1
|
Liu Y, Yue J, Ren Z, He M, Wang A, Xie J, Li T, Liu G, He X, Ge S, Yuan Y, Yang L. Vitamin C enhances the sensitivity of osteosarcoma to arsenic trioxide via inhibiting aerobic glycolysis. Toxicol Appl Pharmacol 2024; 482:116798. [PMID: 38160894 DOI: 10.1016/j.taap.2023.116798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Osteosarcoma (OS) is a common malignant tumor disease in the department of orthopedics, which is prone to the age of adolescents and children under 20 years old. Arsenic trioxide (ATO), an ancient poison, has been reported to play a critical role in a variety of tumor treatments, including OS. However, due to certain poisonous side effects such as cardiotoxicity and hepatotoxicity, clinical application of ATO has been greatly limited. Here we report that low doses of ATO (1 μM) observably reduced the half-effective inhibitory concentration (IC50) of vitamin C on OS cells. Compared with the treatment alone, the synthetic application of vitamin C (VitC, 800 μM) and ATO (1 μM) significantly further inhibited the proliferation, migration, and invasion of OS cells and promoted cell apoptosis in vitro. Meanwhile, we observed that the combined application of VitC and ATO directly suppresses the aerobic glycolysis of OS cells with the decreased production of pyruvate, lactate, and ATP via inhibiting the expression of the critical glycolytic genes (PGK1, PGM1, and LDHA). Moreover, the combination of VitC (200 mg/kg) and ATO (1 mg/kg) with tail vein injection significantly delayed OS growth and migration of nude mice by inhibiting aerobic glycolysis of OS. Thus, our results demonstrate that VitC effectively increases the sensitivity of OS to low concentrations of ATO via inhibiting aerobic glycolysis to alleviate the toxic side effects of high doses of arsenic trioxide, suggesting that synthetic application of VitC and ATO is a promising approach for the clinical treatment of human OS.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jinrui Yue
- Department of Pharmacy (The University Key Laboratory of Drug Research, Heilongjiang Province), The Second Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zijing Ren
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Mingyu He
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ao Wang
- Department of Pharmacy (The University Key Laboratory of Drug Research, Heilongjiang Province), The Second Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiajie Xie
- Department of Pharmacy (The University Key Laboratory of Drug Research, Heilongjiang Province), The Second Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Tao Li
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Guoxin Liu
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xuting He
- Department of Pharmacy (The University Key Laboratory of Drug Research, Heilongjiang Province), The Second Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Shiyu Ge
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ye Yuan
- Department of Pharmacy (The University Key Laboratory of Drug Research, Heilongjiang Province), The Second Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China; National key laboratory of frigid cardiovascular disease, Harbin, China.
| | - Lei Yang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery of Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China; NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
2
|
Ke M, Yu X, Sun Y, Han S, Wang L, Zhang T, Zeng W, Lu H. Phosphorylated Adapter RNA Export Protein Is Methylated at Lys 381 by an Methyltransferase-like 21C (METTL21C). Int J Mol Sci 2023; 25:145. [PMID: 38203316 PMCID: PMC10779018 DOI: 10.3390/ijms25010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Methyltransferase-like 21C (METTL21C) is a member of the non-histone methyltransferase superfamily, which mainly mediates the methylation of lysine (Lys) residues. The main types of modification are Lys dimethylation and trimethylation. However, at present, most of the studies on METTL21C are focused on humans and mice, and there are few reports on poultry. Therefore, chicken embryo fibroblasts (DF-1) were selected as the object of study. To explore the function of chicken METTL21C (chMETTL21C) in the proliferation of DF-1 cells, flow cytometry and qPCR were used to detect the function of chicken METTL21C in the proliferation of DF-1 cells. The results showed that overexpression of METTL21C blocked the cell cycle in the G1max S phase, thus inhibiting cell proliferation. In addition, based on proteomic analysis, stable overexpression of METTL21C may inhibit the proliferation of DF-1 cells by mediating lysine trimethylation of proliferation-related proteins phosphorylated adapter RNA export protein (PHAX), nucleoside diphosphate kinases (NDPKs), eukaryotic transcription extension factor (eukaryotic translation elongation factor 1A,e EF1A), and inversin (Invs). Through immunoprecipitation (co-IP) and liquid chromatography-mass spectrometry (LC-MS/MS) analysis, METTL21C-mediated PHAX Lys-381 methylation was confirmed to be involved in the regulation of DF-1 cell proliferation. The results of this study provide a reference for analyzing the methylation function of METTL21C and the mechanism of regulating the growth and development of chicken cells.
Collapse
Affiliation(s)
- Meiling Ke
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (M.K.); (X.Y.); (Y.S.); (S.H.); (L.W.); (T.Z.)
| | - Xiaoke Yu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (M.K.); (X.Y.); (Y.S.); (S.H.); (L.W.); (T.Z.)
| | - Yuanyuan Sun
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (M.K.); (X.Y.); (Y.S.); (S.H.); (L.W.); (T.Z.)
| | - Shuai Han
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (M.K.); (X.Y.); (Y.S.); (S.H.); (L.W.); (T.Z.)
| | - Ling Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (M.K.); (X.Y.); (Y.S.); (S.H.); (L.W.); (T.Z.)
- Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Universities of Shaanxi Province, Hanzhong 723001, China
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (M.K.); (X.Y.); (Y.S.); (S.H.); (L.W.); (T.Z.)
- Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Universities of Shaanxi Province, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Hanzhong 723001, China
- Shaanxi Union Research Center of University and Enterprise for Zhenba Bacon, Hanzhong 723001, China
| | - Wenxian Zeng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (M.K.); (X.Y.); (Y.S.); (S.H.); (L.W.); (T.Z.)
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Hanzhong 723001, China
| | - Hongzhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (M.K.); (X.Y.); (Y.S.); (S.H.); (L.W.); (T.Z.)
- Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Universities of Shaanxi Province, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Hanzhong 723001, China
- Shaanxi Union Research Center of University and Enterprise for Zhenba Bacon, Hanzhong 723001, China
| |
Collapse
|
3
|
Zhang J, Zhang J, Fu Z, Zhang Y, Luo Z, Zhang P, Xu Y, Huang C. CHREBP suppresses gastric cancer progression via the cyclin D1-Rb-E2F1 pathway. Cell Death Dis 2022; 8:300. [PMID: 35768405 PMCID: PMC9243070 DOI: 10.1038/s41420-022-01079-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 12/03/2022]
Abstract
Accumulating evidence has demonstrated that carbohydrate response element binding protein (CHREBP) has a crucial function in tumor pathology. In this study, we found CHREBP downregulation in gastric cancer (GC) tissues, and CHREBP was determined to be an independent diagnostic marker of GC. The downregulation of CHREBP promoted cell proliferation and inhibited apoptosis. Moreover, the level of cyclin D1 was significantly correlated with CHREBP expression in GC and paracancerous normal samples. In addition, CHREBP transcriptionally inhibited cyclin D1 expression in GC cells. Tumor suppressor activity of CHREBP could be affected by the upregulation of cyclin D1. In summary, CHREBP was found to be an independent diagnostic marker of GC and to influence GC growth and apoptosis via targeting the cyclin D1-Rb-E2F1 pathway.
Collapse
Affiliation(s)
- Jianming Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Jing Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| | - Zhongmao Fu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Yuan Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Zai Luo
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Pengshan Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Yitian Xu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Chen Huang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China.
| |
Collapse
|
4
|
Xia T, Kumar A, Fulham M, Feng D, Wang Y, Kim EY, Jung Y, Kim J. Fused feature signatures to probe tumour radiogenomics relationships. Sci Rep 2022; 12:2173. [PMID: 35140267 PMCID: PMC8828715 DOI: 10.1038/s41598-022-06085-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 01/14/2022] [Indexed: 11/09/2022] Open
Abstract
Radiogenomics relationships (RRs) aims to identify statistically significant correlations between medical image features and molecular characteristics from analysing tissue samples. Previous radiogenomics studies mainly relied on a single category of image feature extraction techniques (ETs); these are (i) handcrafted ETs that encompass visual imaging characteristics, curated from knowledge of human experts and, (ii) deep ETs that quantify abstract-level imaging characteristics from large data. Prior studies therefore failed to leverage the complementary information that are accessible from fusing the ETs. In this study, we propose a fused feature signature (FFSig): a selection of image features from handcrafted and deep ETs (e.g., transfer learning and fine-tuning of deep learning models). We evaluated the FFSig's ability to better represent RRs compared to individual ET approaches with two public datasets: the first dataset was used to build the FFSig using 89 patients with non-small cell lung cancer (NSCLC) comprising of gene expression data and CT images of the thorax and the upper abdomen for each patient; the second NSCLC dataset comprising of 117 patients with CT images and RNA-Seq data and was used as the validation set. Our results show that our FFSig encoded complementary imaging characteristics of tumours and identified more RRs with a broader range of genes that are related to important biological functions such as tumourigenesis. We suggest that the FFSig has the potential to identify important RRs that may assist cancer diagnosis and treatment in the future.
Collapse
Affiliation(s)
- Tian Xia
- School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Ashnil Kumar
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Michael Fulham
- Department of Molecular Imaging, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Dagan Feng
- School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Yue Wang
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA, 22203, USA
| | - Eun Young Kim
- Department of Radiology, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Younhyun Jung
- School of Computing, Gachon University, Seongnam, Republic of Korea
| | - Jinman Kim
- School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
5
|
Zhu M, Zhang H, Lu F, Wang Z, Wu Y, Chen H, Fan X, Yin Z, Liang F. USP52 inhibits cell proliferation by stabilizing PTEN protein in non-small cell lung cancer. Biosci Rep 2021; 41:BSR20210486. [PMID: 34533198 PMCID: PMC8490862 DOI: 10.1042/bsr20210486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common subtype of lung cancer. Ubiquitination is closely related to the development of lung cancer. However, the biological importance of newly discovered ubiquitin-specific peptidase (USP) 52 (USP52) in NSCLC remained unclear. Here, our findings identify USP52 as a novel tumor suppressor of NSCLC, the low expression of USP52 predicts a poor prognosis for NSCLC patients. The present study demonstrates that USP52 inhibits cancer cell proliferation through down-regulation of cyclin D1 (CCND1) as well as AKT/mTOR signaling pathway inhibition. Meanwhile, USP25 also suppresses NSCLC progression via enhancing phosphatase and tensin homolog (PTEN) stability in cancer cells, which further indicates the significance/importance of USP52 in NSCLC suppression.
Collapse
Affiliation(s)
- Maoshu Zhu
- Research Department, The Fifth Hospital of Xiamen, Xiamen, 361101, China
- Xiang’an Branch, The First Affiliated Hospital of Xiamen University, 3611101, China
| | - Hui Zhang
- Xiang’an Branch, The First Affiliated Hospital of Xiamen University, 3611101, China
- Internal Medicine Department, The Fifth Hospital of Xiamen, Xiamen, 361101, China
| | - Fuhua Lu
- Xiang’an Branch, The First Affiliated Hospital of Xiamen University, 3611101, China
- Internal Medicine Department, The Fifth Hospital of Xiamen, Xiamen, 361101, China
| | - Zhaowei Wang
- Xiang’an Branch, The First Affiliated Hospital of Xiamen University, 3611101, China
- Gynecology Department, The Fifth Hospital of Xiamen, Xiamen, 361101, China
| | - Yulong Wu
- Xiang’an Branch, The First Affiliated Hospital of Xiamen University, 3611101, China
- Surgery Department, The Fifth Hospital of Xiamen, Xiamen, 361101, China
| | - Huoshu Chen
- Xiang’an Branch, The First Affiliated Hospital of Xiamen University, 3611101, China
- Pharmacy Department, The Fifth Hospital of Xiamen, Xiamen, 361101, China
| | - Xin Fan
- Oncology Department, Xiamen Haicang Hospital, Xiamen 361026, China
| | - Zhijiang Yin
- Xiang’an Branch, The First Affiliated Hospital of Xiamen University, 3611101, China
- Surgery Department, The Fifth Hospital of Xiamen, Xiamen, 361101, China
| | - Fulong Liang
- Xiang’an Branch, The First Affiliated Hospital of Xiamen University, 3611101, China
- Internal Medicine Department, The Fifth Hospital of Xiamen, Xiamen, 361101, China
| |
Collapse
|
6
|
Induction of G2/M Cell Cycle Arrest via p38/p21 Waf1/Cip1-Dependent Signaling Pathway Activation by Bavachinin in Non-Small-Cell Lung Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26175161. [PMID: 34500594 PMCID: PMC8434044 DOI: 10.3390/molecules26175161] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 12/22/2022]
Abstract
Lung cancer is the most commonly diagnosed malignant cancer in the world. Non-small-cell lung cancer (NSCLC) is the major category of lung cancer. Although effective therapies have been administered, for improving the NSCLC patient’s survival, the incident rate is still high. Therefore, searching for a good strategy for preventing NSCLC is urgent. Traditional Chinese medicine (TCM) are brilliant materials for cancer chemoprevention, because of their high biological safety and low cost. Bavachinin, which is an active flavanone of Proralea corylifolia L., possesses anti-inflammation, anti-angiogenesis, and anti-cancer activities. The present study’s aim was to evaluate the anti-cancer activity of bavachinin on NSCLC, and its regulating molecular mechanisms. The results exhibited that a dose-dependent decrease in the cell viability and colony formation capacity of three NSCLC cell lines, by bavachinin, were through G2/M cell cycle arrest induction. Meanwhile, the expression of the G2/M cell cycle regulators, such as cyclin B, p-cdc2Y15, p-cdc2T161, and p-wee1, was suppressed. With the dramatic up-regulation of the cyclin-dependent kinase inhibitor, p21Waf1/Cip1, the expression and association of p21Waf1/Cip1 with the cyclin B/cdc2 complex was observed. Silencing the p21Waf1/Cip1 expression significantly rescued bavachinin-induced G2/M cell accumulation. Furthermore, the expression of p21Waf1/Cip1 mRNA was up-regulated in bavachinin-treated NSCLC cells. In addition, MAPK and AKT signaling were activated in bavachinin-added NSCLC cells. Interestingly, bavachinin-induced p21Waf1/Cip1 expression was repressed after restraint p38 MAPK activation. The inhibition of p38 MAPK activation reversed bavachinin-induced p21Waf1/Cip1 mRNA expression and G2/M cell cycle arrest. Collectively, bavachinin-induced G2/M cell cycle arrest was through the p38 MAPK-mediated p21Waf1/Cip1-dependent signaling pathway in the NSCLC cells.
Collapse
|
7
|
Surien O, Ghazali AR, Masre SF. Chemopreventive effects of pterostilbene through p53 and cell cycle in mouse lung of squamous cell carcinoma model. Sci Rep 2021; 11:14862. [PMID: 34290382 PMCID: PMC8295275 DOI: 10.1038/s41598-021-94508-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/13/2021] [Indexed: 12/30/2022] Open
Abstract
Cell proliferation and cell death abnormalities are strongly linked to the development of cancer, including lung cancer. The purpose of this study was to investigate the effect of pterostilbene on cell proliferation and cell death via cell cycle arrest during the transition from G1 to S phase and the p53 pathway. A total of 24 female Balb/C mice were randomly categorized into four groups (n = 6): N-nitroso-tris-chloroethyl urea (NTCU) induced SCC of the lungs, vehicle control, low dose of 10 mg/kg PS + NTCU (PS10), and high dose of 50 mg/kg PS + NTCU (PS50). At week 26, all lungs were harvested for immunohistochemistry and Western blotting analysis. Ki-67 expression is significantly lower, while caspase-3 expression is significantly higher in PS10 and PS50 as compared to the NTCU (p < 0.05). There was a significant decrease in cyclin D1 and cyclin E2 protein expression in PS10 and PS50 when compared to the NTCU (p < 0.05). PS50 significantly increased p53, p21, and p27 protein expression when compared to NTCU (p < 0.05). Pterostilbene is a potential chemoprevention agent for lung SCC as it has the ability to upregulate the p53/p21 pathway, causing cell cycle arrest.
Collapse
Affiliation(s)
- Omchit Surien
- Programme of Biomedical Science, Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Ahmad Rohi Ghazali
- Programme of Biomedical Science, Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Siti Fathiah Masre
- Programme of Biomedical Science, Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia.
| |
Collapse
|
8
|
Schulte JJ, Steinmetz J, Furtado LV, Husain AN, Lingen MW, Cipriani NA. Metastatic HPV-Associated Oropharyngeal Versus Primary Pulmonary Squamous Cell Carcinoma: is p16 Immunostain Useful? Head Neck Pathol 2020; 14:966-973. [PMID: 32350806 PMCID: PMC7669977 DOI: 10.1007/s12105-020-01165-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/22/2020] [Indexed: 12/24/2022]
Abstract
The lungs are a common site of metastasis of head and neck (H&N) squamous cell carcinomas (SCC). This study attempts to define p16 immunoexpression and presence of HPV in primary SCC of the lung and determine their usefulness in discriminating between primary lung SCC and metastasis from HPV-associated oropharyngeal primary. Pathology archives were searched for patients with SCC of the lung without SCC elsewhere. Tissue microarray was constructed and immunohistochemistry performed using anti-p40 and anti-p16 antibodies. All cases were tested for HPV viral proteins E6/E7 by RNA in situ hybridization (ISH) and available positive cases for HPV DNA by polymerase chain reaction (PCR). Eight of 25 (32%) showed cytoplasmic and nuclear expression of p16: 2 (8%) strong and 2 (8%) moderate in > 70% of tumor cells; 1 (4%) strong, 1 (4%) moderate, and 1 (4%) weak in 50-70% of tumor cells; 1 (4%) weak in < 50% of tumor cells. E6/E7 mRNA ISH was negative in all cases. Seven of 8 (87.5%) p16-expressing cases were available for testing by HPV PCR; all were negative for HPV DNA. A retrospective control group of 12 patients with possible SCC metastatic to lung was also identified; high-risk HPV DNA was present in 3, confirming metastasis. p16 expression in lung SCC is not uncommon and may not discriminate between primary pulmonary SCC and metastasis from HPV-associated oropharyngeal primary. Confirmatory HPV testing (high risk HPV DNA or E6/E7 mRNA) is recommended to differentiate metastasis from oropharyngeal primary from two separate primaries.
Collapse
Affiliation(s)
- Jefree J Schulte
- Department of Pathology, The University of Chicago, 5841 S. Maryland Ave , Chicago, IL, 60637, USA.
| | - Jamie Steinmetz
- OSF Little Company of Mary Medical Center, Evergreen Park, IL, USA
| | - Larissa V Furtado
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Aliya N Husain
- Department of Pathology, The University of Chicago, 5841 S. Maryland Ave , Chicago, IL, 60637, USA
| | - Mark W Lingen
- Department of Pathology, The University of Chicago, 5841 S. Maryland Ave , Chicago, IL, 60637, USA
| | - Nicole A Cipriani
- Department of Pathology, The University of Chicago, 5841 S. Maryland Ave , Chicago, IL, 60637, USA
| |
Collapse
|
9
|
Moradi Binabaj M, Bahrami A, Khazaei M, Ryzhikov M, Ferns GA, Avan A, Mahdi Hassanian S. The prognostic value of cyclin D1 expression in the survival of cancer patients: A meta-analysis. Gene 2019; 728:144283. [PMID: 31838249 DOI: 10.1016/j.gene.2019.144283] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/30/2019] [Accepted: 12/05/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND The relationship between the expression of cyclin D1 and cancer prognosis and outcomes in different malignancies has not been fully elucidated. AIMS In the presented meta-analysis, we assessed the association between the expression level of cyclin D1 with overall survival (OS) in several cancers. METHODS Eligible studies were identified using PubMed, EMBase, Scopus, Web of Sciences and Cochrane Library databases. For the prognostic meta-analysis, study-specific hazard ratios (HRs) of tissue cyclin D1 for survival were obtained. Finally we pooled data derived from one hundred and eight studies comprising 19,224 patients with 10 different cancer types. RESULTS In the pooled analysis, high expression of cyclin D1 was significantly related to a poor OS with a pooled HR of 1.11 (95% CI: 1.02-1.20, P = 0.015; random-effects). Sub-group analysis revealed that high expression of cyclin D1 was related to worse OS of head and neck cancers (HR = 2.08, 95% CI: 1.75-2.47; P < 0.001), but not in breast (HR = 1.033, 95% CI: 0.873-1.223, P = 0.702), gastrointestinal (HR = 1.025, 95% CI:0.824-1.275; P = 0.825), bladder (HR = 0.937, CI: 0.844-1.041; P = 0.225) and in lung cancer patients (HR = 1.092, CI: 0.819-1.455; P = 0.549). CONCLUSION Further large, prospective, and well-designed trials are warranted to elucidate the precise clinical importance of cyclin D1 overexpression in the prognosis of cancer patients receiving different treatment regimens.
Collapse
Affiliation(s)
- Maryam Moradi Binabaj
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Majid Khazaei
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mikhail Ryzhikov
- Division of Pulmonary and Critical Care Medicine, Washington University, School of Medicine, Saint Louis, MO, USA
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Ma X, Biswas A, Hammes SR. Paxillin regulated genomic networks in prostate cancer. Steroids 2019; 151:108463. [PMID: 31344408 PMCID: PMC6802295 DOI: 10.1016/j.steroids.2019.108463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/08/2019] [Accepted: 07/15/2019] [Indexed: 01/26/2023]
Abstract
Paxillin is extensively involved in focal adhesion signaling and kinase signaling throughout the plasma membrane and cytoplasm. However, recent studies in prostate cancer suggest that paxillin also plays a critical role in regulating gene expression within the nucleus, serving as a liaison between cytoplasmic and nuclear MAPK and Androgen Receptor (AR) signaling. Here we used RNA-seq to examine the paxillin-regulated transcriptome in several human prostate cancer cell lines. First, we examined paxillin effects on androgen-mediated transcription in control or paxillin-depleted AR-positive LNCaP and C4-2 human prostate cancer cells. In androgen-dependent LNCaP cells, we found over 1000 paxillin-dependent androgen-responsive genes, some of which are involved in endocrine therapy resistance. Most paxillin-dependent AR-mediated genes in LNCaP cells were no longer paxillin-dependent in androgen-sensitive, castration-resistant C4-2 cells, suggesting that castration-resistance may markedly alter paxillin effects on genomic AR signaling. To examine the paxillin-regulated transcriptome in the absence of androgen signaling, we performed RNA-seq in AR-negative PC3 human prostate cancer cells. Paxillin enhanced several pro-proliferative pathways, including the CyclinD/Rb/E2F and DNA replication/repair pathways. Additionally, paxillin suppressed pro-apoptotic genes, including CASP1 and TNFSF10. Quantitative PCR confirmed that these pathways are similarly regulated by paxillin in LNCaP and C4-2 cells. Functional studies showed that, while paxillin stimulated cell proliferation, it had minimum effect on apoptosis. Thus, paxillin appears to be an important transcriptional regulator in prostate cancer, and analysis of its transcriptome might lead to novel approaches toward the diagnosis and treatment of this important disease.
Collapse
Affiliation(s)
- Xiaoting Ma
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester Medical School, Rochester, NY, United States
| | - Anindita Biswas
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, Lansing, MI, United States
| | - Stephen R Hammes
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester Medical School, Rochester, NY, United States.
| |
Collapse
|
11
|
Brcic L, Heidinger M, Sever AZ, Zacharias M, Jakopovic M, Fediuk M, Maier A, Quehenberger F, Seiwerth S, Popper H. Prognostic value of cyclin A2 and B1 expression in lung carcinoids. Pathology 2019; 51:481-486. [PMID: 31230818 DOI: 10.1016/j.pathol.2019.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/18/2019] [Accepted: 03/22/2019] [Indexed: 01/12/2023]
Abstract
Carcinoid classification in the lung is still based on morphological criteria. Although there are many studies investigating the role of Ki-67 proliferation index in the classification of lung neuroendocrine tumours, it is still not used in routine diagnostics. Interestingly, cyclins, which have a crucial role in controlling the cell cycle, have not been thoroughly studied in lung neuroendocrine tumours. The aim of our study was to investigate the correlation of cyclin A2 and B1 expression with prognosis, Ki-67 proliferation index, and carcinoid morphology. A cohort of 134 resected typical and atypical carcinoids was stained with antibodies against Ki-67, cyclin A2 and B1. The positive nuclear reaction was assessed in hot spot areas and expressed as the percentage of tumour cells. Univariate analyses found the highest relative hazard between low and high cyclin A2 expression both with respect to overall survival [hazard ratio (HR)=16; 95% confidence interval (CI) 4.8-51; p=0.0000054], and relapse (HR=8; 95% CI 3.1-21; p=0.00002). In multivariate analysis for overall survival cyclin A2 (HR=10; 95% CI 2.5->100; p=0.0082) and B1 (HR=6.5; 95% CI 1.5-35; p=0.02) remained significant when adjusted for other risk factors, whereas Ki-67 was no longer significant (HR=0.64; 95% CI 0.003-5.5; p=0.65). This suggests that Ki-67 is closer to conventional risk factors for survival than cyclin A2 and B1. Furthermore, the analysis revealed 4 mitoses per 2 mm2 as a more powerful prognostic cut-off than currently accepted 2 mitoses. We have clearly demonstrated that application of cyclin A2 and cyclin B1 might bring additional value regarding the overall and progression-free survival of patients with carcinoids of the lung.
Collapse
Affiliation(s)
- Luka Brcic
- Medical University of Graz, Diagnostic and Research Institute of Pathology, Graz, Austria.
| | - Martin Heidinger
- Medical University of Graz, Diagnostic and Research Institute of Pathology, Graz, Austria
| | - Anita Zenko Sever
- University Hospital Centre Zagreb, Clinical Department of Pathology and Cytology, Zagreb, Croatia
| | - Martin Zacharias
- Medical University of Graz, Diagnostic and Research Institute of Pathology, Graz, Austria
| | - Marko Jakopovic
- University of Zagreb School of Medicine, Department for Respiratory Diseases Jordanovac, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Melanie Fediuk
- Medical University of Graz, Department of Surgery, Division of Thoracic and Hyperbaric Surgery, Graz, Austria
| | - Alfred Maier
- Medical University of Graz, Department of Surgery, Division of Thoracic and Hyperbaric Surgery, Graz, Austria
| | - Franz Quehenberger
- Medical University of Graz, Institute for Medical Informatics, Statistics and Documentation, Graz, Austria
| | - Sven Seiwerth
- University of Zagreb School of Medicine, Institute of Pathology, Zagreb, Croatia
| | - Helmut Popper
- Medical University of Graz, Diagnostic and Research Institute of Pathology, Graz, Austria
| |
Collapse
|
12
|
Teshima M, Tokita K, Ryo E, Matsumoto F, Kondo M, Ikegami Y, Shinomiya H, Otsuki N, Hiraoka N, Nibu KI, Yoshimoto S, Mori T. Clinical impact of a cytological screening system using cyclin D1 immunostaining and genomic analysis for the diagnosis of thyroid nodules. BMC Cancer 2019; 19:245. [PMID: 30885146 PMCID: PMC6423761 DOI: 10.1186/s12885-019-5452-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 03/12/2019] [Indexed: 11/10/2022] Open
Abstract
Background Fine-needle aspiration (FNA) is the most reliable method for diagnosing thyroid nodules; however, some features such as atypia of undetermined significance or follicular lesion of undetermined significance can confound efforts to identify malignancies. Similar to BRAF, cyclin D1 may be a strong marker of cell proliferation. Methods One hundred two patients with thyroidal nodule were enrolled in this prospective study. Expression of cyclin D1 in thyroid nodules was determined by immunohistochemistry using both surgical specimens and their cytological specimens. The identification of the optimal cut off points for the diagnosis of malignancy were evaluated using the receiver operating characteristic (ROC) curves and the assessment of the area under the ROC curve (AUC). The specificity, sensitivity, positive predictive value (PPV) of markers were evaluated from crosstabs based on cut off points and significance were calculated. We also analyzed genetic variants by target NGS for thyroid nodule samples. Results The positive predictive value (PPV) and median stain ratio (MSR) of cyclin D1 nuclear staining was determined in papillary thyroid carcinoma (PPV = 91.5%, MSR = 48.5%), follicular adenoma (PPV = 66.7%, MSR = 13.1%), and adenomatous goiter and inflammation controls (MSR = 3.4%). In FNA samples, a threshold of 46% of immunolabelled cells allows to discriminate malignant lesions from benign ones (P < 0.0001), with 81% sensitivity and 100% specificity. A 46% cutoff value for positive cyclin D1 immunostaining in thyroid cells demonstrated 81% sensitivity and 100% specificity. In surgical specimens, ROC curve analysis showed a 5.8% cyclin D1 immunostaining score predicted thyroid neoplasms at 94.4% sensitivity and 92.3% specificity (P = 0.003), while a 15.7% score predicted malignancy at 86.4% sensitivity and 80.5% specificity (P < 0.0001). Finally, three tested clinico-pathological variables (extra thyroidal extension, intraglandular metastasis, and lymph node metastasis) were significant predictors of cyclin D1 immunostaining (P < 0.001). Conclusion Our cytological cyclin D1 screening system provides a simple, accurate, and convenient diagnostic method in precision medicine enabling ready determination of personalized treatment strategies for patients by next generation sequencing using cytological sample. Electronic supplementary material The online version of this article (10.1186/s12885-019-5452-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Masanori Teshima
- Department of Pathology, National Cancer Center Hospital, Tokyo, Japan.,Department of Head and Neck Surgery, National Cancer Center Hospital, Tokyo, Japan.,Department of Otolaryngology - Head and Neck Surgery, Kobe University, School of Medicine, Kobe, Japan
| | - Kazuya Tokita
- Department of Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Eijitsu Ryo
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Fumihiko Matsumoto
- Department of Head and Neck Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Madoka Kondo
- Department of Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Yota Ikegami
- Department of Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Hirotaka Shinomiya
- Department of Otolaryngology - Head and Neck Surgery, Kobe University, School of Medicine, Kobe, Japan
| | - Naoki Otsuki
- Department of Otolaryngology - Head and Neck Surgery, Kobe University, School of Medicine, Kobe, Japan
| | - Nobuyoshi Hiraoka
- Department of Pathology, National Cancer Center Hospital, Tokyo, Japan.,Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Ken-Ichi Nibu
- Department of Otolaryngology - Head and Neck Surgery, Kobe University, School of Medicine, Kobe, Japan
| | - Seiichi Yoshimoto
- Department of Head and Neck Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Taisuke Mori
- Department of Pathology, National Cancer Center Hospital, Tokyo, Japan. .,Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
13
|
Tong Y, Song Y, Deng S. Combined analysis and validation for DNA methylation and gene expression profiles associated with prostate cancer. Cancer Cell Int 2019; 19:50. [PMID: 30867653 PMCID: PMC6399908 DOI: 10.1186/s12935-019-0753-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 02/08/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Prostate cancer (PCa) is a malignancy cause of cancer deaths and frequently diagnosed in male. This study aimed to identify tumor suppressor genes, hub genes and their pathways by combined bioinformatics analysis. METHODS A combined analysis method was used for two types of microarray datasets (DNA methylation and gene expression profiles) from the Gene Expression Omnibus (GEO). Differentially methylated genes (DMGs) were identified by the R package minfi and differentially expressed genes (DEGs) were screened out via the R package limma. A total of 4451 DMGs and 1509 DEGs, identified with nine overlaps between DMGs, DEGs and tumor suppressor genes, were screened for candidate tumor suppressor genes. All these nine candidate tumor suppressor genes were validated by TCGA (The Cancer Genome Atlas) database and Oncomine database. And then, the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses were performed by DAVID (Database for Annotation, Visualization and Integrated Discovery) database. Protein-protein interaction (PPI) network was constructed by STRING and visualized in Cytoscape. At last, Kaplan-Meier analysis was performed to validate these genes. RESULTS The candidate tumor suppressor genes were IKZF1, PPM1A, FBP1, SMCHD1, ALPL, CASP5, PYHIN1, DAPK1 and CASP8. By validation in TCGA database, PPM1A, DAPK1, FBP1, PYHIN1, ALPL and SMCHD1 were significant. The hub genes were FGFR1, FGF13 and CCND1. These hub genes were identified from the PPI network, and sub-networks revealed by these genes were involved in significant pathways. CONCLUSION In summary, the study indicated that the combined analysis for identifying target genes with PCa by bioinformatics tools promote our understanding of the molecular mechanisms and underlying the development of PCa. And the hub genes might serve as molecular targets and diagnostic biomarkers for precise diagnosis and treatment of PCa.
Collapse
Affiliation(s)
- Yanqiu Tong
- Laboratory of Forensic Medicine and Biomedical Informatics, Chongqing Medical University, Chongqing, 400016 People’s Republic of China
- School of Humanity, Chongqing Jiaotong University, Chongqing, 400074 People’s Republic of China
| | - Yang Song
- Department of Device, Chongqing Medical University, Chongqing, 400016 People’s Republic of China
| | - Shixiong Deng
- Laboratory of Forensic Medicine and Biomedical Informatics, Chongqing Medical University, Chongqing, 400016 People’s Republic of China
| |
Collapse
|
14
|
Bhateja P, Chiu M, Wildey G, Lipka MB, Fu P, Yang MCL, Ardeshir-Larijani F, Sharma N, Dowlati A. Retinoblastoma mutation predicts poor outcomes in advanced non small cell lung cancer. Cancer Med 2019; 8:1459-1466. [PMID: 30773851 PMCID: PMC6488103 DOI: 10.1002/cam4.2023] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/07/2019] [Accepted: 01/16/2019] [Indexed: 12/18/2022] Open
Abstract
The retinoblastoma gene (RB1) encodes the retinoblastoma (RB) pocket protein that plays an important role in cell cycle progression. Here we determine the frequency and prognostic significance of RB1 mutation in non small cell lung cancer (NSCLC), restricting inclusion to Stage III and IV patients with linked genomic and clinical data. The primary outcome was median overall survival (OS). We identified RB1 mutation in 8.2% of NSCLC patients. The median OS for wild-type (wt) RB1 was 28.3 months vs 8.3 months for mutant RB1 (Hazard Ratio = 2.59, P = 0.002). Of special interest, RB1 mutation also correlated with lack of response to immunotherapy. Our study focused on RB1 mutation in locally advanced and advanced non small cell lung cancer to better facilitate comparisons with small cell lung cancer (SCLC). In our SCLC cohort, RB1 mutation was identified in 75% of patients and wt RB1 was associated with significantly shorter OS (P = 0.002). The different outcomes of RB1 mutation observed among lung cancer subtypes suggest a more complicated mechanism than simple regulation of cell cycle or response to chemotherapy.
Collapse
Affiliation(s)
- Priyanka Bhateja
- Department of Hematology and Oncology, Case Western Reserve University, University Hospitals Seidman Cancer Center, Cleveland, Ohio
| | - Michelle Chiu
- School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Gary Wildey
- School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Mary Beth Lipka
- Department of Hematology and Oncology, University Hospitals Seidman Cancer Center, Cleveland, Ohio
| | - Pingfu Fu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Michael Chiu Lee Yang
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | | | - Neelesh Sharma
- Department of Biomedical Research, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Afshin Dowlati
- Department of Hematology and Oncology, Case Western Reserve University, University Hospitals Seidman Cancer Center, Cleveland, Ohio
| |
Collapse
|
15
|
Sato M. Specific copy number changes as potential predictive markers for adjuvant chemotherapy in non-small cell lung cancer. Transl Lung Cancer Res 2019; 7:S346-S348. [PMID: 30705851 DOI: 10.21037/tlcr.2018.11.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mitsuo Sato
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
16
|
Zhong S, Zhu J, Li Y, Wang X, Yu J, Ji D, Wu C. Butylene fipronil induces apoptosis in PC12 murine nervous cells via activation of p16-CDK4/6-cyclin D1 and mitochondrial apoptotic pathway. J Biochem Mol Toxicol 2018; 33:e22264. [PMID: 30597675 DOI: 10.1002/jbt.22264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/09/2018] [Accepted: 10/24/2018] [Indexed: 12/20/2022]
Abstract
Butylene fipronil (BFPN) is a phenylpyrazole insecticide, acting at the γ-aminobutyric acid (GABA) receptor. Here, we show that BFPN inducedcytotoxicity in PC12 murinenervous cells, which lacks GABA receptor. Treatment with BFPN for 48 hours significantly enhanced G0/G1 arrest and induced apoptosis. BFPN decreased the expression of cyclin-dependent kinase (CDK4 and CDK6) and increased P16 and cyclin D1. Simultaneously, Bcl-2 protein was declined while Bax and cytochrome c were significantly enhanced in BFPN-treated groups. The apoptotic enzymes caspase-8, -9, and -3 were also activated by BFPN. Furthermore, treatment with BFPN significantly stimulated reactive oxygen species (ROS) generation, and pretreatment with antioxidant diphenyleneiodonium, substantially reduced cell death. Overall, these results suggest that BFPN is effective to induce G0/G1-phase arrest and apoptosis in PC12 murine nervous cell. Stimulating ROS generation and activation of P16-CDK4/6-cyclin D1 and mitochondrial apoptotic pathway may participate in the cytotoxicity of BFPN.
Collapse
Affiliation(s)
- Shi Zhong
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianxun Zhu
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yougui Li
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xinquan Wang
- Key Laboratory of Detection and Control for Pesticide Residues, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiaqi Yu
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dongfeng Ji
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Chongming Wu
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Tian L, Li Y, Chang R, Zhang P, Zhang J, Huo L. Lentiviral vector-mediated IL-9 overexpression stimulates cell proliferation by targeting c-myc and cyclin D1 in colitis-associated cancer. Oncol Lett 2018; 17:175-182. [PMID: 30655753 PMCID: PMC6313219 DOI: 10.3892/ol.2018.9567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 09/11/2018] [Indexed: 01/06/2023] Open
Abstract
Colorectal cancer caused by inflammatory bowel disease is referred as colitis-associated cancer (CAC). The mechanism underling CAC is not fully understood. In the present study, the role of interleukin-9 (IL-9) in CAC was examined. The current study included 12 colorectal tissue specimens and matched adjacent tissues from CAC. The expression of IL-9 protein was examined using immunohistochemical staining. The expression of IL-9 in cancer tissues was markedly higher compared with that in adjacent tissues. Furthermore, IL-9 gene overexpression lentiviral vectors were constructed to overexpress IL-9 in RKO and Caco-2 cell lines. The role of IL-9 in cell proliferation was investigated using a Cell Counting Kit-8 assay, and MYC proto-oncogene bHLH transcription factor (c-Myc) and cyclinD1 expression levels were detected by reverse transcription-quantitative polymerase chain reaction. Notably, IL-9 overexpression promoted the proliferation of colonic epithelial cells by upregulating of the expression of c-Myc and cyclinD1. In conclusion, the present results suggested that IL-9 may exhibit an essential role in the pathogenesis of CAC, and IL-9 promotes the proliferation of colonic epithelial RKO and Caco2 cells, partially via the upregulation of c-Myc and cyclinD1 expression.
Collapse
Affiliation(s)
- Linglin Tian
- Department of Gastroenterology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yuan Li
- Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Ruqi Chang
- Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Peng Zhang
- Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jian Zhang
- Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Lijuan Huo
- Department of Gastroenterology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
18
|
Helbig D, Ihle MA, Pütz K, Tantcheva-Poor I, Mauch C, Büttner R, Quaas A. Oncogene and therapeutic target analyses in atypical fibroxanthomas and pleomorphic dermal sarcomas. Oncotarget 2017; 7:21763-74. [PMID: 26943575 PMCID: PMC5008321 DOI: 10.18632/oncotarget.7845] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/21/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Until now, almost nothing is known about the tumorigenesis of atypical fibroxanthoma (AFX) and pleomorphic dermal sarcoma (PDS). Our hypothesis is that AFX is the non-infiltrating precursor lesion of PDS. MATERIALS AND METHODS We performed the world-wide most comprehensive immunohistochemical and mutational analysis in well-defined AFX (n=5) and PDS (n=5). RESULTS In NGS-based mutation analyses of selected regions by a 17 hotspot gene panel of 102 amplicons we could detect TP53 mutations in all PDS as well as in the only analyzed AFX and PDS of the same patient. Besides, we detected mutations in the CDKN2A, HRAS, KNSTRN and PIK3CA genes.Performing immunohistochemistry for CTNNB1, KIT, CDK4, c-MYC, CTLA-4, CCND1, EGFR, EPCAM, ERBB2, IMP3, INI-1, MKI67, MDM2, MET, p40, TP53, PD-L1 and SOX2 overexpression of TP53, CCND1 and CDK4 was seen in AFX as well as in PDS. IMP3 was upregulated in 2 AFX (weak staining) and 4 PDS (strong staining).FISH analyses for the genes FGFR1, FGFR2 and FGFR3 revealed negative results in all tumors. CONCLUSIONS UV-induced TP53 mutations as well as CCND1/CDK4 changes seem to play essential roles in tumorigenesis of PDS. Furthermore, we found some more interesting mutated genes in other oncogene pathways (activating mutations of HRAS and PIK3CA). All AFX and PDS investigated immunohistochemically presented with similar oncogene expression profiles (TP53, CCND1, CDK4 overexpression) and the single case with an AFX and PDS showed complete identical TP53 and PIK3CA mutation profiles in both tumors. This reinforces our hypothesis that AFX is the non-infiltrating precursor lesion of PDS.
Collapse
Affiliation(s)
- Doris Helbig
- Department of Dermatology, University Hospital Cologne, Cologne, Germany
| | | | - Katharina Pütz
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | | | - Cornelia Mauch
- Department of Dermatology, University Hospital Cologne, Cologne, Germany
| | - Reinhard Büttner
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Alexander Quaas
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
19
|
Shan YS, Hsu HP, Lai MD, Hung YH, Wang CY, Yen MC, Chen YL. Cyclin D1 overexpression correlates with poor tumor differentiation and prognosis in gastric cancer. Oncol Lett 2017; 14:4517-4526. [PMID: 28943959 PMCID: PMC5594254 DOI: 10.3892/ol.2017.6736] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 04/24/2017] [Indexed: 12/17/2022] Open
Abstract
Overexpression of cyclin D is associated with the molecular tumorigenesis of gastric cancer. The purpose of the present study was to investigate the expression of cyclin D in human gastric cancer and to determine the potential correlations between cyclin D expression and clinicopathological characteristics of specific histological types, as well as its prognostic significance. In the present study, the expression of the cyclin D1 (CCND1), cyclin D2 (CCND2) and cyclin D3 (CCND3) genes in gastric cancer patients was explored using the Oncomine database, and their correlation with overall survival (OS) and progression-free survival (PFS) was evaluated using Kaplan-Meier analysis. The prognostic significance of CCND1 protein expression was evaluated by western blot analysis of 32 matched specimens of gastric adenocarcinomas and normal tissues obtained from patients treated at the National Cheng Kung University Hospital (Tainan, Taiwan). Analysis of the Oncomine cancer microarray database revealed that CCND1 gene expression was significantly increased in gastric intestinal-type adenocarcinoma, while CCND2 was significantly increased in diffuse gastric adenocarcinoma, gastric intestinal-type adenocarcinoma and gastric mixed adenocarcinoma. Kaplan-Meier analysis indicated that overexpression of CCND1 was associated with reduced OS and PFS. In addition, overexpression of CCND1 and downregulation of CCND2 were significantly correlated with receptor tyrosine-protein kinase erb-2-negative tumors and poor differentiation. The ratio of relative CCND1 expression (expressed as the CCND1/β-actin ratio) in tumor tissues compared with that in normal tissues was correlated with poor differentiation (P=0.0018). In summary, CCND1 overexpression is associated with shorter survival in patients with gastric cancer and with poorly differentiated tumors.
Collapse
Affiliation(s)
- Yan-Shen Shan
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Hui-Ping Hsu
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Ming-Derg Lai
- Department of Biochemistry and Molecular Biology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Yu-Hsuan Hung
- Department of Biochemistry and Molecular Biology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Chih-Yang Wang
- Department of Biochemistry and Molecular Biology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Meng-Chi Yen
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Yi-Ling Chen
- Department of Senior Citizen Service Management, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan, R.O.C.,Senior Citizen Development Center, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan, R.O.C
| |
Collapse
|
20
|
Harada M, Sakai S, Ohhata T, Kitagawa K, Mikamo M, Nishimoto K, Uchida C, Niida H, Kotake Y, Sugimura H, Suda T, Kitagawa M. Homeobox Transcription Factor NKX2-1 Promotes Cyclin D1 Transcription in Lung Adenocarcinomas. Mol Cancer Res 2017. [PMID: 28634225 DOI: 10.1158/1541-7786.mcr-17-0114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The known oncogene cyclin D1 (CCND1) participates in progression of the cell cycle from G1 to S-phase. Expression of cyclin D1 is frequently promoted in multiple human cancers including non-small cell lung cancer (NSCLC). However, a relationship between cyclin D1 expression and the prognosis of NSCLC has not been confirmed. NKX2-1 is a homeobox transcription factor involved in pulmonary development as a differentiation-promoting factor. In NSCLC, it acts as a metastasis suppressor and correlates with a good prognosis. Here, NKX2-1-binding motifs were identified in the cyclin D1 promoter, but it has not been clarified whether NKX2-1 is involved in cyclin D1 expression in NSCLC. To shed light on this issue, endogenous NKX2-1 was depleted in NSCLC cell lines, which resulted in decreased cyclin D1 mRNA and protein. In contrast, forced overexpression of NKX2-1 increased cyclin D1 levels. Moreover, NKX2-1 directly bound to the cyclin D1 promoter and enhanced its activity. Finally, using human NSCLC clinical specimens, it was determined that both NKX2-1 protein and mRNA were significantly correlated with cyclin D1 expression status in adenocarcinomas. These results indicate that NKX2-1 directly and positively regulates transcription of cyclin D1 Finally, expression of NKX2-1, but not cyclin D1, was significantly associated with metastatic incidence as an independent good prognostic factor of adenocarcinoma.Implications: NKX2-1-expressing adenocarcinomas, whereas NKX2-1 promoted cyclin D1 expression, may show good prognosis features by the metastasis inhibition potency of NKX2-1 regardless cyclin D1 expression. Mol Cancer Res; 15(10); 1388-97. ©2017 AACR.
Collapse
Affiliation(s)
- Masanori Harada
- Department of Molecular Biology, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Shizuoka, Japan.,Second Department of Internal Medicine, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Shizuoka, Japan
| | - Satoshi Sakai
- Department of Molecular Biology, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Shizuoka, Japan
| | - Tatsuya Ohhata
- Department of Molecular Biology, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Shizuoka, Japan
| | - Kyoko Kitagawa
- Department of Molecular Biology, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Shizuoka, Japan
| | - Masashi Mikamo
- Department of Molecular Biology, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Shizuoka, Japan.,Second Department of Internal Medicine, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Shizuoka, Japan
| | - Koji Nishimoto
- Department of Molecular Biology, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Shizuoka, Japan.,Second Department of Internal Medicine, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Shizuoka, Japan
| | - Chiharu Uchida
- Advanced Research Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Shizuoka, Japan
| | - Hiroyuki Niida
- Department of Molecular Biology, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Shizuoka, Japan
| | - Yojiro Kotake
- Department of Molecular Biology, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Shizuoka, Japan.,Department of Biological and Environmental Chemistry, Faculty of Humanity-Oriented Science and Engineering, Kinki University, Fukuoka, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Shizuoka, Japan
| | - Takafumi Suda
- Second Department of Internal Medicine, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Shizuoka, Japan
| | - Masatoshi Kitagawa
- Department of Molecular Biology, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Shizuoka, Japan. .,Laboratory Animal Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
21
|
El-Gendi S, Abu-Sheasha G. Ki-67 and Cell Cycle Regulators p53, p63 and cyclinD1 as Prognostic Markers for Recurrence/ Progression of Bladder Urothelial Carcinoma. Pathol Oncol Res 2017; 24:309-322. [DOI: 10.1007/s12253-017-0250-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/03/2017] [Indexed: 11/27/2022]
|
22
|
Li H, Jiang X, Zhu S, Sui L. Identification of personalized dysregulated pathways in hepatocellular carcinoma. Pathol Res Pract 2017; 213:327-332. [PMID: 28215647 DOI: 10.1016/j.prp.2017.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 01/11/2017] [Accepted: 01/19/2017] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is the most common liver malignancy, and ranks the fifth most prevalent malignant tumors worldwide. In general, HCC are detected until the disease is at an advanced stage and may miss the best chance for treatment. Thus, elucidating the molecular mechanisms is critical to clinical diagnosis and treatment for HCC. The purpose of this study was to identify dysregulated pathways of great potential functional relevance in the progression of HCC. MATERIALS AND METHODS Microarray data of 72 pairs of tumor and matched non-tumor surrounding tissues of HCC were transformed to gene expression data. Differentially expressed genes (DEG) between patients and normal controls were identified using Linear Models for Microarray Analysis. Personalized dysregulated pathways were identified using individualized pathway aberrance score module. RESULTS 169 differentially expressed genes (DEG) were obtained with |logFC|≥1.5 and P≤0.01. 749 dysregulated pathways were obtained with P≤0.01 in pathway statistics, and there were 93 DEG overlapped in the dysregulated pathways. After performing normal distribution analysis, 302 pathways with the aberrance probability≥0.5 were identified. By ranking pathway with aberrance probability, the top 20 pathways were obtained. Only three DEGs (TUBA1C, TPR, CDC20) were involved in the top 20 pathways. CONCLUSION These personalized dysregulated pathways and overlapped genes may give new insights into the underlying biological mechanisms in the progression of HCC. Particular attention can be focused on them for further research.
Collapse
Affiliation(s)
- Hong Li
- Department of Oncology, Weihai Central Hospital, Weihai, 264400, Shandong, PR China
| | - Xiumei Jiang
- Department of Oncology, Weihai Central Hospital, Weihai, 264400, Shandong, PR China
| | - Shengjie Zhu
- Department of Oncology, Weihai Central Hospital, Weihai, 264400, Shandong, PR China
| | - Lihong Sui
- Department of Oncology, Weihai Central Hospital, Weihai, 264400, Shandong, PR China.
| |
Collapse
|
23
|
Yin Y, Hong S, Yu S, Huang Y, Chen S, Liu Y, Zhang Q, Li Y, Xiao H. MiR-195 Inhibits Tumor Growth and Metastasis in Papillary Thyroid Carcinoma Cell Lines by Targeting CCND1 and FGF2. Int J Endocrinol 2017; 2017:6180425. [PMID: 28740507 PMCID: PMC5504932 DOI: 10.1155/2017/6180425] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/23/2017] [Accepted: 05/02/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND MicroRNA (miRNA) dysregulation was commonly seen in papillary thyroid carcinoma (PTC), and miR-195 was verified to be downregulated in PTC by the large data set analysis from The Cancer Genome Atlas (TCGA). Our study aimed to explore the biological functions and the underlying molecular mechanisms of miR-195 in PTC. METHODS The relative expression of miR-195 and its target genes were assessed by quantitative RT-PCR assay in 38 pairs of PTC and the adjacent thyroid tissues. Assays were performed to evaluate the effect of miR-195 on the proliferation, migration, and invasion in PTC cell lines. Moreover, we searched for targets of miR-195 and explored the possible molecular pathway of miR-195 in PTC. RESULTS We found that miR-195 was downregulated in PTC cell lines and tissues. Overexpression of miR-195 significantly inhibited cell proliferation, migration, and invasion in K1 and BCPAP cell lines. CCND1 and FGF2, which had inverse correlations with miR-195 in clinical specimens, were found to be the direct targets of miR-195. Furthermore, miR-195 might be involved in PTC tumorigenesis by suppressing the Wnt/β-catenin signaling pathway. CONCLUSIONS These results highlight an important role of miR-195 in the initiation and progression of PTC and implicate the potential application of miR-195 in PTC target therapy.
Collapse
Affiliation(s)
- Yali Yin
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Shubin Hong
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Shuang Yu
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Yanrui Huang
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Shuwei Chen
- Department of Head and Neck Surgery, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Yujie Liu
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Quan Zhang
- Department of Head and Neck Surgery, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Yanbing Li
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Haipeng Xiao
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
- *Haipeng Xiao:
| |
Collapse
|
24
|
Kumari S, Puneet, Prasad SB, Yadav SS, Kumar M, Khanna A, Dixit VK, Nath G, Singh S, Narayan G. Cyclin D1 and cyclin E2 are differentially expressed in gastric cancer. Med Oncol 2016; 33:40. [DOI: 10.1007/s12032-016-0754-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 03/15/2016] [Indexed: 01/01/2023]
|
25
|
Maia LBL, Breginski FSC, Cavalcanti TCS, de Souza RLR, Roxo VMS, Ribeiro EMSF. No difference in CCND1 gene expression between breast cancer patients with and without lymph node metastasis in a Southern Brazilian sample. Clin Exp Med 2015; 16:593-598. [PMID: 26409837 DOI: 10.1007/s10238-015-0392-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/12/2015] [Indexed: 12/14/2022]
Abstract
The Cyclin D1 protein has been extensively studied over the last decades, for its various roles in physiological processes, both in normal and cancer cells. Gene amplifications and overexpression of CCND1 are frequently reported in several types of cancers, including breast carcinomas, showing the increasing relevance of Cyclin D1 in tumorigenesis. Little is known about the role of this protein in the metastatic process, and the main objective of this study was to evaluate the importance of the CCND1 as a potential marker of tumor progression in breast carcinomas, in a sample collected in Southern Brazil. We studied 41 samples of formalin-fixed paraffin-embedded tissue sections from invasive ductal breast carcinomas subdivided into metastatic (n = 19) and non-metastatic (n = 22) tumors. Gene expression analysis was performed through Quantitative Real-Time PCR and immunohistochemistry. In spite of the higher expression levels of CCND1 mRNA and protein in tumors when compared with the control samples, no differences were observed between the metastatic and non-metastatic groups, suggesting that, in these samples, the expression of CCND1 has no significant influence on the metastatic process. Further studies must be performed in an attempt to clarify the diagnostic and prognostic value of Cyclin D1 in breast cancers, as well as the mechanisms that trigger its overexpression in tumors.
Collapse
Affiliation(s)
- L B L Maia
- Departamento de Genética, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, Curitiba, Paraná, Brazil
| | - F S C Breginski
- Citolab- Laboratório de Citopatologia e Histopatologia, Batel, Curitiba, Paraná, Brazil
| | - T C S Cavalcanti
- Citolab- Laboratório de Citopatologia e Histopatologia, Batel, Curitiba, Paraná, Brazil
| | - R L R de Souza
- Departamento de Genética, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, Curitiba, Paraná, Brazil
| | - V M S Roxo
- Departamento de Genética, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, Curitiba, Paraná, Brazil
| | - E M S F Ribeiro
- Departamento de Genética, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, Curitiba, Paraná, Brazil.
| |
Collapse
|
26
|
Xie J, Zhang X. The Impact of Genomic Profiling for Novel Cancer Therapy--Recent Progress in Non-Small Cell Lung Cancer. J Genet Genomics 2015; 43:3-10. [PMID: 26842989 DOI: 10.1016/j.jgg.2015.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 09/02/2015] [Accepted: 09/07/2015] [Indexed: 12/31/2022]
Abstract
There is high expectation for significant improvements in cancer patient care after completion of the human genome project in 2003. Through pains-taking analyses of genomic profiles in cancer patients, a number of targetable gene alterations have been discovered, with some leading to novel therapies, such as activating mutations of EGFR, BRAF and ALK gene fusions. As a result, clinical management of cancer through targeted therapy has finally become a reality for a subset of cancers, such as lung adenocarcinomas and melanomas. In this review, we summarize how gene mutation discovery leads to new treatment strategies using non-small cell lung cancer (NSCLC) as an example. We also discuss possible future implications of cancer genome analyses.
Collapse
Affiliation(s)
- Jingwu Xie
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; The Simon Cancer Center and The Wells Center for Pediatrics Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Xiaoli Zhang
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; The Simon Cancer Center and The Wells Center for Pediatrics Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
27
|
NBM-T-BBX-OS01, Semisynthesized from Osthole, Induced G1 Growth Arrest through HDAC6 Inhibition in Lung Cancer Cells. Molecules 2015; 20:8000-19. [PMID: 25946558 PMCID: PMC6272357 DOI: 10.3390/molecules20058000] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 01/15/2023] Open
Abstract
Disrupting lung tumor growth via histone deacetylases (HDACs) inhibition is a strategy for cancer therapy or prevention. Targeting HDAC6 may disturb the maturation of heat shock protein 90 (Hsp90) mediated cell cycle regulation. In this study, we demonstrated the effects of semisynthesized NBM-T-BBX-OS01 (TBBX) from osthole on HDAC6-mediated growth arrest in lung cancer cells. The results exhibited that the anti-proliferative activity of TBBX in numerous lung cancer cells was more potent than suberoylanilide hydroxamic acid (SAHA), a clinically approved pan-HDAC inhibitor, and the growth inhibitory effect has been mediated through G1 growth arrest. Furthermore, the protein levels of cyclin D1, CDK2 and CDK4 were reduced while cyclin E and CDK inhibitor, p21Waf1/Cip1, were up-regulated in TBBX-treated H1299 cells. The results also displayed that TBBX inhibited HDAC6 activity via down-regulation HDAC6 protein expression. TBBX induced Hsp90 hyper-acetylation and led to the disruption of cyclin D1/Hsp90 and CDK4/Hsp90 association following the degradation of cyclin D1 and CDK4 proteins through proteasome. Ectopic expression of HDAC6 rescued TBBX-induced G1 arrest in H1299 cells. Conclusively, the data suggested that TBBX induced G1 growth arrest may mediate HDAC6-caused Hsp90 hyper-acetylation and consequently increased the degradation of cyclin D1 and CDK4.
Collapse
|
28
|
Grech G, Zhan X, Yoo BC, Bubnov R, Hagan S, Danesi R, Vittadini G, Desiderio DM. EPMA position paper in cancer: current overview and future perspectives. EPMA J 2015; 6:9. [PMID: 25908947 PMCID: PMC4407842 DOI: 10.1186/s13167-015-0030-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 02/26/2015] [Indexed: 12/31/2022]
Abstract
At present, a radical shift in cancer treatment is occurring in terms of predictive, preventive, and personalized medicine (PPPM). Individual patients will participate in more aspects of their healthcare. During the development of PPPM, many rapid, specific, and sensitive new methods for earlier detection of cancer will result in more efficient management of the patient and hence a better quality of life. Coordination of the various activities among different healthcare professionals in primary, secondary, and tertiary care requires well-defined competencies, implementation of training and educational programs, sharing of data, and harmonized guidelines. In this position paper, the current knowledge to understand cancer predisposition and risk factors, the cellular biology of cancer, predictive markers and treatment outcome, the improvement in technologies in screening and diagnosis, and provision of better drug development solutions are discussed in the context of a better implementation of personalized medicine. Recognition of the major risk factors for cancer initiation is the key for preventive strategies (EPMA J. 4(1):6, 2013). Of interest, cancer predisposing syndromes in particular the monogenic subtypes that lead to cancer progression are well defined and one should focus on implementation strategies to identify individuals at risk to allow preventive measures and early screening/diagnosis. Implementation of such measures is disturbed by improper use of the data, with breach of data protection as one of the risks to be heavily controlled. Population screening requires in depth cost-benefit analysis to justify healthcare costs, and the parameters screened should provide information that allow an actionable and deliverable solution, for better healthcare provision.
Collapse
Affiliation(s)
- Godfrey Grech
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
| | - Byong Chul Yoo
- Colorectal Cancer Branch, Division of Translational and Clinical Research I, Research Institute, National Cancer Center, Gyeonggi, 410-769 Republic of Korea
| | - Rostyslav Bubnov
- Clinical Hospital 'Pheophania' of State Management of Affairs Department, Kyiv, Ukraine ; Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Suzanne Hagan
- Dept of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Romano Danesi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Dominic M Desiderio
- Department of Neurology, University of Tennessee Center for Health Science, Memphis, USA
| |
Collapse
|
29
|
Zhao W, Tian B, Wu C, Peng Y, Wang H, Gu WL, Gao FH. DOG1, cyclin D1, CK7, CD117 and vimentin are useful immunohistochemical markers in distinguishing chromophobe renal cell carcinoma from clear cell renal cell carcinoma and renal oncocytoma. Pathol Res Pract 2015; 211:303-7. [DOI: 10.1016/j.prp.2014.12.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 12/14/2014] [Accepted: 12/23/2014] [Indexed: 11/29/2022]
|
30
|
Zhu CQ, Tsao MS. Prognostic markers in lung cancer: is it ready for prime time? Transl Lung Cancer Res 2015; 3:149-58. [PMID: 25806294 DOI: 10.3978/j.issn.2218-6751.2014.06.09] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 06/19/2014] [Indexed: 01/21/2023]
Abstract
Non-small cell lung cancer (NSCLC) is a heterogeneity disease and to date, specific clinical factors and tumor stage are established as prognostic markers. Nevertheless, prognosis within stage may vary significantly. During the last 3 decades, genes/proteins that drive tumor initiation and progression, such as oncogenes and tumor suppressor genes have been studied as additional potential prognostic markers. The protein markers as evaluated by immunohistochemistry (IHC) have previously dominated these studies. However, with the development of high-throughput techniques to interrogate genome wide genetic or gene expression changes, DNA (copy number and mutation) and RNA (mRNA and microRNA) based markers have more recently been studied as prognostic markers. Largely due to the heterogeneity and complexity of NSCLC, single gene markers including KRAS mutation has not been validated as strong prognostic markers. In contrast, several gene expression signatures representing mRNA levels of multiple genes have been developed and validated in multiple microarray datasets of independent patient cohorts. The salient features of these gene signatures and their potential value to predict benefit from adjuvant chemotherapy is discussed.
Collapse
Affiliation(s)
- Chang-Qi Zhu
- 1 Princess Margaret Cancer Centre, University Health Network and 2 Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - Ming-Sound Tsao
- 1 Princess Margaret Cancer Centre, University Health Network and 2 Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| |
Collapse
|
31
|
Liao D, Wu Y, Pu X, Chen H, Luo S, Li B, Ding C, Huang GL, He Z. Cyclin D1 G870A polymorphism and risk of nasopharyngeal carcinoma: a case-control study and meta-analysis. PLoS One 2014; 9:e113299. [PMID: 25409185 PMCID: PMC4237450 DOI: 10.1371/journal.pone.0113299] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 10/23/2014] [Indexed: 12/26/2022] Open
Abstract
Background Cyclin D1 (CCND1) plays a key role in cell cycle regulation. It is a well-established human oncogene which is frequently amplified or overexpressed in cancers. The association between CCND1 G870A polymorphism and cancer risk has been widely assessed. However, a definitive conclusion between CCND1 G870A polymorphism and risk of nasopharyngeal carcinoma (NPC) remains elusive. Methods We firstly performed a hospital-based case-control study involving 165 NPC cases and 191 cancer-free controls in central-south China, and then conducted a meta-analysis with six case-control studies to evaluate the association between NPC risk and CCND1 G870A polymorphism. Results The case-control study found a significant association between CCND1 G870A polymorphism and NPC risk in various comparison models (AA vs. GG: OR = 2.300, 95% CI 1.089–4.857, p = 0.029; AG vs. GG: OR = 2.832, 95% CI 1.367–5.867, p = 0.005; AA/AG vs. GG: OR = 2.597, 95% CI 1.288–5.237, p = 0.008; AA vs. AG/GG: OR = 0.984, 95% CI 0.638–1.518, p = 0.944). Further meta-analysis showed that there was no significant association between CCND1 G870A polymorphism and NPC risk in overall analysis. In the stratified analysis by race, however, significant associations were only found in Caucasians (for the allele model A vs. G: OR = 0.75, 95% CI 0.59–0.97, p = 0.03; for the co-dominant model AA vs. GG: OR = 0.52, 95% CI 0.32–0.86, p = 0.01; for the dominant model AA/AG vs. GG: OR = 0.49, 95% CI 0.32–0.74, p<0.01; for the recessive model AA vs. AG/GG: OR = 0.90, 95% CI 0.61–1.34, p = 0.60). Conclusions A significant association between CCND1 G870A polymorphism and NPC risk was found in the central-southern Chinese population. The meta-analysis indicated that CCND1 G870A polymorphism may contribute to the development of NPC in Caucasians.
Collapse
Affiliation(s)
- Dan Liao
- Sino-American Cancer Research Institute, Guangdong Medical College, Dongguan, China, and Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, China
| | - Yongfu Wu
- Sino-American Cancer Research Institute, Guangdong Medical College, Dongguan, China, and Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, China
| | - Xingxiang Pu
- Department of Medical Oncology, Hunan Tumor Hospital, Changsha, China
| | - Hua Chen
- Sino-American Cancer Research Institute, Guangdong Medical College, Dongguan, China, and Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, China
| | - Shengqun Luo
- Sino-American Cancer Research Institute, Guangdong Medical College, Dongguan, China, and Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, China
| | - BinBin Li
- Sino-American Cancer Research Institute, Guangdong Medical College, Dongguan, China, and Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, China
| | - Congcong Ding
- Sino-American Cancer Research Institute, Guangdong Medical College, Dongguan, China, and Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, China
| | - Guo-Liang Huang
- Sino-American Cancer Research Institute, Guangdong Medical College, Dongguan, China, and Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, China
- * E-mail: (GLH); (ZH)
| | - Zhiwei He
- Sino-American Cancer Research Institute, Guangdong Medical College, Dongguan, China, and Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, China
- * E-mail: (GLH); (ZH)
| |
Collapse
|
32
|
Kubo H, Suzuki T, Matsushima T, Ishihara H, Uchino K, Suzuki S, Tada S, Yoshimura M, Kondo T. Cyclin-dependent kinase-specific activity predicts the prognosis of stage I and stage II non-small cell lung cancer. BMC Cancer 2014; 14:755. [PMID: 25301183 PMCID: PMC4198674 DOI: 10.1186/1471-2407-14-755] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 10/03/2014] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Lung cancer is one of the leading causes of cancer death worldwide. Even with complete resection, the prognosis of early-stage non-small cell lung cancer is poor due to local and distant recurrence, and it remains unclear which biomarkers are clinically useful for predicting recurrence or for determining the efficacy of chemotherapy. Recently, several lines of evidence have indicated that the enzymatic activity of cyclin-dependent kinases could be a clinically relevant prognostic marker for some cancers. We investigated whether the specific activity of cyclin-dependent kinases 1 and 2 could predict recurrence or death in early non-small cell lung cancer patients. METHODS Patients with newly diagnosed, pathologically confirmed non-small cell lung cancer were entered into this blinded cohort study. The activity of cyclin-dependent kinases was determined in 171 samples by the C2P® assay, and the results were subjected to statistical analysis with recurrence or death as a clinical outcome. RESULTS The Cox proportional hazards model revealed that the activity of cyclin-dependent kinase 1, but not 2, was a predictor of recurrence, independent of sex, age, and stage. By contrast, cyclin-dependent kinase 2 activity was a predictor of death, independent of sex and stage. CONCLUSION This study suggested the possible clinical use of cyclin-dependent kinase 1 as a predictor of recurrence and cyclin-dependent kinase 2 as a predictor of overall survival in early-stage non-small cell lung cancer. Thus, a combination of activity of cyclin-dependent kinases 1 and 2 is useful in decision-making regarding treatment strategies for non-small cell lung cancer after surgery.
Collapse
Affiliation(s)
- Hiroshi Kubo
- Department of Advanced Preventive Medicine for Infectious Disease, Tohoku University Graduate School of Medicine, 2-1 Seiryoumachi, Aobaku, Sendai 980-8575, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Luevano J, Damodaran C. A review of molecular events of cadmium-induced carcinogenesis. J Environ Pathol Toxicol Oncol 2014; 33:183-94. [PMID: 25272057 DOI: 10.1615/jenvironpatholtoxicoloncol.2014011075] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cadmium (Cd) is a toxic, heavy industrial metal that poses serious environmental health hazards to both humans and wildlife. Recently, Cd and Cd-containing compounds have been classified as known human carcinogens, and epidemiological data show causal associations with prostate, breast, and lung cancer. The molecular mechanisms involved in Cd-induced carcinogenesis are poorly understood and are only now beginning to be elucidated. The effects of chronic exposure to Cd have recently attracted great interest due to the development of malignancies in Cd-induced tumorigenesis in animals models. Briefly, various in vitro studies demonstrate that Cd can act as a mitogen, can stimulate cell proliferation and inhibit apoptosis and DNA repair, and can induce carcinogenesis in several mammalian tissues and organs. Thus, the various mechanisms involved in chronic Cd exposure and malignant transformations warrant further investigation. In this review, we focus on recent evidence of various leading general and tissue-specific molecular mechanisms that follow chronic exposure to Cd in prostate-, breast-, and lung-transformed malignancies. In addition, in this review, we consider less defined mechanisms such as epigenetic modification and autophagy, which are thought to play a role in the development of Cd-induced malignant transformation.
Collapse
Affiliation(s)
- Joe Luevano
- Center of Excellence in Cancer Research, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | | |
Collapse
|
34
|
Shcherba M, Liang Y, Fernandes D, Perez-Soler R, Cheng H. Cell cycle inhibitors for the treatment of NSCLC. Expert Opin Pharmacother 2014; 15:991-1004. [PMID: 24666387 DOI: 10.1517/14656566.2014.902935] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Lung cancer remains to be the leading cause of cancer-related death worldwide. Treatment of lung cancer still poses a significant challenge. Cell cycle is a tightly integrated process and is frequently aberrant in lung cancer. Cell cycle inhibitors have emerged as novel therapeutics, in anticipation of overcoming the unrestricted cell division and growth in lung cancer. AREAS COVERED In this article, we first address the potential roles of cell cycle proteins and cell cycle deregulation in the development of lung cancer. The review then provides an overview for several major categories of cell cycle inhibitors with particular attention to their tolerability and disease control in early phases of lung cancer trials. EXPERT OPINION Targeted agents against different components of cell cycle regulation, such as cyclin-dependent kinase, polo-like kinase, checkpoint kinase and aurora kinase, are currently in clinical development for lung cancer management. Their clinical benefits remain to be defined. When evaluated as single agents in lung cancer, cell cycle inhibitors are often associated with limited clinical activity and tolerable toxicities. The key challenges in the drug development are to understand resistance mechanisms and to identify predictive biomarkers that can potentially guide patient selection and optimize the utility of these targeted inhibitors.
Collapse
Affiliation(s)
- Marina Shcherba
- Albert Einstein College of Medicine, Montefiore Medical Center, Oncology , 111 East 210th Street, Bronx, NY 10467 , USA
| | | | | | | | | |
Collapse
|
35
|
CCND1/CyclinD1 status in metastasizing bladder cancer: a prognosticator and predictor of chemotherapeutic response. Mod Pathol 2014; 27:87-95. [PMID: 23887292 DOI: 10.1038/modpathol.2013.125] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/17/2013] [Accepted: 05/17/2013] [Indexed: 12/12/2022]
Abstract
The CCND1 gene encodes the protein CyclinD1, which is an important promoter of the cell cycle and a prognostic and predictive factor in different cancers. CCND1 is amplified to a substantial proportion in various tumors, and this may contribute to CyclinD1 overexpression. In bladder cancer, information about the clinical relevance of CCND1/CyclinD1 alterations is limited. In the present study, amplification status of CCND1 and expression of CyclinD1 were evaluated by fluorescence in situ hybridization and immunohistochemistry on tissue microarrays from 152 lymph node-positive urothelial bladder cancers (one sample each from the center and invasion front of the primary tumors, two samples per corresponding lymph node metastasis) treated by cystectomy and lymphadenectomy. CCND1 amplification status and the percentage of immunostained cancer cells were correlated with histopathological tumor characteristics, cancer-specific survival and response to adjuvant chemotherapy. CCND1 amplification in primary tumors was homogeneous in 15% and heterogeneous in 6% (metastases: 22 and 2%). Median nuclear CyclinD1 expression in amplified samples was similar in all tumor compartments (60-70% immunostained tumor nuclei) and significantly higher than in non-amplified samples (5-20% immunostained tumor nuclei; P<0.05). CCND1 status and CyclinD1 expression were not associated with primary tumor stage or lymph node tumor burden. CCND1 amplification in primary tumors (P=0.001) and metastases (P=0.02) and high nuclear CyclinD1 in metastases (P=0.01) predicted early cancer-related death independently. Subgroup analyses showed that chemotherapy was particularly beneficial in patients with high nuclear CyclinD1 expression in the metastases, whereas expression in primary tumors and CCND1 status did not predict chemotherapeutic response. In conclusion, CCND1 amplification status and CyclinD1 expression are independent risk factors in metastasizing bladder cancer. High nuclear CyclinD1 expression in lymph node metastases predicts favorable response to chemotherapy. This information may help to personalize prognostication and administration of adjuvant chemotherapy.
Collapse
|
36
|
Győrffy B, Surowiak P, Budczies J, Lánczky A. Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer. PLoS One 2013; 8:e82241. [PMID: 24367507 PMCID: PMC3867325 DOI: 10.1371/journal.pone.0082241] [Citation(s) in RCA: 1356] [Impact Index Per Article: 123.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 10/22/2013] [Indexed: 01/17/2023] Open
Abstract
In the last decade, optimized treatment for non-small cell lung cancer had lead to improved prognosis, but the overall survival is still very short. To further understand the molecular basis of the disease we have to identify biomarkers related to survival. Here we present the development of an online tool suitable for the real-time meta-analysis of published lung cancer microarray datasets to identify biomarkers related to survival. We searched the caBIG, GEO and TCGA repositories to identify samples with published gene expression data and survival information. Univariate and multivariate Cox regression analysis, Kaplan-Meier survival plot with hazard ratio and logrank P value are calculated and plotted in R. The complete analysis tool can be accessed online at: www.kmplot.com/lung. All together 1,715 samples of ten independent datasets were integrated into the system. As a demonstration, we used the tool to validate 21 previously published survival associated biomarkers. Of these, survival was best predicted by CDK1 (p<1E-16), CD24 (p<1E-16) and CADM1 (p = 7E-12) in adenocarcinomas and by CCNE1 (p = 2.3E-09) and VEGF (p = 3.3E-10) in all NSCLC patients. Additional genes significantly correlated to survival include RAD51, CDKN2A, OPN, EZH2, ANXA3, ADAM28 and ERCC1. In summary, we established an integrated database and an online tool capable of uni- and multivariate analysis for in silico validation of new biomarker candidates in non-small cell lung cancer.
Collapse
Affiliation(s)
- Balázs Győrffy
- Research Laboratory of Pediatrics and Nephrology, Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail:
| | - Pawel Surowiak
- Department of Histology and Embryology, Wroclaw Medical University, Wrocław, Poland
| | - Jan Budczies
- Institut für Pathologie, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - András Lánczky
- Research Laboratory of Pediatrics and Nephrology, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
37
|
Person RJ, Tokar EJ, Xu Y, Orihuela R, Olive Ngalame NN, Waalkes MP. Chronic cadmium exposure in vitro induces cancer cell characteristics in human lung cells. Toxicol Appl Pharmacol 2013; 273:281-8. [PMID: 23811327 PMCID: PMC3863781 DOI: 10.1016/j.taap.2013.06.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/13/2013] [Accepted: 06/18/2013] [Indexed: 01/22/2023]
Abstract
Cadmium is a known human lung carcinogen. Here, we attempt to develop an in vitro model of cadmium-induced human lung carcinogenesis by chronically exposing the peripheral lung epithelia cell line, HPL-1D, to a low level of cadmium. Cells were chronically exposed to 5 μM cadmium, a noncytotoxic level, and monitored for acquired cancer characteristics. By 20 weeks of continuous cadmium exposure, these chronic cadmium treated lung (CCT-LC) cells showed marked increases in secreted MMP-2 activity (3.5-fold), invasion (3.4-fold), and colony formation in soft agar (2-fold). CCT-LC cells were hyperproliferative, grew well in serum-free media, and overexpressed cyclin D1. The CCT-LC cells also showed decreased expression of the tumor suppressor genes p16 and SLC38A3 at the protein levels. Also consistent with an acquired cancer cell phenotype, CCT-LC cells showed increased expression of the oncoproteins K-RAS and N-RAS as well as the epithelial-to-mesenchymal transition marker protein Vimentin. Metallothionein (MT) expression is increased by cadmium, and is typically overexpressed in human lung cancers. The major MT isoforms, MT-1A and MT-2A were elevated in CCT-LC cells. Oxidant adaptive response genes HO-1 and HIF-1A were also activated in CCT-LC cells. Expression of the metal transport genes ZNT-1, ZNT-5, and ZIP-8 increased in CCT-LC cells culminating in reduced cadmium accumulation, suggesting adaptation to the metal. Overall, these data suggest that exposure of human lung epithelial cells to cadmium causes acquisition of cancer cell characteristics. Furthermore, transformation occurs despite the cell's ability to adapt to chronic cadmium exposure.
Collapse
Affiliation(s)
- Rachel J. Person
- Inorganic Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Erik J. Tokar
- Inorganic Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Yuanyuan Xu
- Inorganic Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Ruben Orihuela
- Inorganic Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Ntube N. Olive Ngalame
- Inorganic Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Michael P. Waalkes
- Inorganic Toxicology Group, National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
38
|
Abstract
The cell cycle ensures genome maintenance by coordinating the processes of DNA replication and chromosome segregation. Of particular importance is the irreversible transition from the G1 phase of the cell cycle to S phase. This transition marks the switch from preparing chromosomes for replication ("origin licensing") to active DNA synthesis ("origin firing"). Ubiquitin-mediated proteolysis is essential for restricting DNA replication to only once per cell cycle and is the major mechanism regulating the G1 to S phase transition. Although some changes in protein levels are attributable to regulated mRNA abundance, protein degradation elicits very rapid changes in protein abundance and is critical for the sharp and irreversible transition from one cell cycle stage to the next. Not surprisingly, regulation of the G1-to-S phase transition is perturbed in most cancer cells, and deregulation of key molecular events in G1 and S phase drives not only cell proliferation but also genome instability. In this review we focus on the mechanisms by which E3 ubiquitin ligases control the irreversible transition from G1 to S phase in mammalian cells.
Collapse
Affiliation(s)
- Lindsay F Rizzardi
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
39
|
Zhao G, Cai C, Yang T, Qiu X, Liao B, Li W, Ji Z, Zhao J, Zhao H, Guo M, Ma Q, Xiao C, Fan Q, Ma B. MicroRNA-221 induces cell survival and cisplatin resistance through PI3K/Akt pathway in human osteosarcoma. PLoS One 2013; 8:e53906. [PMID: 23372675 PMCID: PMC3553141 DOI: 10.1371/journal.pone.0053906] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/04/2012] [Indexed: 12/16/2022] Open
Abstract
Background MicroRNAs are short regulatory RNAs that negatively modulate protein expression at a post-transcriptional and/or translational level and are deeply involved in the pathogenesis of several types of cancers. Specifically, microRNA-221 (miR-221) is overexpressed in many human cancers, wherein accumulating evidence indicates that it functions as an oncogene. However, the function of miR-221 in human osteosarcoma has not been totally elucidated. In the present study, the effects of miR-221 on osteosarcoma and the possible mechanism by which miR-221 affected the survival, apoptosis, and cisplatin resistance of osteosarcoma were investigated. Methodology/Principal Findings Real-time quantitative PCR analysis revealed miR-221 was significantly upregulated in osteosarcoma cell lines than in osteoblasts. Both human osteosarcoma cell lines SOSP-9607 and MG63 were transfected with miR-221 mimic or inhibitor to regulate miR-221 expression. The effects of miR-221 were then assessed by cell viability, cell cycle analysis, apoptosis assay, and cisplatin resistance assay. In both cells, upregulation of miR-221 induced cell survival and cisplatin resistance and reduced cell apoptosis. In addition, knockdown of miR-221 inhibited cell growth and cisplatin resistance and induced cell apoptosis. Potential target genes of miR-221 were predicted using bioinformatics. Moreover, luciferase reporter assay and western blot confirmed that PTEN was a direct target of miR-221. Furthermore, introduction of PTEN cDNA lacking 3′-UTR or PI3K inhibitor LY294002 abrogated miR-221-induced cisplatin resistance. Finally, both miR-221 and PTEN expression levels in osteosarcoma samples were examined by using real-time quantitative PCR and immunohistochemistry. High miR-221 expression level and inverse correlation between miR-221 and PTEN levels were revealed in osteosarcoma tissues. Conclusions/Significance These results for the first time demonstrate that upregulation of miR-221 induces the malignant phenotype of human osteosarcoma whereas knockdown of miR-221 reverses this phenotype, suggesting that miR-221 could be a potential target for osteosarcoma treatment.
Collapse
Affiliation(s)
- Guangyi Zhao
- Department of Orthopedic Surgery, Orthopedics Oncology Institute of Chinese PLA, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hsu SH, Wang LT, Lee KT, Chen YL, Liu KY, Suen JL, Chai CY, Wang SN. Proinflammatory homeobox gene, ISX, regulates tumor growth and survival in hepatocellular carcinoma. Cancer Res 2012; 73:508-18. [PMID: 23221382 DOI: 10.1158/0008-5472.can-12-2795] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chronic inflammation drives initiation of hepatocellular carcinoma (HCC), but the underlying mechanisms linking inflammation and tumor formation remain obscure. In this study, we compared the expression of interleukin (IL)-6 and cyclin D1 (CCND1) with the IL-6-induced homeobox gene ISX (intestine-specific homeobox) in 119 paired specimens of HCCs and adjacent normal tissues and also in paired specimens from 11 patients with non-HCCs. In pathologic analysis, ISX exhibited a tumor-specific expression pattern and a high correlation to patient survival time, tumor size, tumor number, and progression stage. Enforced expression of ISX accelerated cell proliferation and tumorigenic activity in hepatoma cells through CCND1 induction. In contrast, short hairpin RNA-mediated attenuation of ISX in hepatoma cells decreased cell proliferation and malignant transformation in vitro and in vivo. A high positive correlation existed in human hepatoma tumors between ISX and CCND1 expression. Together, our results highlight ISX as an important regulator in hepatoma progression with significant potential as a prognostic and therapeutic target in HCCs.
Collapse
Affiliation(s)
- Shih-Hsien Hsu
- Graduate Institute of Medicine, Kaohsiung Medical University, 807, Kaohsiung, Taiwan, ROC.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Vízkeleti L, Ecsedi S, Rákosy Z, Orosz A, Lázár V, Emri G, Koroknai V, Kiss T, Ádány R, Balázs M. The role of CCND1 alterations during the progression of cutaneous malignant melanoma. Tumour Biol 2012; 33:2189-99. [PMID: 23001925 DOI: 10.1007/s13277-012-0480-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 08/01/2012] [Indexed: 11/29/2022] Open
Abstract
It is well demonstrated that CCND1 amplification is a frequent event in the acral subtype of cutaneous malignant melanoma; however, its role in the other subtypes of the disease is still controversial. The objectives of this study were to evaluate genetic and expression alterations of CCND1 with a focus on primary cutaneous melanomas, to define BRAF and NRAS mutation status, and correlate the data with clinical-pathological parameters. CCND1 amplification was associated with ulceration and the localization of the metastasis. After correction for the mutation state of BRAF and NRAS genes, CCND1 amplification in samples without such mutations was associated with ulceration and sun exposure. The cyclin D1 (CCND1) mRNA level decreased in lesions with multiple metastases and was correlated with both the mRNA levels and mutation state of BRAF and NRAS genes. Primary melanomas with BRAF(V600) or NRAS(Q61 ) mutations exhibited lower CCND1 mRNA level. CCND1 protein expression was associated with Breslow thickness, metastasis formation, and shorter survival time. These observations suggest that CCND1 alterations are linked to melanoma progression and are modified by BRAF and NRAS mutations. Our data show that CCND1 amplification could have a prognostic relevance in cutaneous melanoma and highlight that altered CCND1 gene expression may influence the metastatic progression, survival, and the localization of metastases.
Collapse
Affiliation(s)
- Laura Vízkeleti
- Department of Preventive Medicine, Faculty of Public Health, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Cander S, Ertürk E, Karkucak M, Oz Gül O, Görükmez O, Yakut T, Unal OK, Ersoy C, Tuncel E, Imamoğlu S. Effect of cyclin [corrected] D1 (CCND1) gene polymorphism on tumor formation and behavior in patients with prolactinoma. Gene 2012; 509:158-63. [PMID: 22967707 DOI: 10.1016/j.gene.2012.07.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 07/30/2012] [Indexed: 11/16/2022]
Abstract
The objective of this study was to investigate the effect of G870A gene polymorphism of CCND1 on the formation and behavioral features of prolactinomas. One hundred and thirteen patients with prolactinoma and 108 age and gender matched control were included in the study. The patients were divided into two groups as noninvasive and invasive tumors. CCND1 G870A gene polymorphism was compared in patients/control and invasive/noninvasive groups. A and G allele frequencies were found as 41.7% and 58.3% in the controls, and 61.1% and 38.9% in the patients (p<0.01). Rates of G/G, G/A and A/A genotypes were found as 11.8%, 55.9% and 32.4% in the noninvasive group, and 15.6%, 44.4% and 40.0% in the invasive group, respectively. Differences between patient and control groups were significant but were not between invasive and noninvasive groups in terms of the allele frequencies and genotype distribution. Mean tumor size and serum levels of prolactin at the time of diagnosis and change in these values after the treatment were not found statistically significant in genotype subgroups. CCND1 G870A gene polymorphism may be an important factor in the early stages of the tumor formation. However, it did not affect the features of the tumor.
Collapse
Affiliation(s)
- Soner Cander
- Uludag University, Medical School, Department of Endocrinology and Metabolism, Bursa, Turkey.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Aquino G, Franco R, Ronconi F, Anniciello A, Russo L, De Chiara A, Panico L. Peripheral T-cell Lymphoma with Cyclin D1 overexpression: a case report. Diagn Pathol 2012; 7:79. [PMID: 22770229 PMCID: PMC3475098 DOI: 10.1186/1746-1596-7-79] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 05/21/2012] [Indexed: 11/30/2022] Open
Abstract
Peripheral T-cell lymphomas not otherwise specified are generally considered aggressive non-Hodgkin lymphomas, because of poor natural outcome and response to therapy. They show a complex karyotype without any specific genetic hallmark. We report a case of peripheral T-cell lymphoma not otherwise specified with heterogeneous nuclear Cyclin D1 immunohistochemical overexpression, due to gene copy gain, a phenomenon similar to that observed in Mantle Cell Lymphoma characterized by t(11;14)(q13;q32). In this case report we underline the diagnostic pitfall rapresented by Cyclin D1 immunoistochemical overexpression in a T-cell lymphoma. Several pitfalls could lead to misinterpretation of diagnosis, therefore, we underlined the need to integrate the classical histology and immunohistochemistry with molecular tests as clonality or Fluorescence in situ hybridization.
Collapse
Affiliation(s)
- Gabriella Aquino
- Pathology Unit, National Cancer Institute Fondazione Giovanni Pascale, Via Mariano Semmola, 80131 Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
44
|
Investigation of effects and mechanisms of total flavonoids of Astragalus and calycosin on human erythroleukemia cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:209843. [PMID: 22848779 PMCID: PMC3394397 DOI: 10.1155/2012/209843] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/10/2012] [Indexed: 12/23/2022]
Abstract
Flavonoids are found in most parts of plants and have been shown to have multiple biological activities such as anticancer, anti-inflammation, antibacteria, antivirus, and immune-stimulation. Existing data showed that the total flavonoids of Astragalus (TFA) can provide biological system with resistance to injury and can possess antimutagenic, atherosclerotic inhibition, and other biological effects. This study investigated the effects of TFA and calycosin (a compound isolated from TFA), on apoptosis induction, and cell cycle of human erythroleukemia cell line K562 by an array of techniques, including proliferation (MTT), PI staining, Annexin V/PI double staining, and RT-PCR. The experimental data showed that TFA and calycosin could inhibit the proliferation of K562 cells. The 50% inhibiting concentrations of TFA and calycosin were 98.63 μg/mL and 130.32 μg/mL, respectively. However, TFA and calycosin could not induce apoptosis in K562 cells, but could increase the number of the cells in the G0/G1 phase. The level of cyclin D1 mRNA in K562 cells decreased after the treatment with TFA and calycosin. This study provides new insights into the functional mechanism of total flavonoids of Astragalus and calycosin on human erythroleukemia cells.
Collapse
|
45
|
Clinical and Molecular Predictors of Recurrence in Stage I Non-Small Cell Lung Cancer. Ann Thorac Surg 2012; 93:1606-12. [DOI: 10.1016/j.athoracsur.2012.01.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 01/11/2012] [Accepted: 01/16/2012] [Indexed: 11/30/2022]
|
46
|
A comprehensive analysis of p16 expression, gene status, and promoter hypermethylation in surgically resected non-small cell lung carcinomas. J Thorac Oncol 2012; 6:1649-57. [PMID: 21857254 DOI: 10.1097/jto.0b013e3182295745] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION The role of p16 is gaining importance in non-small cell lung cancer (NSCLC) because of epigenetic therapy options. Further insight into the significance of protein expression, gene status and promoter methylation is needed and has the potential to optimize existing treatment strategies. METHODS This population-based study analyzes p16 in 383 surgically resected non-small cell lung carcinomas brought into a standardized tissue microarray platform. Immunohistochemistry and fluorescence in situ hybridization were performed. For selected cases, p16 promoter hypermethylation was assessed by a pyrosequencing assay. Extensive clinical data and a postoperative follow-up period of 15 years enabled detailed correlations. RESULTS Loss of p16 expression is a common event in NSCLC (232/365, 64%), especially in squamous cell carcinomas (97/115, 84%) in contrast to adenocarcinomas (93/186, 50%). Loss of p16 expression was associated with poorer survival time for the entire cohort and for certain subgroups including men, age younger than 65 years, smokers, early tumor stage, adenocarcinoma, and large-cell carcinoma. Promoter hypermethylation was absent for cases expressing p16 but was commonly observed when (heterozygous) p16 gene deletions were present and in cases negative for p16. CONCLUSION Our comprehensive data would be compatible with a two-step process leading to loss of p16 expression in NSCLC. Hypermethylation of the promoter region may represent an early event, followed by heterozygous deletion of the p16 locus. Because of the possibility of detection of hypermethylated gene regions, these data may lead to the identification of specific patient subgroups more likely to benefit from upcoming demethylating treatment strategies.
Collapse
|
47
|
Sterlacci W, Fiegl M, Tzankov A. Prognostic and Predictive Value of Cell Cycle Deregulation in Non-Small-Cell Lung Cancer. Pathobiology 2012; 79:175-94. [DOI: 10.1159/000336462] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 01/12/2012] [Indexed: 12/29/2022] Open
|
48
|
Tong BC, Harpole DH. Molecular Markers for Incidence, Prognosis, and Response to Therapy. Surg Oncol Clin N Am 2012; 21:161-75. [DOI: 10.1016/j.soc.2011.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
49
|
The role of cyclin D1 expression and patient's survival in non-small-cell lung cancer: a systematic review with meta-analysis. Clin Lung Cancer 2011; 13:188-95. [PMID: 22133292 DOI: 10.1016/j.cllc.2011.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 10/06/2011] [Accepted: 10/14/2011] [Indexed: 12/12/2022]
Abstract
BACKGROUND The role of cell-cycle protein cyclin D1 in lung cancer remains controversial. To clarify its impact on survival in non-small-cell lung cancer (NSCLC), we performed a meta-analysis on the currently available medial literature to quantitatively assess its role on survival of NSCLC according to cyclin D1 status. METHOD Published studies that investigated the association between cyclin D1 expression and NSCLC survival were identified. Meta-analysis was performed by using a DerSimonian-Laird model. Funnel plot was used to investigate publication bias and sources of heterogeneity were identified by using meta-regression analysis. RESULT A total of 24 studies with 2731 patients were evaluable for this meta-analysis. No statistical significance was found that cyclin D1 expression was associated with poor prognosis in NSCLC (hazard ratio 1.08 [95% CI, 0.80-1.45]) without publication bias found. But there was significant heterogeneity present; meta-regression analysis was used to explore the sources of heterogeneity and revealed that the outcome of analysis was influenced by cutoff values and ethnicity. No difference between positive and negative studies on study quality assessment was present. CONCLUSION The cyclin D1 expression is unlikely to be useful as a prognostic marker for NSCLC in clinical practice from current evidence. The conclusion should be confirmed by a large well-designed prospective study.
Collapse
|
50
|
Yu T, Wu Y, Huang Y, Yan C, Liu Y, Wang Z, Wang X, Wen Y, Wang C, Li L. RNAi targeting CXCR4 inhibits tumor growth through inducing cell cycle arrest and apoptosis. Mol Ther 2011; 20:398-407. [PMID: 22108861 DOI: 10.1038/mt.2011.257] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CXC chemokine receptor 4 (CXCR4) is involved in many human malignant tumors and plays an important role in tumor growth and metastasis. To explore the effects of CXCR4 expression on the malignant cells of oral squamous cell carcinoma (OSCC), Tca8113 and SCC-9 cell lines, as well as their xenograft models, of nude mice were used to detect cancer cell proliferation alteration. This study also examined the corresponding molecular mechanism after CXCR4 knockdown using a recombinant lentiviral vector expressing small interference RNA (siRNA) for CXCR4. RNA interference-mediated knockdown of CXCR4 in highly aggressive (Tca8113 and SCC-9) tumor cells significantly inhibited the proliferation of the two cell lines in vitro and in vivo. The expression levels of >1,500 genes involved in cell cycle, apoptosis, and multiple signaling pathways were also altered. These results provide new evidence of CXCR4 as a promising tumor gene therapeutic target.
Collapse
Affiliation(s)
- Tao Yu
- Department of Head and Neck Oncology Surgery, West China College of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|