1
|
Jaczynska K, Esser V, Xu J, Sari L, Lin MM, Rosenmund C, Rizo J. A lever hypothesis for Synaptotagmin-1 action in neurotransmitter release. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599417. [PMID: 38948826 PMCID: PMC11212951 DOI: 10.1101/2024.06.17.599417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Neurotransmitter release is triggered in microseconds by Ca2+-binding to the Synaptotagmin-1 C2 domains and by SNARE complexes that form four-helix bundles between synaptic vesicles and plasma membranes, but the coupling mechanism between Ca2+-sensing and membrane fusion is unknown. Release requires extension of SNARE helices into juxtamembrane linkers that precede transmembrane regions (linker zippering) and binding of the Synaptotagmin-1 C2B domain to SNARE complexes through a 'primary interface' comprising two regions (I and II). The Synaptotagmin-1 Ca2+-binding loops were believed to accelerate membrane fusion by inducing membrane curvature, perturbing lipid bilayers or helping bridge the membranes, but SNARE complex binding orients the Ca2+-binding loops away from the fusion site, hindering these putative activities. Molecular dynamics simulations now suggest that Synaptotagmin-1 C2 domains near the site of fusion hinder SNARE action, providing an explanation for this paradox and arguing against previous models of Sytnaptotagmin-1 action. NMR experiments reveal that binding of C2B domain arginines to SNARE acidic residues at region II remains after disruption of region I. These results and fluorescence resonance energy transfer assays, together with previous data, suggest that Ca2+ causes reorientation of the C2B domain on the membrane and dissociation from the SNAREs at region I but not region II. Based on these results and molecular modeling, we propose that Synaptotagmin-1 acts as a lever that pulls the SNARE complex when Ca2+ causes reorientation of the C2B domain, facilitating linker zippering and fast membrane fusion. This hypothesis is supported by the electrophysiological data described in the accompanying paper.
Collapse
Affiliation(s)
- Klaudia Jaczynska
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Victoria Esser
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Junjie Xu
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Levent Sari
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Milo M. Lin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Christian Rosenmund
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Berlin, Germany
- NeuroCure Cluster of Excellence, Berlin, Germany
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
2
|
Zabala-Ferrera O, Beltramo PJ. Effects of Ion Concentration and Headgroup Chemistry on Thin Lipid Film Drainage. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16294-16302. [PMID: 37939040 DOI: 10.1021/acs.langmuir.3c01795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
While the use of lipid nanoparticles in drug delivery applications has grown over the past few decades, much work remains to be done toward the characterization and rational design of the drug carriers. A key feature of delivery is the interaction of the exterior leaflet of the LNP with the outer leaflet of the cell membrane, which relies in part on the fusogenicity of the lipids and the ionic environment. In this paper, we study the interactions between two lipid monolayers using a thin film balance to create lipid thin films and interferometry to measure film evolution. We probe the role of lipid headgroup chemistry and charge, along with ionic solution conditions, in either promoting or hindering film drainage and stability. Specific headgroups phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and phosphatidylserine (PS) are chosen to represent a combination of charge and fusogenicity. We quantify each film's drainage characteristics over a range of capillary numbers. Qualitatively, we find that films transition from drainage via a large dimple to drainage via channels and vortices as the capillary number increases. Additionally, we observe a transition from electrostatically dominated film drainage at low CaCl2 concentrations to fusogenic-dominated film drainage at higher CaCl2 concentrations for anionic fusogenic (PS) films. Understanding the role of headgroup composition, ionic composition, and ionic concentration will pave the way for the design of tunable vesicle and buffer systems that behave desirably across a range of ex vivo and in vivo environments.
Collapse
Affiliation(s)
- Oscar Zabala-Ferrera
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Peter J Beltramo
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
3
|
Yu H, Wang Y, Chen Y, Cui M, Yang F, Wang P, Ji M. Transmissible H-aggregated NIR-II fluorophore to the tumor cell membrane for enhanced PTT and synergistic therapy of cancer. NANO CONVERGENCE 2023; 10:3. [PMID: 36609947 PMCID: PMC9823176 DOI: 10.1186/s40580-022-00352-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Photothermal therapy (PTT) combined with second near-infrared (NIR-II) fluorescence imaging (FI) has received increasing attention owing to its capacity for precise diagnosis and real-time monitoring of the therapeutic effects. It is of great clinical value to study organic small molecular fluorophores with both PTT and NIR-II FI functions. In this work, we report a skillfully fluorescent lipid nanosystem, the RR9 (RGDRRRRRRRRRC) peptide-coated anionic liposome loaded with organic NIR-II fluorophore IR-1061 and chemotherapeutic drug carboplatin, which is named RRIALP-C4. According to the structural interaction between IR-1061 and phospholipid bilayer demonstrated by molecular dynamics simulations, IR-1061 is rationally designed to possess the H-aggregated state versus the free state, thus rendering RRIALP-C4 with the activated dual-channel integrated function of intravital NIR-II FI and NIR-I PTT. Functionalization of RRIALP-C4 with RR9 peptide endows the specifically targeting capacity for αvβ3-overexpressed tumor cells and, more importantly, allows IR-1061 to transfer the H-aggregated state from liposomes to the tumor cell membrane through enhanced membrane fusion, thereby maintaining its PTT effect in tumor tissues. In vivo experiments demonstrate that RRIALP-C4 can effectively visualize tumor tissues and systemic blood vessels with a high sign-to-background ratio (SBR) to realize the synergistic treatment of thermochemotherapy by PTT synergistically with temperature-sensitive drug release. Therefore, the strategy of enhanced PTT through H-aggregation of NIR-II fluorophore in the tumor cell membrane has great potential for developing lipid nanosystems with integrated diagnosis and treatment function.
Collapse
Affiliation(s)
- Haoli Yu
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuesong Wang
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yan Chen
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Mengyuan Cui
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Fang Yang
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Peng Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 210009, China.
| | - Min Ji
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
4
|
Grothe T, Walla PJ. Fluorescence Lifetime and Cross-correlation Spectroscopy for Observing Membrane Fusion of Liposome Models Containing Synaptic Proteins. Methods Mol Biol 2022; 2417:167-180. [PMID: 35099799 DOI: 10.1007/978-1-0716-1916-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Watching events of membrane fusion in real time and distinguishing between intermediate steps of these events is useful for mechanistic insights but at the same time a challenging task. In this chapter, we describe how to use fluorescence cross-correlation spectroscopy and Förster-resonance energy transfer to resolve the tethering and fusion of membranes by SNARE proteins (syntaxin-1, SNAP-25, and synaptobrevin-2) as an example. The given protocols can easily be adapted to other membrane proteins to investigate their ability to tether or even fuse vesicular membrane.
Collapse
Affiliation(s)
- Tobias Grothe
- Laboratory of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
- Department of Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, TU Braunschweig, Braunschweig, Germany
| | - Peter J Walla
- Laboratory of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.
- Department of Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, TU Braunschweig, Braunschweig, Germany.
| |
Collapse
|
5
|
Grothe T, Nowak J, Jahn R, Walla PJ. Selected tools to visualize membrane interactions. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:211-222. [PMID: 33787948 PMCID: PMC8071796 DOI: 10.1007/s00249-021-01516-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/19/2021] [Accepted: 03/08/2021] [Indexed: 11/28/2022]
Abstract
In the past decade, we developed various fluorescence-based methods for monitoring membrane fusion, membrane docking, distances between membranes, and membrane curvature. These tools were mainly developed using liposomes as model systems, which allows for the dissection of specific interactions mediated by, for example, fusion proteins. Here, we provide an overview of these methods, including two-photon fluorescence cross-correlation spectroscopy and intramembrane Förster energy transfer, with asymmetric labelling of inner and outer membrane leaflets and the calibrated use of transmembrane energy transfer to determine membrane distances below 10 nm. We discuss their application range and their limitations using examples from our work on protein-mediated vesicle docking and fusion.
Collapse
Affiliation(s)
- Tobias Grothe
- Laboratory of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077, Göttingen, Germany
- Department of Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, University of Braunschweig, 38106, Braunschweig, Germany
| | - Julia Nowak
- Department of Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, University of Braunschweig, 38106, Braunschweig, Germany
| | - Reinhard Jahn
- Laboratory of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Peter Jomo Walla
- Laboratory of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077, Göttingen, Germany.
- Department of Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, University of Braunschweig, 38106, Braunschweig, Germany.
| |
Collapse
|
6
|
Borges-Araújo L, Fernandes F. Structure and Lateral Organization of Phosphatidylinositol 4,5-bisphosphate. Molecules 2020; 25:molecules25173885. [PMID: 32858905 PMCID: PMC7503891 DOI: 10.3390/molecules25173885] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 02/07/2023] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is a minor but ubiquitous component of the inner leaflet of the plasma membrane of eukaryotic cells. However, due to its particular complex biophysical properties, it stands out from its neighboring lipids as one of the most important regulators of membrane-associated signaling events. Despite its very low steady-state concentration, PI(4,5)P2 is able to engage in a multitude of simultaneous cellular functions that are temporally and spatially regulated through the presence of localized transient pools of PI(4,5)P2 in the membrane. These pools are crucial for the recruitment, activation, and organization of signaling proteins and consequent regulation of downstream signaling. The present review showcases some of the most important PI(4,5)P2 molecular and biophysical properties as well as their impact on its membrane dynamics, lateral organization, and interactions with other biochemical partners.
Collapse
Affiliation(s)
- Luís Borges-Araújo
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal;
- Correspondence:
| | - Fabio Fernandes
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal;
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| |
Collapse
|
7
|
Akimov SA, Molotkovsky RJ, Kuzmin PI, Galimzyanov TR, Batishchev OV. Continuum Models of Membrane Fusion: Evolution of the Theory. Int J Mol Sci 2020; 21:E3875. [PMID: 32485905 PMCID: PMC7312925 DOI: 10.3390/ijms21113875] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/24/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
Starting from fertilization, through tissue growth, hormone secretion, synaptic transmission, and sometimes morbid events of carcinogenesis and viral infections, membrane fusion regulates the whole life of high organisms. Despite that, a lot of fusion processes still lack well-established models and even a list of main actors. A merger of membranes requires their topological rearrangements controlled by elastic properties of a lipid bilayer. That is why continuum models based on theories of membrane elasticity are actively applied for the construction of physical models of membrane fusion. Started from the view on the membrane as a structureless film with postulated geometry of fusion intermediates, they developed along with experimental and computational techniques to a powerful tool for prediction of the whole process with molecular accuracy. In the present review, focusing on fusion processes occurring in eukaryotic cells, we scrutinize the history of these models, their evolution and complication, as well as open questions and remaining theoretical problems. We show that modern approaches in this field allow continuum models of membrane fusion to stand shoulder to shoulder with molecular dynamics simulations, and provide the deepest understanding of this process in multiple biological systems.
Collapse
Affiliation(s)
- Sergey A. Akimov
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia; (R.J.M.); (P.I.K.); (T.R.G.); (O.V.B.)
| | | | | | | | | |
Collapse
|
8
|
Pan YZ, Liu X, Rizo J. Analysis of asymmetry in lipid and content mixing assays with reconstituted proteoliposomes containing the neuronal SNAREs. Sci Rep 2020; 10:2907. [PMID: 32076023 PMCID: PMC7031292 DOI: 10.1038/s41598-020-59740-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/03/2020] [Indexed: 11/09/2022] Open
Abstract
Reconstitution assays with proteoliposomes provide a powerful tool to elucidate the mechanism of neurotransmitter release, but it is important to understand how these assays report on membrane fusion, and recent studies with yeast vacuolar SNAREs uncovered asymmetry in the results of lipid mixing assays. We have investigated whether such asymmetry also occurs in reconstitution assays with the neuronal SNAREs, using syntaxin-1-SNAP-25-containing liposomes and liposomes containing synaptobrevin (T and V liposomes, respectively), and fluorescent probes to monitor lipid and content mixing simultaneously. Switching the fluorescent probes placed on the T and V liposomes, we observed a striking asymmetry in both lipid and content mixing stimulated by a fragment spanning the two C2 domains of synaptotagmin-1, or by a peptide that spans the C-terminal half of the synaptobrevin SNARE motif. However, no such asymmetry was observed in assays performed in the presence of Munc18-1, Munc13-1, NSF and αSNAP, which coordinate the assembly-disassembly cycle of neuronal SNARE complexes. Our results show that switching fluorescent probes between the two types of liposomes provides a useful approach to better understand the reactions that occur between liposomes and detect heterogenous behavior in these reactions.
Collapse
Affiliation(s)
- Yun-Zu Pan
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Xiaoxia Liu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, United States. .,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States. .,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States.
| |
Collapse
|
9
|
Han Y, Xu Z, Shi AC, Zhang L. Pathways connecting two opposed bilayers with a fusion pore: a molecularly-informed phase field approach. SOFT MATTER 2020; 16:366-374. [PMID: 31799560 DOI: 10.1039/c9sm01983a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A phase field model with two phase fields, representing the concentration and the head-tail separation of amphiphilic molecules, respectively, has been constructed using an extension of the Ohta-Kawasaki model (Macromolecules, 1986, 19, 2621-2632). It is shown that this molecularly-informed phase field model is capable of producing various self-assembled amphiphilic aggregates, such as bilayers, vesicles and micelles. Furthermore, pathways connecting two opposed bilayers with a fusion pore are obtained by using a combination of the phase field model and the string method. Multiple fusion pathways, including a classical pathway and a leaky pathway, have been obtained depending on the initial separation of the two bilayers. The study shed light on the understanding of the membrane fusion pathways and, more importantly, laid a foundation for further investigation of more complex membrane morphologies and transitions.
Collapse
Affiliation(s)
- Yucen Han
- Beijing International Center for Mathematical Research, Peking University, Beijing 100871, China.
| | | | | | | |
Collapse
|
10
|
Lovrić J, Najafinobar N, Dunevall J, Majdi S, Svir I, Oleinick A, Amatore C, Ewing AG. On the mechanism of electrochemical vesicle cytometry: chromaffin cell vesicles and liposomes. Faraday Discuss 2018; 193:65-79. [PMID: 27711871 DOI: 10.1039/c6fd00102e] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The mechanism of mammalian vesicle rupture onto the surface of a polarized carbon fiber microelectrode during electrochemical vesicle cytometry is investigated. It appears that following adsorption to the surface of the polarized electrode, electroporation leads to the formation of a pore at the interface between a vesicle and the electrode and this is shown to be potential dependent. The chemical cargo is then released through this pore to be oxidized at the electrode surface. This makes it possible to quantify the contents as it restricts diffusion away from the electrode and coulometric oxidation takes place. Using a bottom up approach, lipid-only transmitter-loaded liposomes were used to mimic native vesicles and the rupture events occurred much faster in comparison with native vesicles. Liposomes with added peptide in the membrane result in rupture events with a lower duration than that of liposomes and faster in comparison to native vesicles. Diffusional models have been developed and suggest that the trend in pore size is dependent on soft nanoparticle size and diffusion of the content in the nanometer vesicle. In addition, it appears that proteins form a barrier for the membrane to reach the electrode and need to move out of the way to allow close contact and electroporation. The protein dense core in vesicles matrixes is also important in the dynamics of the events in that it significantly slows diffusion through the vesicle.
Collapse
Affiliation(s)
- Jelena Lovrić
- Chalmers University of Technology, Department of Chemistry and Chemical Engineering, Kemivägen 10, 412 96 Gothenburg, Sweden.
| | - Neda Najafinobar
- Chalmers University of Technology, Department of Chemistry and Chemical Engineering, Kemivägen 10, 412 96 Gothenburg, Sweden.
| | - Johan Dunevall
- Chalmers University of Technology, Department of Chemistry and Chemical Engineering, Kemivägen 10, 412 96 Gothenburg, Sweden.
| | - Soodabeh Majdi
- University of Gothenburg, Department of Chemistry and Molecular Biology, Kemivägen 10, 412 96 Gothenburg, Sweden
| | - Irina Svir
- Ecole Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Univ. Paris 06, CNRS UMR 8640 PASTEUR, 24 rue Lhomond, 75005 Paris, France
| | - Alexander Oleinick
- Ecole Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Univ. Paris 06, CNRS UMR 8640 PASTEUR, 24 rue Lhomond, 75005 Paris, France
| | - Christian Amatore
- Ecole Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Univ. Paris 06, CNRS UMR 8640 PASTEUR, 24 rue Lhomond, 75005 Paris, France
| | - Andrew G Ewing
- Chalmers University of Technology, Department of Chemistry and Chemical Engineering, Kemivägen 10, 412 96 Gothenburg, Sweden. and University of Gothenburg, Department of Chemistry and Molecular Biology, Kemivägen 10, 412 96 Gothenburg, Sweden
| |
Collapse
|
11
|
Li X, Dunevall J, Ewing AG. Quantitative Chemical Measurements of Vesicular Transmitters with Electrochemical Cytometry. Acc Chem Res 2016; 49:2347-2354. [PMID: 27622924 DOI: 10.1021/acs.accounts.6b00331] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Electrochemical cytometry adds a new dimension to our ability to study the chemistry and chemical storage of transmitter molecules stored in nanometer vesicles. The approach involves the adsorption and subsequent rupture of vesicles on an electrode surface during which the electroactive contents are quantitatively oxidized (or reduced). The measured current allows us to count the number of molecules in the vesicles using Faraday's law and to correlate this to the amount of molecules released when single exocytosis events take place at communicating cells. The original format for this method involved a capillary electrophoresis separation step to singly address each vesicle, but we have more recently discovered that cellular vesicles tend to adsorb to carbon electrodes and spontaneously as well as stochastically rupture to give mostly single vesicle events. This approach, called impact electrochemical cytometry, even though the impact is perhaps not the important part of this process, has been studied and the vesicle rupture appears to be at the interface between the vesicle and the electrode and is probably driven by electroporation. The pore size and rate of content electrolysis are a function of the pore diameter and the presence of a protein core in the vesicles. In model liposomes with no protein, events appear extremely rapidly as the soft nanoparticles impact the electrode and the contents are oxidized. It appears that the proteins decorating the surface of the vesicle are important in maintaining a gap from the electrode and when this gap is closed electroporation takes place. Models of the event response times suggest the pores formed are small enough so we can carry out these measurements at nanotip electrodes and we have used this to quantify the vesicle content in living cells in a mode we call intracellular impact electrochemical cytometry. The development of electrochemical cytometry allows comparison between vesicle content and vesicular release and we have found that only part of the vesicle content is released in typical exocytotic cases measured by amperometry. This has led to the novel hypothesis that most exocytosis from dense core vesicles is via mechanism where vesicles fuse with the cell membrane, some content is released and then close again to be reloaded and reused. It leaves open the possibility that cells regulate release during individual events. This might be important in learning and memory and be a nonreceptor pharmaceutical target for brain-related disorders. Indeed, the concept of the chemo-brain observed in cisplatin-treated cancer patients appears to be at least in part the result of changing the fraction of transmitter released and we have been able to show this by using the combined amperometric measurement of release and electrochemical cytometry at model cells.
Collapse
Affiliation(s)
- Xianchan Li
- Department
of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Johan Dunevall
- Department
of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Andrew G. Ewing
- Department
of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
- Department
of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
12
|
Ishmukhametov RR, Russell AN, Berry RM. A modular platform for one-step assembly of multi-component membrane systems by fusion of charged proteoliposomes. Nat Commun 2016; 7:13025. [PMID: 27708275 PMCID: PMC5059690 DOI: 10.1038/ncomms13025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 08/25/2016] [Indexed: 11/30/2022] Open
Abstract
An important goal in synthetic biology is the assembly of biomimetic cell-like structures, which combine multiple biological components in synthetic lipid vesicles. A key limiting assembly step is the incorporation of membrane proteins into the lipid bilayer of the vesicles. Here we present a simple method for delivery of membrane proteins into a lipid bilayer within 5 min. Fusogenic proteoliposomes, containing charged lipids and membrane proteins, fuse with oppositely charged bilayers, with no requirement for detergent or fusion-promoting proteins, and deliver large, fragile membrane protein complexes into the target bilayers. We demonstrate the feasibility of our method by assembling a minimal electron transport chain capable of adenosine triphosphate (ATP) synthesis, combining Escherichia coli F1Fo ATP-synthase and the primary proton pump bo3-oxidase, into synthetic lipid vesicles with sizes ranging from 100 nm to ∼10 μm. This provides a platform for the combination of multiple sets of membrane protein complexes into cell-like artificial structures.
Collapse
Affiliation(s)
- Robert R. Ishmukhametov
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK
| | - Aidan N. Russell
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK
| | - Richard M. Berry
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK
| |
Collapse
|
13
|
Gew LT, Misran M. Energetic mixing of anti-SNAP25 on lipid monolayers: degree of saturation of C18 fatty acids. SURF INTERFACE ANAL 2016. [DOI: 10.1002/sia.6144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lai Ti Gew
- Department of Biological Sciences, Faculty of Science and Technology; Sunway University; No. 5, Jalan Universiti, Bandar Sunway 47500 Petaling Jaya Selangor Malaysia
- Department of Chemistry, Faculty of Science; University of Malaya; Kuala Lumpur 50603 Malaysia
| | - Misni Misran
- Department of Chemistry, Faculty of Science; University of Malaya; Kuala Lumpur 50603 Malaysia
| |
Collapse
|
14
|
Keidel A, Bartsch TF, Florin EL. Direct observation of intermediate states in model membrane fusion. Sci Rep 2016; 6:23691. [PMID: 27029285 PMCID: PMC4814778 DOI: 10.1038/srep23691] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/09/2016] [Indexed: 12/28/2022] Open
Abstract
We introduce a novel assay for membrane fusion of solid supported membranes on silica beads and on coverslips. Fusion of the lipid bilayers is induced by bringing an optically trapped bead in contact with the coverslip surface while observing the bead's thermal motion with microsecond temporal and nanometer spatial resolution using a three-dimensional position detector. The probability of fusion is controlled by the membrane tension on the particle. We show that the progression of fusion can be monitored by changes in the three-dimensional position histograms of the bead and in its rate of diffusion. We were able to observe all fusion intermediates including transient fusion, formation of a stalk, hemifusion and the completion of a fusion pore. Fusion intermediates are characterized by axial but not lateral confinement of the motion of the bead and independently by the change of its rate of diffusion due to the additional drag from the stalk-like connection between the two membranes. The detailed information provided by this assay makes it ideally suited for studies of early events in pure lipid bilayer fusion or fusion assisted by fusogenic molecules.
Collapse
Affiliation(s)
- Andrea Keidel
- Center for Nonlinear Dynamics and Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| | - Tobias F. Bartsch
- Center for Nonlinear Dynamics and Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, New York, 10065, USA
| | - Ernst-Ludwig Florin
- Center for Nonlinear Dynamics and Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
15
|
Galimzyanov TR, Kuzmin PI, Pohl P, Akimov SA. Elastic deformations of bolalipid membranes. SOFT MATTER 2016; 12:2357-64. [PMID: 26791255 PMCID: PMC7116075 DOI: 10.1039/c5sm02635k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Archaeal membranes have unique mechanical properties that enable these organisms to survive under extremely aggressive environmental conditions. The so-called bolalipids contribute to this exceptional stability. They have two polar heads joined by two hydrocarbon chains. The two headgroups can face different sides of the membrane (O-shape conformation) or the same side (U-shape conformation). We have developed an elasticity theory for bolalipid membranes and show that the energetic contributions of (i) tilt deformations, (ii) area compression/stretching deformations, (iii) as well as those of Gaussian splay from the two membrane surfaces are additive, while splay deformations yield a cross-term. The presence of a small fraction of U-shaped molecules resulted in spontaneous membrane curvature. We estimated the tilt modulus to be approximately equal to that of membranes in eukaryotic cells. In contrast to conventional lipids, the bolalipid membrane possesses two splay moduli, one of which is estimated to be an order of magnitude larger than that of conventional lipids. The projected values of elastic moduli act to hamper pore formation and to decelerate membrane fusion and fission.
Collapse
Affiliation(s)
- Timur R Galimzyanov
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, Moscow 119071, Russia. and Department of Theoretical Physics and Quantum Technologies, National University of Science and Technology "MISiS", 4 Leninskiy Prospect, Moscow 119049, Russia
| | - Peter I Kuzmin
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, Moscow 119071, Russia.
| | - Peter Pohl
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40-42, Linz, 4020, Austria
| | - Sergey A Akimov
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, Moscow 119071, Russia. and Department of Theoretical Physics and Quantum Technologies, National University of Science and Technology "MISiS", 4 Leninskiy Prospect, Moscow 119049, Russia
| |
Collapse
|
16
|
Mehlan J, Brosig H, Schmitt O, Mix E, Wree A, Hawlitschka A. Intrastriatal injection of botulinum neurotoxin-A is not cytotoxic in rat brain - A histological and stereological analysis. Brain Res 2015; 1630:18-24. [PMID: 26562665 DOI: 10.1016/j.brainres.2015.10.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/30/2015] [Accepted: 10/31/2015] [Indexed: 12/29/2022]
Abstract
Parkinson's disease (PD) is caused by progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta, resulting in a deficiency of dopamine in the striatum and an increased release of acetylcholine by tonically active interneurons. Botulinum neurotoxin-A (BoNT-A) is well known for blocking transmitter release by cholinergic presynaptic terminals. Treating striatal hypercholinism by local application of BoNT-A could be a possible new local therapy option of PD. In previous studies of our group, we analyzed the effect of BoNT-A injection into the CPu of 6-OHDA lesioned hemiparkinsonian rats. Our studies showed that BoNT-A application in hemiparkinson rat model is capable of abolishing apomorphine induced rotations for approximately 3 months. Regularly occurring axonal swellings in the BoNT-A infiltrated striata were also discovered, which we named BoNT-A induced varicosities (BiVs). Résumé: Here we investigated the long-term effect of the injection of 1ng BoNT-A into the right CPu of naive Wistar rats on the number of ChAT-ir interneurons as well as on the numeric density and the volumetric size of the BiVs in the CPu. Significant differences in the number of ChAT-ir neurons between the right BoNT-A treated CPu and the left untreated CPu were not detected up to 12 month post BoNT-A injection. The numeric density of BiVs in the treated CPu reached a maximum 3 months after BoNT-A treatment and decreased afterwards, whereas the volume of single BiVs increased steadily throughout the whole time course of the experiment.
Collapse
Affiliation(s)
- Juliane Mehlan
- Department of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057 Rostock, Germany
| | - Hans Brosig
- Department of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057 Rostock, Germany
| | - Oliver Schmitt
- Department of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057 Rostock, Germany
| | - Eilhard Mix
- Department of Neurology, Rostock University Medical Center, Gehlsheimer Straße 20, 18147 Rostock, Germany
| | - Andreas Wree
- Department of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057 Rostock, Germany
| | - Alexander Hawlitschka
- Department of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057 Rostock, Germany.
| |
Collapse
|
17
|
Abstract
This paper discusses physical and structural aspects of the mechanisms herpes simplex virus (HSV) uses for membrane fusion. Calculations show that herpes simplex virus glycoprotein D has such avidity for its receptors that it can hold the virion against the plasma membrane of a neuron strongly enough for glycoprotein B (gB) to disrupt both leaflets of the bilayer. The strong electric field generated by the cell potential across perforations at this disruption would break the hydrogen bonds securing the gB fusion loops, leading to fusion of the plasma and viral membranes. This mechanism agrees with the high stability of the tall trimeric spike structure of gB and is consistent with the probable existence of a more compact initial conformation that would allow it to closely approach the plasma membrane. The release of the fusion domains by disruption of hydrogen bonds is shared with the endocytotic entry pathway where, for some cell types not punctured by gB, the virus is able to induce inward forces that cause endocytosis and the fusion loops are released by acidification. The puncture-fusion mechanism requires low critical strain or high tissue strain, matching primary tropism of neural processes at the vermillion border. In support of this mechanism, this paper proposes a functional superstructure of the antigens essential to entry and reviews its consistency with experimental evidence.
Collapse
Affiliation(s)
- Richard W. Clarke
- Chemistry Department, Cambridge University, Lensfield Road, Cambridge CB21EW, United Kingdom
| |
Collapse
|
18
|
Lai AL, Freed JH. HIV gp41 fusion peptide increases membrane ordering in a cholesterol-dependent fashion. Biophys J 2014; 106:172-81. [PMID: 24411249 DOI: 10.1016/j.bpj.2013.11.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/11/2013] [Accepted: 11/13/2013] [Indexed: 10/25/2022] Open
Abstract
Fusion between viral envelopes and host cell membranes, which is mediated by special glycoproteins anchored on the viral membrane, is required for HIV viral entry and infection. The HIV gp41 fusion peptide (FP), which initiates membrane fusion, adopts either an α-helical or β-sheeted structure depending on the cholesterol concentration. We used phosphocholine spin labels on the lipid headgroup and different positions on the acyl chain to detect its perturbation on lipid bilayers containing different cholesterol concentrations by electron-spin resonance. Our findings were as follows. 1), gp41 FP affects the lipid order in the same manner as previously shown for influenza hemagglutinin FP, i.e., it has a cooperative effect versus the peptide/lipid ratio, supporting our hypothesis that membrane ordering is a common prerequisite for viral membrane fusion. 2), gp41 FP induces membrane ordering in all lipid compositions studied, whereas a nonfusion mutant FP perturbs lipid order to a significantly smaller extent. 3), In high-cholesterol-containing lipid bilayers, where gp41 FP is in the β-aggregation conformation, its effect on the lipid ordering reaches deeper into the bilayer. The different extent to which the two conformers perturb is correlated with their fusogenicity. The possible role of the two conformers in membrane fusion is discussed.
Collapse
Affiliation(s)
- Alex L Lai
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York.
| |
Collapse
|
19
|
Multi-step formation of a hemifusion diaphragm for vesicle fusion revealed by all-atom molecular dynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1529-35. [PMID: 24468064 DOI: 10.1016/j.bbamem.2014.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 01/04/2014] [Accepted: 01/11/2014] [Indexed: 02/01/2023]
Abstract
Membrane fusion is essential for intracellular trafficking and virus infection, but the molecular mechanisms underlying the fusion process remain poorly understood. In this study, we employed all-atom molecular dynamics simulations to investigate the membrane fusion mechanism using vesicle models which were pre-bound by inter-vesicle Ca(2+)-lipid clusters to approximate Ca(2+)-catalyzed fusion. Our results show that the formation of the hemifusion diaphragm for vesicle fusion is a multi-step event. This result contrasts with the assumptions made in most continuum models. The neighboring hemifused states are separated by an energy barrier on the energy landscape. The hemifusion diaphragm is much thinner than the planar lipid bilayers. The thinning of the hemifusion diaphragm during its formation results in the opening of a fusion pore for vesicle fusion. This work provides new insights into the formation of the hemifusion diaphragm and thus increases understanding of the molecular mechanism of membrane fusion. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.
Collapse
|
20
|
Marchi-Artzner V, Gulik-Krzywicki T, Guedeau-Boudeville MA, Gosse C, Sanderson JM, Dedieu JC, Lehn JM. Selective adhesion, lipid exchange and membrane-fusion processes between vesicles of various sizes bearing complementary molecular recognition groups. Chemphyschem 2014; 2:367-76. [PMID: 23686958 DOI: 10.1002/1439-7641(20010618)2:6<367::aid-cphc367>3.0.co;2-#] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2000] [Revised: 01/12/2001] [Indexed: 11/10/2022]
Abstract
Equimolar mixtures of large unilamellar vesicles (LUVs) obtained from mixtures of egg lecithin and lipids containing complementary hydrogen bonding head groups (barbituric acid (BAR) and 2,4,6-triaminopyrimidine (TAP)) were shown to aggregate and fuse. These events have been studied in detail using electron microscopy and dynamic light scattering, and by fluorimetry using membrane or water-soluble fluorescence probes. It was shown that aggregation was followed by two competitive processes: a) lipid mixing leading to redispersion of the vesicles; b) fusion events generating much larger vesicles. In order to better understand the nature of the interaction, the effects of ionic strength and surface concentration of recognition lipids on the aggregation process were investigated by dynamic light scattering. Additionally, it was possible to inhibit the aggregation kinetics through addition of a soluble barbituric acid competitor. The study was extended to giant unilamellar vesicles (GUVs) to investigate the size effect and visualise the phenomena in situ. The interactions between complementary LUVs and GUVs or GUVs and GUVs were studied by optical microscopy using dual fluorescent labelling of both vesicle populations. A selective adhesion of LUVs onto GUVs was observed by electron and optical microscopies, whereas no aggregation took place in case of a GUV/GUV mixture. Furthermore, a fusion assay of GUV and LUV using the difference of size between GUV and LUV and calceine self-quenching showed that no mixing between the aqueous pools occured.
Collapse
Affiliation(s)
- V Marchi-Artzner
- Laboratoire de Chimie des Interactions Moléculaires, UPR 285, Collège de France, Paris, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Ammar MR, Kassas N, Chasserot-Golaz S, Bader MF, Vitale N. Lipids in Regulated Exocytosis: What are They Doing? Front Endocrinol (Lausanne) 2013; 4:125. [PMID: 24062727 PMCID: PMC3775428 DOI: 10.3389/fendo.2013.00125] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 08/31/2013] [Indexed: 12/27/2022] Open
Abstract
The regulated secretory pathway in neuroendocrine cells ends with the release of hormones and neurotransmitters following a rise in cytosolic calcium. This process known as regulated exocytosis involves the assembly of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, the synaptic vesicle VAMP (synaptobrevin), and the plasma membrane proteins syntaxin and SNAP-25. Although there is much evidence suggesting that SNARE proteins play a key role in the fusion machinery, other cellular elements regulating the kinetics, the extent of fusion, and the preparation of vesicle for release have received less attention. Among those factors, lipids have also been proposed to play important functions both at the level of secretory vesicle recruitment and late membrane fusion steps. Here, we will review the latest evidence supporting the concept of the fusogenic activity of lipids, and also discuss how this may be achieved. These possibilities include the recruitment and sequestration of the components of the exocytotic machinery, regulation of protein function, and direct effects on membrane topology.
Collapse
Affiliation(s)
- Mohamed Raafet Ammar
- Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR-3212 Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Nawal Kassas
- Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR-3212 Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Sylvette Chasserot-Golaz
- Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR-3212 Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Marie-France Bader
- Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR-3212 Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR-3212 Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
- *Correspondence: Nicolas Vitale, Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR-3212 Centre National de la Recherche Scientifique, Université de Strasbourg, 5 rue Blaise Pascal, 67084 Strasbourg, France e-mail:
| |
Collapse
|
22
|
Zhao H, Lappalainen P. A simple guide to biochemical approaches for analyzing protein-lipid interactions. Mol Biol Cell 2013; 23:2823-30. [PMID: 22848065 PMCID: PMC3408410 DOI: 10.1091/mbc.e11-07-0645] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Eukaryotic cells contain many different membrane compartments with characteristic shapes, lipid compositions, and dynamics. A large fraction of cytoplasmic proteins associate with these membrane compartments. Such protein–lipid interactions, which regulate the subcellular localizations and activities of peripheral membrane proteins, are fundamentally important for a variety of cell biological processes ranging from cytoskeletal dynamics and membrane trafficking to intracellular signaling. Reciprocally, many membrane-associated proteins can modulate the shape, lipid composition, and dynamics of cellular membranes. Determining the exact mechanisms by which these proteins interact with membranes will be essential to understanding their biological functions. In this Technical Perspective, we provide a brief introduction to selected biochemical methods that can be applied to study protein–lipid interactions. We also discuss how important it is to choose proper lipid composition, type of model membrane, and biochemical assay to obtain reliable and informative data from the lipid-interaction mechanism of a protein of interest.
Collapse
Affiliation(s)
- Hongxia Zhao
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | | |
Collapse
|
23
|
Patil N, Soni J, Ghosh N, De P. Swelling-Induced Optical Anisotropy of Thermoresponsive Hydrogels Based on Poly(2-(2-methoxyethoxy)ethyl methacrylate): Deswelling Kinetics Probed by Quantitative Mueller Matrix Polarimetry. J Phys Chem B 2012; 116:13913-21. [DOI: 10.1021/jp308850a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Nagaraj Patil
- Polymer
Research Centre, Department of Chemical Sciences, ‡Department of Physical Sciences, Indian Institute of Science Education and Research, Kolkata, PO: BCKV Campus Main Office, Mohanpur-741252, Nadia, West
Bengal, India
| | - Jalpa Soni
- Polymer
Research Centre, Department of Chemical Sciences, ‡Department of Physical Sciences, Indian Institute of Science Education and Research, Kolkata, PO: BCKV Campus Main Office, Mohanpur-741252, Nadia, West
Bengal, India
| | - Nirmalya Ghosh
- Polymer
Research Centre, Department of Chemical Sciences, ‡Department of Physical Sciences, Indian Institute of Science Education and Research, Kolkata, PO: BCKV Campus Main Office, Mohanpur-741252, Nadia, West
Bengal, India
| | - Priyadarsi De
- Polymer
Research Centre, Department of Chemical Sciences, ‡Department of Physical Sciences, Indian Institute of Science Education and Research, Kolkata, PO: BCKV Campus Main Office, Mohanpur-741252, Nadia, West
Bengal, India
| |
Collapse
|
24
|
Rizo J, Südhof TC. The Membrane Fusion Enigma: SNAREs, Sec1/Munc18 Proteins, and Their Accomplices—Guilty as Charged? Annu Rev Cell Dev Biol 2012; 28:279-308. [DOI: 10.1146/annurev-cellbio-101011-155818] [Citation(s) in RCA: 318] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Josep Rizo
- Departments of Biophysics, Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390;
| | - Thomas C. Südhof
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University Medical School, Stanford, California 94305;
| |
Collapse
|
25
|
Miklavc P, Frick M. Vesicular calcium channels as regulators of the exocytotic post-fusion phase. Commun Integr Biol 2012; 4:796-8. [PMID: 22446559 DOI: 10.4161/cib.17935] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Regulated secretion is a fundamental cellular process in many different types of eukaryotic cells with Ca2(+-)triggered exocytosis taking centre stage. Elevations of the cytoplasmic Ca(2+) concentration ([Ca(2+)](c)) regulate multiple steps from vesicle fusion with the plasma membrane to fusion pore dilation and subsequent retrieval of spent vesicles. The general view is that the rise in [Ca(2+)](c) initiates during the pre-fusion stage and either results from Ca(2+)-influx via Ca(2+) channels in the plasma membrane or from release from intracellular Ca(2+)-stores. However, there is increasing evidence that exocytosis of secretory vesicles triggers additional, localised Ca(2+) signals via insertion of vesicle-associated Ca(2+) channels into the cell surface. These restricted Ca(2+) signals following fusion are ideally suited for regulating the post-fusion fate of individual secretory vesicles. In invertebrates they have been shown to trigger compensatory endocytosis. Recently we have reported that exocytosis of lamellar bodies in alveolar type II epithelial cells results in a localized Ca(2+)-influx via vesicular P2X(4) receptors which regulates fusion pore expansion and vesicle content release. This finding expands the emerging picture that post-fusion Ca(2+) entry via vesicle-associated Ca(2+) channels plays a central role for regulated exocytosis.
Collapse
Affiliation(s)
- Pika Miklavc
- Institute of General Physiology, University of Ulm, Ulm, Germany
| | | |
Collapse
|
26
|
|
27
|
Fusion-activated Ca2+ entry via vesicular P2X4 receptors promotes fusion pore opening and exocytotic content release in pneumocytes. Proc Natl Acad Sci U S A 2011; 108:14503-8. [PMID: 21844344 DOI: 10.1073/pnas.1101039108] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ca(2+) is considered a key element in multiple steps during regulated exocytosis. During the postfusion phase, an elevated cytoplasmic Ca(2+) concentration ([Ca(2+)])(c) leads to fusion pore dilation. In neurons and neuroendocrine cells, this results from activation of voltage-gated Ca(2+) channels in the plasma membrane. However, these channels are activated in the prefusion stage, and little is known about Ca(2+) entry mechanisms during the postfusion stage. This may be particularly important for slow and nonexcitable secretory cells. We recently described a "fusion-activated" Ca(2+) entry (FACE) mechanism in alveolar type II (ATII) epithelial cells. FACE follows initial fusion pore opening with a delay of 200-500 ms. The site, molecular mechanisms, and functions of this mechanism remain unknown, however. Here we show that vesicle-associated Ca(2+) channels mediate FACE. Using RT-PCR, Western blot analysis, and immunofluorescence, we demonstrate that P2X(4) receptors are expressed on exocytotic vesicles known as lamellar bodies (LBs). Electrophysiological, pharmacological, and genetic data confirm that FACE is mediated via these vesicular P2X(4) receptors. Furthermore, analysis of fluorophore diffusion into and out of individual vesicles after exocytotic fusion provides evidence that FACE regulates postfusion events of LB exocytosis via P2X(4). Fusion pore dilation was clearly correlated with the amplitude of FACE, and content release from fused LBs was accelerated in fusions followed by FACE. Based on these findings, we propose a model for regulation of the exocytotic postfusion phase in nonexcitable cells in which Ca(2+) influx via vesicular Ca(2+) channels regulates fusion pore expansion and vesicle content release.
Collapse
|
28
|
|
29
|
Chasserot-Golaz S, Coorssen JR, Meunier FA, Vitale N. Lipid dynamics in exocytosis. Cell Mol Neurobiol 2010; 30:1335-42. [PMID: 21080057 DOI: 10.1007/s10571-010-9577-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Accepted: 09/02/2010] [Indexed: 11/27/2022]
Abstract
Regulated exocytosis of neurotransmitter- and hormone-containing vesicles underpins neuronal and hormonal communication and relies on a well-orchestrated series of molecular interactions. This in part involves the upstream formation of a complex of SNAREs and associated proteins leading to the eventual fusion of the vesicle membrane with the plasma membrane, a process that enables content release. Although the role of lipids in exocytosis is intuitive, it has long been overlooked at least compared to the extensive work on SNAREs. Here, we will present the latest advances in this rapidly developing field revealing that lipids actually play an active role in exocytosis by focusing on cholesterol, 3'-phosphorylated phosphoinositides and phosphatidic acid.
Collapse
Affiliation(s)
- S Chasserot-Golaz
- Département Neurotransmission & Sécrétion Neuroendocrine, Institut des Neurosciences Cellulaires et Intégratives (UPR-3212), Centre National de Recherche Scientifique, Université de Strasbourg, 5 rue Blaise Pascal, 67084 Strasbourg, France.
| | | | | | | |
Collapse
|
30
|
The fusion of synaptic vesicle membranes studied by lipid mixing: the R18 fluorescence assay validity. Chem Phys Lipids 2010; 163:778-86. [DOI: 10.1016/j.chemphyslip.2010.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 09/03/2010] [Accepted: 09/07/2010] [Indexed: 12/27/2022]
|
31
|
Baoukina S, Tieleman DP. Direct simulation of protein-mediated vesicle fusion: lung surfactant protein B. Biophys J 2010; 99:2134-42. [PMID: 20923647 PMCID: PMC3042587 DOI: 10.1016/j.bpj.2010.07.049] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 07/22/2010] [Accepted: 07/23/2010] [Indexed: 10/19/2022] Open
Abstract
We simulated spontaneous fusion of small unilamellar vesicles mediated by lung surfactant protein B (SP-B) using the MARTINI force field. An SP-B monomer triggers fusion events by anchoring two vesicles and facilitating the formation of a lipid bridge between the proximal leaflets. Once a lipid bridge is formed, fusion proceeds via a previously described stalk - hemifusion diaphragm - pore-opening pathway. In the absence of protein, fusion of vesicles was not observed in either unbiased simulations or upon application of a restraining potential to maintain the vesicles in close proximity. The shape of SP-B appears to enable it to bind to two vesicles at once, forcing their proximity, and to facilitate the initial transfer of lipids to form a high-energy hemifusion intermediate. Our results may provide insight into more general mechanisms of protein-mediated membrane fusion, and a possible role of SP-B in the secretory pathway and transfer of lung surfactant to the gas exchange interface.
Collapse
Affiliation(s)
| | - D. Peter Tieleman
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| |
Collapse
|
32
|
Glaves JP, Fisher L, Ward A, Young HS. Helical crystallization of two example membrane proteins MsbA and the Ca(2+)-ATPase. Methods Enzymol 2010; 483:143-59. [PMID: 20888473 DOI: 10.1016/s0076-6879(10)83007-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Helical crystallization is a powerful tool for the moderate resolution structure determination of integral membrane proteins, where the insight gained often includes domain architecture and the disposition of α-helical segments. A necessary first step toward helical crystallization involves membrane protein reconstitution, which itself is a powerful technique for structure-function studies of integral membrane proteins. The correct insertion of a detergent-solubilized, purified membrane protein into lipid vesicles (proteoliposomes) can facilitate the functional characterization of the protein in a well-defined, chemically pure environment without interference from other membrane-associated components. In addition, the lipid-to-protein ratio can be controlled during reconstitution to generate a high concentration of a particular membrane protein in the proteoliposomes, which are then suitable for both functional assays and crystallization trials. Traditional approaches to two-dimensional crystallization for electron microscopy rely on dialysis methods for the simultaneous reconstitution and crystallization of a membrane protein [Kühlbrandt, W. (1992). Two-dimensional crystallization of membrane proteins. Q. Rev. Biophys.25, 1-49.], yet some systems allow these two steps to be experimentally separated and independently considered. Some examples of integral membrane proteins that have been reconstituted and crystallized in a helical lattice include cytochrome bc1 complex from bovine heart [Akiba, T., et al. (1996). Three-dimensional structure of bovine cytochrome bc(1) complex by electron cryomicroscopy and helical image reconstruction. Nat. Struct. Biol.3, 553-561.], Escherichia coli melibiose permease [Rigaud, J. L., et al. (1997). Bio-beads: An efficient strategy for two-dimensional crystallization of membrane proteins. J. Struct. Biol.118, 226-235.], a bacterial ATP-binding cassette transporter MsbA [Ward, A., et al. (2009). Nucleotide dependent packing differences in helical crystals of the ABC transporter MsbA. J. Struct. Biol.165, 169-175.], and the sarcoplasmic reticulum Ca(2+)-ATPase [Young, H. S., et al. (1997). How to make tubular crystals by reconstitution of detergent-solubilized Ca(2+)-ATPase. Biophys. J.72, 2545-2558.]. The reconstitution and helical crystallization of MsbA and Ca(2+)-ATPase will be the focus of this chapter.
Collapse
Affiliation(s)
- John Paul Glaves
- Department of Biochemistry, School of Molecular and Systems Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
33
|
Miklavc P, Frick M, Wittekindt OH, Haller T, Dietl P. Fusion-activated Ca(2+) entry: an "active zone" of elevated Ca(2+) during the postfusion stage of lamellar body exocytosis in rat type II pneumocytes. PLoS One 2010; 5:e10982. [PMID: 20544027 PMCID: PMC2882333 DOI: 10.1371/journal.pone.0010982] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 05/12/2010] [Indexed: 12/15/2022] Open
Abstract
Background Ca2+ is essential for vesicle fusion with the plasma membrane in virtually all types of regulated exocytoses. However, in contrast to the well-known effects of a high cytoplasmic Ca2+ concentration ([Ca2+]c) in the prefusion phase, the occurrence and significance of Ca2+ signals in the postfusion phase have not been described before. Methodology/Principal Findings We studied isolated rat alveolar type II cells using previously developed imaging techniques. These cells release pulmonary surfactant, a complex of lipids and proteins, from secretory vesicles (lamellar bodies) in an exceptionally slow, Ca2+- and actin-dependent process. Measurements of fusion pore formation by darkfield scattered light intensity decrease or FM 1-43 fluorescence intensity increase were combined with analysis of [Ca2+]c by ratiometric Fura-2 or Fluo-4 fluorescence measurements. We found that the majority of single lamellar body fusion events were followed by a transient (t1/2 of decay = 3.2 s) rise of localized [Ca2+]c originating at the site of lamellar body fusion. [Ca2+]c increase followed with a delay of ∼0.2–0.5 s (method-dependent) and in the majority of cases this signal propagated throughout the cell (at ∼10 µm/s). Removal of Ca2+ from, or addition of Ni2+ to the extracellular solution, strongly inhibited these [Ca2+]c transients, whereas Ca2+ store depletion with thapsigargin had no effect. Actin-GFP fluorescence around fused LBs increased several seconds after the rise of [Ca2+]c. Both effects were reduced by the non-specific Ca2+ channel blocker SKF96365. Conclusions/Significance Fusion-activated Ca2+entry (FACE) is a new mechanism that leads to [Ca2+]c transients at the site of vesicle fusion. Substantial evidence from this and previous studies indicates that fusion-activated Ca2+ entry enhances localized surfactant release from type II cells, but it may also play a role for compensatory endocytosis and other cellular functions.
Collapse
Affiliation(s)
- Pika Miklavc
- Institute of General Physiology, University of Ulm, Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, University of Ulm, Ulm, Germany
- Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Thomas Haller
- Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Paul Dietl
- Institute of General Physiology, University of Ulm, Ulm, Germany
- * E-mail:
| |
Collapse
|
34
|
Zhang J, Xue R, Ong WY, Chen P. Roles of cholesterol in vesicle fusion and motion. Biophys J 2009; 97:1371-80. [PMID: 19720025 DOI: 10.1016/j.bpj.2009.06.025] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 06/18/2009] [Accepted: 06/22/2009] [Indexed: 12/01/2022] Open
Abstract
Although it is well established that exocytosis of neurotransmitters and hormones is highly regulated by numerous secretory proteins, such as SNARE proteins, there is an increasing appreciation of the importance of the chemophysical properties and organization of membrane lipids to various aspects of the exocytotic program. Based on amperometric recordings by carbon fiber microelectrodes, we show that deprivation of membrane cholesterol by methyl-beta-cyclodextrin not only inhibited the extent of membrane depolarization-induced exocytosis, it also adversely affected the kinetics and quantal size of vesicle fusion in neuroendocrine PC12 cells. In addition, total internal fluorescence microscopy studies revealed that cholesterol depletion impaired vesicle docking and trafficking, which are believed to correlate with the dynamics of exocytosis. Furthermore, we found that free cholesterol is able to directly trigger vesicle fusion, albeit with less potency and slower kinetics as compared to membrane depolarization stimulation. These results underscore the versatile roles of cholesterol in facilitating exocytosis.
Collapse
Affiliation(s)
- Jing Zhang
- Division of Bioengineering, Nanyang Technological University, Singapore
| | | | | | | |
Collapse
|
35
|
Morris RJ. Ionic control of the metastable inner leaflet of the plasma membrane: Fusions natural and artefactual. FEBS Lett 2009; 584:1665-9. [PMID: 19913542 DOI: 10.1016/j.febslet.2009.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 11/02/2009] [Accepted: 11/07/2009] [Indexed: 10/20/2022]
Abstract
The phospholipids of the inner and outer leaflets of the plasma membrane face chemically very different environments, and are specialized to serve different needs. While lipids of the outer leaflet are inherently stable in a lamellar (bilayer) phase, the main lipid of the inner layer, phosphatidylethanolamine (PE), does not form a lamellar phase unless evenly mixed with phosphatidylserine (PS(-)). This mixture can be readily perturbed by factors that include an influx of Ca(2+) that chelates the negatively charged PS(-), thereby destabilizing PE. The implications of this metastability of the inner leaflet for vesicular trafficking, and experimentally for the isolation of detergent-resistant membrane domains (DRMs) at physiological temperature, are considered.
Collapse
Affiliation(s)
- Roger J Morris
- Wolfson Centre for Age-Related Disease, Guy's Campus, King's College London, UK.
| |
Collapse
|
36
|
Existence of exocytotic hemifusion intermediates with a lifetime of up to seconds in type II pneumocytes. Biochem J 2009; 424:7-14. [PMID: 19712048 DOI: 10.1042/bj20091094] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Exocytosis proceeds through prefusion stages such as hemifusion, but hemifusion is still an elusive intermediate of unknown duration. Using darkfield and fluorescence microscopy in ATII (alveolar type II) cells containing large secretory vesicles (LBs; lamellar bodies), we show that exocytotic fusion events were accompanied by a mostly biphasic SLID (scattered light intensity decrease) originating from the vesicle border. Correlation with the diffusional behaviour of fluorescence markers for either content or membrane mixing revealed that the onset of the fast second phase of SLID corresponded to fusion pore formation, which was followed by vesicle swelling. In contrast, a slow first phase of SLID preceded pore formation considerably but could still be accompanied by diffusion of farnesylated DsRed, an inner plasma membrane leaflet marker, or Nile Red. We conclude that hemifusion is an exocytotic intermediate that may last for several seconds. SLID is a new, non-invasive approach by which a prefusion phase, including hemifusion, can be continuously recorded and distinguished from fusion pore formation and postfusion vesicle swelling.
Collapse
|
37
|
Ge M, Freed JH. Fusion peptide from influenza hemagglutinin increases membrane surface order: an electron-spin resonance study. Biophys J 2009; 96:4925-34. [PMID: 19527651 DOI: 10.1016/j.bpj.2009.04.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 02/27/2009] [Accepted: 04/06/2009] [Indexed: 11/29/2022] Open
Abstract
A spin-labeling study of interactions of a fusion peptide from the hemagglutinin of the influenza virus, wt20, and a fusion-inactive mutant DeltaG1 with dimyristoylphosphatidylcholine (DMPC) and 1-palmitoyl-2-oleoyl-phosphatdylcholine bilayers was performed. We found that upon binding of wt20, the ordering of headgroups and the ordering of acyl chains near the headgroup increased significantly, in a manner consistent with a cooperative phenomenon. However, changes in the order at the end of the acyl chains were negligible. The ordering effect of wt20 on the headgroup was much stronger at pH 5 than at pH 7. No effect of DeltaG1 binding on the order of bilayers was evident. We also found that 1-palmitoyl-2-hydroxyl phosphatidylcholine, a membrane-fusion inhibitor, decreased the ordering of DMPC headgroups, whereas arachidonic acid, a membrane-fusion promoter, increased the ordering of DMPC headgroups. These results suggest that increases in headgroup ordering may be important for membrane fusion. We propose that upon binding of wt20, which is known to affect only the outer leaflet of the bilayer, this outer leaflet becomes more ordered, and thus more solid-like. Then the coupling between the hardened outer leaflet and the softer inner leaflet generates bending stresses in the bilayer, which tend to increase the negative curvature of the bilayer. We suggest that the increased ordering in the headgroup region enhances dipolar interactions and lowers electrostatic energy, which may provide an energy source for membrane fusion. Possible roles of bending stresses in promoting membrane fusion are discussed.
Collapse
Affiliation(s)
- Mingtao Ge
- National Biomedical Center for Advanced ESR Technology, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 15853, USA
| | | |
Collapse
|
38
|
Cheng SF, Kantchev AB, Chang DK. Fluorescence evidence for a loose self-assembly of the fusion peptide of influenza virus HA2 in the lipid bilayer. Mol Membr Biol 2009; 20:345-51. [PMID: 14578049 DOI: 10.1080/0968708031000138046] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Steady state fluorescence experiments were performed on a 25-mer synthetic peptide incorporated in the phospholipid vesicle to study the role of oligomerization of the fusion peptide in membrane fusion. It was found from fluorescence resonance energy transfer (FRET) that the extent of lipid mixing and the initial mixing rate varied with the fusion peptide concentration in a higher than linear fashion, indicating that the peptide promoted membrane mixing as oligomers. Results of self-quenching of the Rhodamine (Rho) in Rho-labelled peptide incorporated in the phospholipid bilayer indicated that the peptide molecules assembled in the bilayer with an order higher than dimer. The data also revealed that the peptides were not tightly packed in the membrane. Binding affinity measurement monitored by the NBD fluorescence intensity on the fluorophore-labelled fusion peptide supports the notion of self-association of the peptide in the vesicular dispersion. In the sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) experiments, a diffuse band with apparent molecular mass close to a dimeric species of the wild type fusion peptide suggested that the fusion peptides formed loose oligomers under the influence of SDS detergent in the electric field. The result is in contrast to a less fusion-active variant which appears to exhibit less propensity for self-association.
Collapse
Affiliation(s)
- Shu-Fang Cheng
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China 115
| | | | | |
Collapse
|
39
|
Robson Marsden H, Elbers N, Bomans P, Sommerdijk N, Kros A. A Reduced SNARE Model for Membrane Fusion. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200804493] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Robson Marsden H, Elbers N, Bomans P, Sommerdijk N, Kros A. A Reduced SNARE Model for Membrane Fusion. Angew Chem Int Ed Engl 2009; 48:2330-3. [DOI: 10.1002/anie.200804493] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Miklavc P, Wittekindt OH, Felder E, Dietl P. Ca2+-dependent actin coating of lamellar bodies after exocytotic fusion: a prerequisite for content release or kiss-and-run. Ann N Y Acad Sci 2009; 1152:43-52. [PMID: 19161375 DOI: 10.1111/j.1749-6632.2008.03989.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Type II pneumocytes secrete surfactant, a lipoprotein-like substance reducing the surface tension in the lung, by regulated exocytosis of secretory vesicles termed lamellar bodies (LBs). This secretory process is characterized by a protracted postfusion phase in which fusion pores open slowly and may act as mechanical barriers for release. Combining dark-field with fluorescence microscopy, we show in ss-actin green fluorescent protein-transfected pneumocytes that LB fusion with the plasma membrane is followed by actin coating of the fused LB. This is inhibited by cytoplasmic Ca(2+) chelation or the phospholipase D inhibitor C2 ceramide. Actin coating occurs by polymerization of actin monomers, as evidenced by staining with Alexa 568 phalloidin. After actin coating of the fused LB, it either shrinks while releasing surfactant ("kiss-coat-and-release"), remains in this fused state without further action ("kiss-coat-and-wait"), or is retrieved and pushed forward in the cell on top of an actin tail ("kiss-coat-and-run"). In the absence of actin coating, no release or run was observed. These data suggest that actin coating creates a force needed for either extrusion of vesicle contents or retrieval and intracellular propulsion.
Collapse
Affiliation(s)
- Pika Miklavc
- University of Ulm, Institute of General Physiology, Ulm, Germany
| | | | | | | |
Collapse
|
42
|
Daoulas KC, Müller M. Comparison of Simulations of Lipid Membranes with Membranes of Block Copolymers. ADVANCES IN POLYMER SCIENCE 2009. [DOI: 10.1007/978-3-642-10479-4_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
43
|
Chakraborty H, Mondal S, Sarkar M. Membrane fusion: A new function of non steroidal anti-inflammatory drugs. Biophys Chem 2008; 137:28-34. [DOI: 10.1016/j.bpc.2008.06.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 06/16/2008] [Accepted: 06/16/2008] [Indexed: 01/11/2023]
|
44
|
The overall adhesion-spreading process of liposomes on a mercury electrode is controlled by a mixed diffusion and reaction kinetics mechanism. J Solid State Electrochem 2008. [DOI: 10.1007/s10008-008-0639-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Murphy S, Martin S, Parton RG. Lipid droplet-organelle interactions; sharing the fats. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1791:441-7. [PMID: 18708159 DOI: 10.1016/j.bbalip.2008.07.004] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 06/09/2008] [Accepted: 07/18/2008] [Indexed: 12/20/2022]
Abstract
Lipid droplets (LDs) are key cellular organelles involved in lipid storage and mobilisation. While the major signalling cascades and many of the regulators of lipolysis have been identified, the cellular interactions involved in lipid mobilisation and release remain largely undefined. In non-adipocytes, LDs are small, mobile and interact with other cellular compartments. In contrast, adipocytes primarily contain very large, immotile LDs. The striking morphological differences between LDs in adipocytes and non-adipocytes suggest that key differences must exist in the manner in which LDs in different cell types interact with other organelles. Recent studies have highlighted the complexity of LD interactions, which can be both homotypic, with each other, and heterotypic, with other organelles. The molecules involved in these interactions are also now emerging, including Rab proteins, key regulators of membrane traffic, and caveolin, an integral membrane protein providing a functional link between the cell surface and LDs. Here we summarise recent insights into the cell biology of the LD particularly focussing on the homotypic and heterotypic interactions in both adipocytes and non-adipocytes. We speculate that these interactions may involve inter-organelle membrane contact sites or a hemi-fusion type mechanism to facilitate lipid transfer.
Collapse
Affiliation(s)
- Samantha Murphy
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | |
Collapse
|
46
|
Membrane-substrate interface: Phospholipid bilayers at chemically and topographically structured surfaces. Biointerphases 2008; 3:FA22. [DOI: 10.1116/1.2889055] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
47
|
Guillén J, de Almeida RFM, Prieto M, Villalaín J. Structural and dynamic characterization of the interaction of the putative fusion peptide of the S2 SARS-CoV virus protein with lipid membranes. J Phys Chem B 2008; 112:6997-7007. [PMID: 18489147 DOI: 10.1021/jp7118229] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The SARS coronavirus (SARS-CoV) envelope spike (S) glycoprotein, a Class I viral fusion protein, is responsible for the fusion between the membranes of the virus and the target cell. In the present work, we report a study of the binding and interaction with model membranes of a peptide pertaining to the putative fusion domain of SARS-CoV, SARS FP, as well as the structural changes that take place in both the phospholipid and the peptide molecules upon this interaction. From fluorescence and infrared spectroscopies, the peptide ability to induce membrane leakage, aggregation and fusion, as well as its affinity toward specific phospholipids, was assessed. We demonstrate that SARS FP strongly partitions into phospholipid membranes, more specifically with those containing negatively charged phospholipids, increasing the water penetration depth and displaying membrane-activity modulated by the lipid composition of the membrane. Interestingly, peptide organization is different depending if SARS FP is in water or bound to the membrane. These data suggest that SARS FP could be involved in the merging of the viral and target cell membranes by perturbing the membrane outer leaflet phospholipids and specifically interacting with negatively charged phospholipids located in the inner leaflet.
Collapse
Affiliation(s)
- Jaime Guillén
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche-Alicante, Spain
| | | | | | | |
Collapse
|
48
|
Affiliation(s)
- James A McNew
- Department of Biochemistry and Cell Biology, Rice University, 6100 Main Street MS-140, Houston, Texas 77251-1892, USA.
| |
Collapse
|
49
|
Alves M, Bales BL, Peric M. Effect of lysophosphatidylcholine on the surface hydration of phospholipid vesicles. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1778:414-22. [PMID: 18070590 PMCID: PMC2696207 DOI: 10.1016/j.bbamem.2007.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Revised: 11/03/2007] [Accepted: 11/09/2007] [Indexed: 11/21/2022]
Abstract
The interfacial properties of the negatively charged dimyristoyl-phosphatidylglycerol (DMPG) and the zwitterionic dimyristoyl-phosphatidylcholine (DMPC) vesicles mixed with the fusion inhibitor lysomyristoylphosphatidylcholine (LMPC) are investigated by electron paramagnetic resonance (EPR). At 35 degrees C, addition of 20 mol% of LMPC to the DMPG vesicles increases the effective concentration of water in the interfacial layer of DMPG vesicles from 19.3 M to 27.7 M, whereas in the case of mixed DMPC-LMPC vesicle the effective water concentration in the interfacial layer of DMPC vesicles only changes from 15.1 M to 18.4 M. The hydrogen bonding structure in both mixed DMPG-LMPC and mixed DMPC-LMPC vesicles becomes stronger with an increasing fraction of LMPC in the vesicles. The average area per phospholipid decreases in mixed DMPC-LMPC vesicles, while it increases in mixed DMPG-LMPC vesicles as the proportion of LMPC in the vesicle increases. The inhibitory nature of LMPC in both vesicle and biological fusion comes from the increase in surface hydration, as well as from the dynamic cone shape of LMPC in the phospholipid bilayer.
Collapse
Affiliation(s)
- Marilene Alves
- Department of Physics and Astronomy and The Center for Supramolecular Studies, California State University at Northridge, Northridge, CA 91330-8268
| | - Barney L. Bales
- Department of Physics and Astronomy and The Center for Supramolecular Studies, California State University at Northridge, Northridge, CA 91330-8268
| | - Miroslav Peric
- Department of Physics and Astronomy and The Center for Supramolecular Studies, California State University at Northridge, Northridge, CA 91330-8268
| |
Collapse
|
50
|
Guillén J, Moreno MR, Pérez-Berna AJ, Bernabeu A, Villalaín J. Interaction of a peptide from the pre-transmembrane domain of the severe acute respiratory syndrome coronavirus spike protein with phospholipid membranes. J Phys Chem B 2007; 111:13714-25. [PMID: 18020324 DOI: 10.1021/jp073675y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The severe acute respiratory syndrome coronavirus (SARS-CoV) envelope spike (S) glycoprotein, a Class I viral fusion protein, is responsible for the fusion between the membranes of the virus and the target cell. In order to gain new insight into the protein membrane alteration leading to the viral fusion mechanism, a peptide pertaining to the putative pre-transmembrane domain (PTM) of the S glycoprotein has been studied by infrared and fluorescence spectroscopies regarding its structure, its ability to induce membrane leakage, aggregation, and fusion, as well as its affinity toward specific phospholipids. We demonstrate that the SARS-CoV PTM peptide binds to and interacts with phospholipid model membranes, and, at the same time, it adopts different conformations when bound to membranes of different compositions. As it has been already suggested for other viral fusion proteins such as HIV gp41, the region of the SARS-CoV protein where the PTM peptide resides could be involved in the merging of the viral and target cell membranes working synergistically with other membrane-active regions of the SARS-CoV S glycoprotein to heighten the fusion process and therefore might be essential for the assistance and enhancement of the viral and cell fusion process.
Collapse
Affiliation(s)
- Jaime Guillén
- Instituto de Biología Molecular y Celular, Campus de Elche, Universidad Miguel HernAndez, E-03202 Elche-Alicante, Spain
| | | | | | | | | |
Collapse
|