1
|
Zheng Y, Gao A, Bai J, Liao Q, Wu Y, Zhang W, Guan M, Tong L, Geng D, Zhao X, Chu PK, Wang H. A programmed surface on polyetheretherketone for sequentially dictating osteoimmunomodulation and bone regeneration to achieve ameliorative osseointegration under osteoporotic conditions. Bioact Mater 2022; 14:364-376. [PMID: 35386814 PMCID: PMC8964985 DOI: 10.1016/j.bioactmat.2022.01.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/16/2022] [Accepted: 01/24/2022] [Indexed: 02/07/2023] Open
Abstract
Polyetheretherketone (PEEK) is a desirable alternative to conventional biomedical metals for orthopedic implants due to the excellent mechanical properties. However, the inherent bioinertness of PEEK contributes to inferior osseointegration of PEEK implants, especially under pathological conditions of osteoporosis. Herein, a programmed surface is designed and fabricated on PEEK to dictate osteoimmunomodulation and bone regeneration sequentially. A degradable hybrid coating consisting of poly(lactide-co-glycolide) and alendronate (ALN) loaded nano-hydroxyapatite is deposited on PEEK and then interleukin-4 (IL-4) is grafted onto the outer surface of the hybrid coating with the aid of N2 plasma immersion ion implantation and subsequent immersion in IL-4 solution. Dominant release of IL-4 together with ALN and Ca2+ during the first few days synergistically mitigates the early acute inflammatory reactions and creates an osteoimmunomodulatory microenvironment that facilitates bone regeneration. Afterwards, slow and sustained delivery of ALN and Ca2+ in the following weeks boosts osteogenesis and suppresses osteoclastogenesis simultaneously, consequently ameliorating bone-implant osseointegration even under osteoporotic conditions. By taking into account the different phases in bone repair, this strategy of constructing advanced bone implants with sequential functions provides customizable and clinically viable therapy to osteoporotic patients. A programmed surface is designed and fabricated on PEEK to dictate osteoimmunomodulation and bone regeneration sequentially. A degradable coating consisting ALN loaded nano-HA is deposited on PEEK, with IL-4 being grafted onto the outmost surface. Dominant release of IL-4 together with ALN and Ca2+ synergistically mitigates the early acute inflammatory reactions. Slow and sustained delivery of ALN and Ca2+ boosts osteogenesis and suppresses osteoclastogenesis simultaneously. Sequential regulation of peri-implant biological responses is achieved to match the dynamic process of bone regeneration.
Collapse
Affiliation(s)
- Yanyan Zheng
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Basic Medical Sciences and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Ang Gao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jiaxiang Bai
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Qing Liao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yuzheng Wu
- Department of Physics, Department of Materials Science and Engineering, Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Wei Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Min Guan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Liping Tong
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Corresponding author
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Corresponding author
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Paul K. Chu
- Department of Physics, Department of Materials Science and Engineering, Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Corresponding author
| |
Collapse
|
2
|
Wu M, Liu J. Inhibitory effect of exogenous IL‐4 on orthodontic relapse in rats. Oral Dis 2021; 28:469-479. [DOI: 10.1111/odi.13763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 11/26/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Minting Wu
- Department of Prosthodontics School of Stomatology Jinan University Guangzhou510632China
- Center of Stomatology, The Second People's Hospital of Foshan (Affiliated Foshan Hospital of Southern Medical University) Foshan 528000 China
| | - Jing Liu
- Department of Prosthodontics School of Stomatology Jinan University Guangzhou510632China
| |
Collapse
|
3
|
Zhang R, Liu X, Xiong Z, Huang Q, Yang X, Yan H, Ma J, Feng Q, Shen Z. The immunomodulatory effects of Zn-incorporated micro/nanostructured coating in inducing osteogenesis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018. [DOI: 10.1080/21691401.2018.1446442] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Ranran Zhang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University, Beijing, China
| | - Xujie Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University, Beijing, China
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Zhiyuan Xiong
- Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University, Beijing, China
| | - Qianli Huang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University, Beijing, China
| | - Xing Yang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University, Beijing, China
| | - Hao Yan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University, Beijing, China
| | - Jing Ma
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Qingling Feng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University, Beijing, China
| | - Zhijian Shen
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, Sweden
| |
Collapse
|
4
|
Cytokines TNF-α, IL-6, IL-17F, and IL-4 Differentially Affect Osteogenic Differentiation of Human Adipose Stem Cells. Stem Cells Int 2016; 2016:1318256. [PMID: 27667999 PMCID: PMC5030432 DOI: 10.1155/2016/1318256] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/09/2016] [Accepted: 08/16/2016] [Indexed: 12/16/2022] Open
Abstract
During the initial stages of bone repair, proinflammatory cytokines are released within the injury site, quickly followed by a shift to anti-inflammatory cytokines. The effect of pro- and anti-inflammatory cytokines on osteogenic differentiation of mesenchymal stem cells is controversial. Here, we investigated the effect of the proinflammatory cytokines TNF-α, IL-6, IL-8, and IL-17F and the anti-inflammatory cytokine IL-4 on proliferation and osteogenic differentiation of human adipose stem cells (hASCs). hASCs were treated with TNF-α, IL-6, IL-8, IL-17F, or IL-4 (10 ng/mL) for 72 h mimicking bone repair. TNF-α reduced collagen type I gene expression but increased hASC proliferation and ALP activity. IL-6 also strongly enhanced ALP activity (18-fold), as well as bone nodule formation by hASCs. IL-8 did not affect proliferation or osteogenic gene expression but reduced bone nodule formation. IL-17F decreased hASC proliferation but enhanced ALP activity. IL-4 enhanced osteocalcin gene expression and ALP activity but reduced RUNX2 gene expression and bone nodule formation. In conclusion, all cytokines studied have both enhancing and reducing effects on osteogenic differentiation of hASCs, even when applied for 72 h only. Some cytokines, specifically IL-6, may be suitable to induce osteogenic differentiation of mesenchymal stem cells as a strategy for enhancing bone repair.
Collapse
|
5
|
Genetos DC, Wong A, Weber TJ, Karin NJ, Yellowley CE. Impaired osteoblast differentiation in annexin A2- and -A5-deficient cells. PLoS One 2014; 9:e107482. [PMID: 25222280 PMCID: PMC4164658 DOI: 10.1371/journal.pone.0107482] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/18/2014] [Indexed: 11/18/2022] Open
Abstract
Annexins are a class of calcium-binding proteins with diverse functions in the regulation of lipid rafts, inflammation, fibrinolysis, transcriptional programming and ion transport. Within bone, they are well-characterized as components of mineralizing matrix vesicles, although little else is known as to their function during osteogenesis. We employed shRNA to generate annexin A2 (AnxA2)- or annexin A5 (AnxA5)-knockdown pre-osteoblasts, and determined whether proliferation or osteogenic differentiation was altered in knockdown cells, compared to pSiren (Si) controls. We report that DNA content, a marker of proliferation, was significantly reduced in both AnxA2 and AnxA5 knockdown cells. Alkaline phosphatase expression and activity were also suppressed in AnxA2- or AnxA5-knockdown after 14 days of culture. The pattern of osteogenic gene expression was altered in knockdown cells, with Col1a1 expressed more rapidly in knock-down cells, compared to pSiren. In contrast, Runx2, Ibsp, and Bglap all revealed decreased expression after 14 days of culture. In both AnxA2- and AnxA5-knockdown, interleukin-induced STAT6 signaling was markedly attenuated compared to pSiren controls. These data suggest that AnxA2 and AnxA5 can influence bone formation via regulation of osteoprogenitor proliferation, differentiation, and responsiveness to cytokines in addition to their well-studied function in matrix vesicles.
Collapse
Affiliation(s)
- Damian C. Genetos
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
| | - Alice Wong
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
| | - Thomas J. Weber
- Systems Toxicology, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Norman J. Karin
- Systems Toxicology, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Clare E. Yellowley
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
- * E-mail:
| |
Collapse
|
6
|
Silfverswärd CJ, Penno H, Frost A, Nilsson O, Ljunggren O. Expression of markers of activity in cultured human osteoblasts: effects of interleukin-4 and interleukin-13. Scandinavian Journal of Clinical and Laboratory Investigation 2010; 70:338-42. [PMID: 20509757 DOI: 10.3109/00365513.2010.488698] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cytokines regulate proliferation, differentiation and activation of osteoblasts. Interleukin-4 (IL-4) and interleukin-13 (IL-13) takes part in this regulation by inhibiting proliferation and by enhancement of interleukin-6 (IL-6) formation in cultured human osteoblasts (hOBs). In the present study we have investigated the effects of IL-4 and IL-13 on markers of osteoblastic activity in isolated hOBs. Treatment with either IL-4 or IL-13 (1-100 pM) stimulated the formation of alkaline phosphatase (ALP) dose-dependently, detected by enzyme reaction and histochemistry. IL-4 and IL-13 also induced an increase in the secretion of procollagen type I carboxypeptide (PICP) from cultured hOBs, measured by RIA. Osteocalcin secretion measured by ELISA-technique was unaffected. The rate of mineralization, assessed by von Kossa and Alizarin Red staining, was clearly enhanced in hOBs stimulated by IL-4 or IL-13. In conclusion IL-4 and IL-13 exert multiple effects on osteoblast activity in cultured hOBs. Stimulation of ALP secretion together with enhanced collagen secretion and mineralization suggests that IL-4 and IL-13 also have the capacity to maintain hOBs in a differentiated, productive phase.
Collapse
|
7
|
Conover CA, Chen BK, Resch ZT. Regulation of pregnancy-associated plasma protein-A expression in cultured human osteoblasts. Bone 2004; 34:297-302. [PMID: 14962808 DOI: 10.1016/j.bone.2003.10.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Revised: 10/31/2003] [Accepted: 10/31/2003] [Indexed: 11/30/2022]
Abstract
Pregnancy-associated plasma protein-A (PAPP-A) is a metalloproteinase secreted by cultured human osteoblasts that has been implicated in the regulation of local insulin-like growth factor (IGF) bioavailability during bone growth and remodeling. However, very little is known about the regulation of PAPP-A expression in bone. In this study, we determined the effect of systemic and local osteoregulatory factors on PAPP-A mRNA and protein expression in normal human osteoblasts (hOB cells). Treatment of hOB cells with particular peptide growth factors (basic fibroblast growth factor, epidermal growth factor), steroid hormones (dexamethasone, 1,25-dihydroxyvitamin D(3)), and cytokines [interleukin-6 (IL-6), IL-13, oncostatin M] with known involvement in bone cell physiology had no significant effect on PAPP-A expression. Agents that increase intracellular cyclic AMP (forskolin, prostaglandin E(2)) increased PAPP-A mRNA and protein expression approximately 3-fold. Tumor necrosis factor alpha (TNFalpha), IL-1beta, and IL-4 also increased PAPP-A expression 3- to 4-fold. Transforming growth factor beta (TGFbeta) was previously shown to stimulate PAPP-A expression in hOB cells. The effects of TGFbeta, TNFalpha, and IL-1beta were additive, whereas the effects of TGFbeta and IL-4 were synergistic. In summary, TNFalpha, IL-1beta, and IL-4 were identified as potent stimulators of PAPP-A expression in primary cultures of human osteoblasts. These findings suggest a mechanism whereby cytokines present in bone and bone marrow could augment IGF bioavailability during skeletal growth and remodeling.
Collapse
Affiliation(s)
- Cheryl A Conover
- Division of Endocrinology, Metabolism and Nutrition, Mayo Clinic and Mayo Foundation, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
8
|
Stucki U, Schmid J, Hämmerle CF, Lang NP. Temporal and local appearance of alkaline phosphatase activity in early stages of guided bone regeneration. A descriptive histochemical study in humans. Clin Oral Implants Res 2001; 12:121-7. [PMID: 11251661 DOI: 10.1034/j.1600-0501.2001.012002121.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Alkaline phosphatase (ALP) catalyzes the hydrolysis of phosphate esters and it seems to be a prerequisite for normal skeletal mineralization. Also, ALP is the most widely recognized marker of osteoblast phenotypes. By a tissue regenerative technique called Guided Bone Regeneration (GBR), it is possible nowadays to regenerate small bony defects. The aim of the present study was to investigate early events in bone healing and neogenesis by studying histochemically the temporal and local appearance of the marker Alkaline Phosphatase (ALP) in a GBR model system. Nine healthy volunteers (5 males, 4 females, mean age 31.7 years) participated in the experiment. After raising a mucoperiosteal flap from the mandibular second molar to the retromolar area in each volunteer, a hollow titanium test cylinder was placed into a congruent bony bed and the coronal end of the cylinder was closed with an ePTFE-membrane. Then the flap was adapted and sutured to obtain primary wound closure. After 2, 7 and 12 weeks, the regenerated tissue within the cylinders was harvested. Histologically, ALP activity was observed associated with the osteoid seams in the very basal part of the regenerate where new bone trabeculae were in the process of being formed. More coronally, large round cells seemed to secrete an ALP-positive substance since in the center of such cell clusters strong ALP activity located extracellularly was detected. In the present experiment, ALP seemed to have been an early sign of osteoblast secretion of a matrix which subsequently was determined to become osteoid. ALP activity was never seen isolated within connective tissue and away from bone. This is an indication that its source is linked to existing bone. The present study has documented for the first time the appearance of ALP activity in guided bone regenerations in humans. It has revealed that: 1) Osteogenesis in guided bone regeneration is preceded by localized, marked expression of ALP in an organized connective tissue environment. 2) Bone neogenesis is an early event in this experimental setup and may be detected already 2 weeks after wounding. 3) Expression of ALP and subsequent bone neogenesis is originating from and topographically linked to pre-existing bone structures.
Collapse
Affiliation(s)
- U Stucki
- Department of Periodontology and Fixed Prosthodontics, University of Berne, School of Dental Medicine, Berne, Switzerland.
| | | | | | | |
Collapse
|
9
|
Frost A, Jonsson KB, Brändström H, Ljunghall S, Nilsson O, Ljunggren O. Interleukin (IL)-13 and IL-4 inhibit proliferation and stimulate IL-6 formation in human osteoblasts: evidence for involvement of receptor subunits IL-13R, IL-13Ralpha, and IL-4Ralpha. Bone 2001; 28:268-74. [PMID: 11248656 DOI: 10.1016/s8756-3282(00)00449-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Interleukin-13 (IL-13) inhibits cell proliferation and stimulates interleukin-6 (IL-6) formation in isolated human osteoblasts (hOBs). Because the related cytokine, interleukin-4 (IL-4), is known to exert effects similar to IL-13 in other tissues, and because IL-4 has been implicated as a regulator of bone metabolism, we compared the effects of IL-13 and IL-4 on cell proliferation, IL-6 synthesis, the expression of osteoblastic phenotypic markers in hOB cultures. Also, the receptor proteins mediating these effects in hOBs have been partly characterized. IL-4 and IL-13 dose-dependently inhibited [(3)H]-thymidine incorporation into the DNA of human osteoblasts and stimulated secretion of IL-6 into culture supernatants. IL-13 and IL-4 also increased the mRNA levels of IL-6, as measured by RNAse protection assay. Furthermore, IL-13 and IL-4 dose-dependently enhanced alkaline phosphatase (ALP) activity, but did not affect osteocalcin or collagen type I synthesis. IL-4 was tenfold more potent than IL-13 in inducing both ALP activity and IL-6 secretion, whereas the cytokines were equipotent as inhibitors of cell proliferation. The expression of mRNA for receptor subunits previously implicated in IL-4 and IL-13 signaling was investigated by reverse transcriptase-polymerase chain reaction. IL-13R, IL-13Ralpha, and IL-4Ralpha mRNA were repeatedly detected in hOBs, whereas mRNA for IL-2Rgamma(C) was not detected. Receptor-blocking antibodies to IL-4Ralpha inhibited the induction of IL-6 formation by both IL-4 and IL-13, indicating that both cytokines utilize this receptor subunit in signaling. However, the antibodies did not affect the IL-4/-13-induced inhibition of [(3)H]-thymidine incorporation or the stimulation of alkaline phosphatase (ALP), suggesting that IL-4Ralpha does not mediate these effects of IL-4/-13 in hOBs. We conclude that the cytokines IL-13 and IL-4, through sharing of receptor components, induce similar effects on hOBs, causing inhibition of cell proliferation, stimulation of IL-6, and enhanced ALP activity.
Collapse
Affiliation(s)
- A Frost
- Department of Surgical Sciences, University of Uppsala, Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
10
|
Heinemann DE, Siggelkow H, Ponce LM, Viereck V, Wiese KG, Peters JH. Alkaline phosphatase expression during monocyte differentiation. Overlapping markers as a link between monocytic cells, dendritic cells, osteoclasts and osteoblasts. Immunobiology 2000; 202:68-81. [PMID: 10879691 DOI: 10.1016/s0171-2985(00)80054-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Human monocytes (Mo) in culture can be differentiated into macrophages (M phi), dendritic cells (DC) and osteoclasts. In addition, we have established a Mo-derived in vitro granuloma model which here was compared with ex-vivo isolated foreign body granuloma cells. In these models overlapping phenotypes developed between monocyte-derived dendritic cells (MoDC), osteoclasts, M phi, and osteoblasts. In Mo cultures granulomas were induced by immobilized particulate material. AP activity (osteoblast marker) was found to be co-expressed with cytoplasmic tartrate resistant acid phosphatase (TRAP) as a marker of osteoclasts. While proliferating, the number of AP+ cells decreased, being replaced by cells co-expressing the osteoclast markers vitronectin receptor (VNR) and TRAP. Coexpression of the Mo/M phi marker CD68 with AP or VNR confirmed the monocytic origin of the cells. When Mo were treated with interleukin-4 (IL-4), the number of AP+ cells markedly increased and remained stably expressed over 12 days. In explants from ex vivo granulomas obtained from endoprosthetic revisions the major cell type was the AP+ cell co-expressing CD68. The bone-specific alkaline phosphatase (BAP) as a marker of osteoblasts was detected by FACS analysis in the ex vivo granuloma cells. By RT-PCR the mRNA for osteocalcin, which is a highly specific marker for osteoblasts, was detected. From our results we conclude an ontogenetic relationship between macrophages, DC and osteoclasts. Furthermore, the data suggest a transdifferentiation between Mo and osteoblasts.
Collapse
Affiliation(s)
- D E Heinemann
- Department of Maxillofacial Surgery, Georg-August-University Goettingen, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Ostergaard K, Salter DM. Immunohistochemistry in the study of normal and osteoarthritic articular cartilage. PROGRESS IN HISTOCHEMISTRY AND CYTOCHEMISTRY 1999; 33:93-165. [PMID: 10319375 DOI: 10.1016/s0079-6336(98)80004-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- K Ostergaard
- Osteoarthritis Research Unit, Institute for Inflammation Research, 7541, RHIMA-Center, National University Hospital/Rigshospitalet, Copenhager, Denmark.
| | | |
Collapse
|
12
|
Okada Y, Morimoto I, Ura K, Nakano Y, Tanaka Y, Nishida S, Nakamura T, Eto S. Short-term treatment of recombinant murine interleukin-4 rapidly inhibits bone formation in normal and ovariectomized mice. Bone 1998; 22:361-5. [PMID: 9556136 DOI: 10.1016/s8756-3282(97)00296-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Estrogen deficiency contributes to an increase in bone resorption and bone formation characterized by a high rate of bone turnover. Interleukin-4 (IL-4) is a rapid and potent inhibitor of bone resorption. We examined the short term in vivo effects of recombinant murine IL-4 (rmIL-4) on bone remodeling in normal and ovariectomized mice. Eight-week-old mice were randomized into the following five groups: (1) sham-operated mice (sham); (2) sham-operated mice infused with rmIL-4; (3) ovariectomized mice (ovx); (4) ovx infused with rmIL-4; and (5) ovx replaced by 10 or 20 microg of 17beta-estradiol (E2) for 14 or 28 days after ovariectomy, respectively. rmIL-4 at a dose of 5 microg/day was infused into ovx and sham for 3 days prior to sacrifice. Analyses were performed 14 and 28 days after operation. An increase in serum alkaline phosphatase and urinary deoxypyridinoline levels induced by ovariectomy was inhibited by the 3-day infusion of rmIL-4. In ovx, serum and urinary IL-6 levels were also increased significantly 14 days after ovariectomy, which were restored by E2 but not by rmIL-4. Histomorphometrical analysis of trabecular bone revealed that the 3-day infusion of rmIL-4 inhibited the high rate of bone turnover induced by ovariectomy, such as an increase in the osteoclastic surface (Oc.S/BS), number of osteoclasts per mm bone surface (N.Oc/BS), mineralized surface per mm bone surface (MS/BS), and bone mineral apposition rate (MAR). A significant decrease in the bone volume (BV/TV) observed in ovx was not modulated by a 3-day infusion of rmIL-4 prior to sacrifice. In sham, rmIL-4 also caused a significant decrease in the Oc.S/BS, N.Oc/BS, MS/BS, and MAR, but the BV/TV was not modulated by rmIL-4. We conclude that short term infusion of rmIL-4 in vivo rapidly inhibits not only bone resorption but also its formation in both sham-operated and ovariectomized growing mice, resulting in a low rate of bone turnover without modulating bone volume.
Collapse
Affiliation(s)
- Y Okada
- First Department of Internal Medicine, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Wang DS, Miura M, Demura H, Sato K. Anabolic effects of 1,25-dihydroxyvitamin D3 on osteoblasts are enhanced by vascular endothelial growth factor produced by osteoblasts and by growth factors produced by endothelial cells. Endocrinology 1997; 138:2953-62. [PMID: 9202240 DOI: 10.1210/endo.138.7.5275] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Human osteoblast-like cells (HOB) produce vascular endothelial growth factor (VEGF), the steady state level of which is stimulated by 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3]. As osteoblasts and endothelial cells are proximally located in skeletal tissue, we investigated the anabolic effects of 1,25-(OH)2D3 and VEGF on HOB cocultured with endothelial cells. When HOB with high alkaline phosphatase (Al-P) activity and human umbilical vein endothelial cells (HUVEC) with little activity were cultured together, Al-P activity increased, accompanied by an increase in cell number. When HOB and HUVEC were cultured separately, 1,25-(OH)2D3 did not directly stimulate [3H]thymidine incorporation into HUVEC, but stimulated it in the presence of HOB. VEGF did not directly stimulate the Al-P activity of HOB but stimulated it in the presence of HUVEC. The conditioned medium of HOB stimulated the proliferation of HUVEC, and this was partially blocked by anti-VEGF antibody. Conversely, the conditioned medium of HUVEC increased Al-P activity and [3H]thymidine incorporation into HOB, and this was partially blocked by antiinsulin-like growth factor I antibody and BQ-123, a specific antagonist of the endothelin-1 (ET-1) receptor. 1,25-(OH)2D3 stimulated the release of VEGF and ET-1 from HOB and HUVEC, respectively. Furthermore, the 1,25-(OH)2D3-induced release of VEGF was enhanced in HOB cocultured with HUVEC. A quantitative reverse transcription-PCR study revealed that genes for VEGF receptors (Flt-1 and KDR) were expressed in HUVEC, but not in HOB, and that 1,25-(OH)2D3 increased the levels of expression of VEGF receptor genes in endothelial cells only when cocultured with HOB. In summary, we demonstrated that 1,25-(OH)2D3 exerts an anabolic effect on osteoblasts by enhancing their production of VEGF, which stimulates its receptors on endothelial cells, followed by increased production of osteotropic growth factors, such as insulin-like growth factor I and ET-1. These in vitro findings suggest that the VEGF/VEGF receptor system may be involved in both bone formation and bone remodeling in vivo.
Collapse
Affiliation(s)
- D S Wang
- Department of Medicine, Institute of Clinical Endocrinology, Tokyo Women's Medical College, Shinjuku-ku, Japan
| | | | | | | |
Collapse
|
14
|
Bilbe G, Roberts E, Birch M, Evans DB. PCR phenotyping of cytokines, growth factors and their receptors and bone matrix proteins in human osteoblast-like cell lines. Bone 1996; 19:437-45. [PMID: 8922641 DOI: 10.1016/s8756-3282(96)00254-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The expression of a total of 58 cytokines, growth factors, and their corresponding receptors and bone matrix proteins was assessed using reverse transcription-linked polymerase chain reaction (RT-PCR) analysis to determine the similarity in the expression profile between clonal osteosarcoma-derived human osteoblast-like cell lines and primary human osteoblast-like cell cultures derived from human trabecular bone explants. The spectrum of cytokines, growth factors, and bone-related proteins expressed by three human osteosarcoma-derived cell lines, TE-85, MG-63, SaOS-2, and primary human osteoblast-like cells was found to be highly comparable and for the first time the expression of EGF, ECGF, FGF beta, oncostatin M, TNF beta, and SCF by human osteoblast-like cells was detected. Also the expression of several receptor types including IL-4R, IL-7R, IFN alpha/beta R, and SCFR was detected that has not been previously described for human osteoblast-like cells. For the factors examined, no qualitative variations in the expression profile were observed in the six primary human osteoblast-like cell cultures used in this study. Of the 58 factors examined, only 13 showed some degree of nonuniformity of expression between all of the three cell lines and primary cell cultures. These differences were seen especially in the expression of cytokine receptor mRNA and to a lesser extent with some cytokines. Differences in receptor expression would suggest that the possible spectrum of response to exogenously added factors, or even autocrine/ paracrine networks would be determined by the repertoire of receptors expressed by each cell type. Whether the differences are related to the status of cell maturation within the osteoblast development lineage or to their abberant regulation of expression cannot be concluded at this stage. However, this PCR-phenotyping approach rapidly provides a resource of information, which can be subsequently used for further in depth studies to facilitate the analysis of the molecular mechanisms, whereby the target gene of interest is modulated in a model cell line. In addition, this study indicates that at least based on the transcript expression profile of the factors analyzed, human osteosarcoma-derived osteoblast-like cells are useful as models for their nontransformed counterparts.
Collapse
Affiliation(s)
- G Bilbe
- Department of Molecular Biology Resources, Pharma Research, Ciba-Geigy A.G., Basel, Switzerland.
| | | | | | | |
Collapse
|
15
|
Wang DS, Yamazaki K, Nohtomi K, Shizume K, Ohsumi K, Shibuya M, Demura H, Sato K. Increase of vascular endothelial growth factor mRNA expression by 1,25-dihydroxyvitamin D3 in human osteoblast-like cells. J Bone Miner Res 1996; 11:472-9. [PMID: 8992878 DOI: 10.1002/jbmr.5650110408] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Vascular endothelial growth factor (VEGF), a secreted endothelial cell-specific mitogen, is produced in endocrine organs and regulated by trophic hormones. Because angiogenesis and osteogenesis are closely regulated, we studied whether human osteoblast-like cells produce VEGF, and if so, what factors regulate VEGF mRNA expression. Human osteoblast-like cells (HObLC) derived from trabecular bone explants were cultured in alpha-MEM supplemented with 10% fetal calf serum. Northern blot analysis revealed that HObLC expressed VEGF mRNA, as did several human osteosarcoma cells. 1,25-(OH)2D3 increased the steady-state levels of VEGF mRNA in a time- and concentration-dependent manner in HObLC and one of the osteosarcoma cell lines, SaOS-2, accompanied by an increase in the concentration of immunoreactive VEGF in the conditioned medium. PTH and IGF-I also increased the level of VEGF mRNA in HObLC and SaOS-2 cells. Furthermore, 12-O-tetradecanoylphorbol ester stimulated VEGF mRNA in a time-and concentration-dependent manner. The VEGF mRNA expression induced by 1,25-(OH)2D3 was completely inhibited by H-7, but only partially by staurosporine. We have demonstrated that PTH, IGF-I, and most potently 1,25-(OH)2D3 stimulate the mRNA expression and secretion of VEGF in human osteoblast-like cells, suggesting that one of the anabolic effects of 1,25-(OH)2D3 on skeletal tissue may be mediated by VEGF produced by osteoblasts.
Collapse
Affiliation(s)
- D S Wang
- Research Institute for Growth Science, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Sato K, Yamazaki K, Shizume K, Kanaji Y, Obara T, Ohsumi K, Demura H, Yamaguchi S, Shibuya M. Stimulation by thyroid-stimulating hormone and Grave's immunoglobulin G of vascular endothelial growth factor mRNA expression in human thyroid follicles in vitro and flt mRNA expression in the rat thyroid in vivo. J Clin Invest 1995; 96:1295-302. [PMID: 7657804 PMCID: PMC185751 DOI: 10.1172/jci118164] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
To elucidate the pathogenesis of thyroid gland hypervascularity in patients with Graves' disease, we studied the expression of mRNAs for vascular endothelial growth factor (VEGF) and its receptor, Flt family, using human thyroid follicles in vitro and thiouracil-fed rats in vivo. Human thyroid follicles, cultured in the absence of endothelial cells, secreted de novo-synthesized thyroid hormone in response to thyroid-stimulating hormone (TSH) and Graves' IgG. The thyroid follicles produced VEGF mRNA but not flt-1 mRNA. The expression of VEGF mRNA was enhanced by insulin, tumor-promoting phorbol ester, calcium ionophore, dibutyryl cAMP, TSH, and Graves' IgG. When rats were fed thiouracil for 4 wk, their serum levels of TSH were increased at day 3. VEGF mRNA was also increased on day 3, accompanied by an increase in flt family (flt-1 and KDR/ flk-1) mRNA expression. These in vitro and in vivo findings suggest that VEGF is produced by thyroid follicles in response to stimulators of TSH receptors, via the protein kinase A and C pathways. VEGF, a secretable angiogenesis factor, subsequently stimulates Flt receptors on endothelial cells in a paracrine manner, leading to their proliferation and producing hypervascularity of the thyroid gland, as seen in patients with Graves' disease.
Collapse
Affiliation(s)
- K Sato
- Department of Medicine, Tokyo Women's Medical College, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|