: 21274846 DOI: 10.1002/bit.23053] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 11/15/2010] [Accepted: 01/03/2011] [Indexed: 01/15/2023]
Abstract
A microfluidic-based biochip made of poly-(dimethylsiloxane) was recently reported for the first time by us for the incubation of precision-cut liver slices (PCLS). In this system, PCLS are continuously exposed to flow, to keep the incubation environment stable over time. Slice behavior in the biochip was compared with that of slices incubated in well plates, and verified for 24 h. The goal of the present study was to extend this incubation time. The viability and metabolic activity of precision-cut rat liver slices cultured in our novel microflow system was examined for 72 h. Slices were incubated for 1, 24, 48, and 72 h, and tested for viability (enzyme leakage (lactate dehydrogenase)) and metabolic activity (7-hydroxycoumarin (phase II) and 7-ethoxycoumarin (phase I and II)). Results show that liver slices retained a higher viability in the biochip when embedded in a hydrogel (Matrigel) over 72 h. This embedding prevented the slices from attaching to the upper polycarbonate surface in the microchamber, which occurred during prolonged (>24 h) incubation in the absence of hydrogel. Phase II metabolism was completely retained in hydrogel-embedded slices when medium supplemented with dexamethasone, insulin, and calf serum was used. However, phase I metabolism was significantly decreased with respect to the initial values in gel-embedded slices with medium supplements. Slices were still able to produce phase I metabolites after 72 h, but at only about ∼10% of the initial value. The same decrease in metabolic rate was observed in slices incubated in well plates, indicating that this decrease is due to the slices and medium rather than the incubation system. In conclusion, the biochip model was significantly improved by embedding slices in Matrigel and using proper medium supplements. This is important for in vitro testing of drug metabolism, drug-drug interactions, and (chronic) toxicity.
Collapse
Affiliation(s)
- Paul M van Midwoud
- Pharmaceutical Analysis, Department of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | | | |
Collapse
|