1
|
Grant-Jacob JA. Evolution of laughter from play. Commun Integr Biol 2024; 17:2338073. [PMID: 38601922 PMCID: PMC11005796 DOI: 10.1080/19420889.2024.2338073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
In this hypothesis, I discuss how laughter from physical play could have evolved to being induced via visual or even verbal stimuli, and serves as a signal to highlight incongruity that could potentially pose a threat to survival. I suggest how laughter's induction could have negated the need for physical contact in play, evolving from its use in tickling, to tickle-misses, and to taunting, and I discuss how the application of deep learning neural networks trained on images of spectra of a variety of laughter types from a variety of individuals or even species, could be used to determine such evolutionary pathways via the use of latent space exploration.
Collapse
Affiliation(s)
- James A. Grant-Jacob
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
2
|
Kuc A, Skorokhodov I, Semirechenko A, Khayrullina G, Maksimenko V, Varlamov A, Gordleeva S, Hramov A. Oscillatory Responses to Tactile Stimuli of Different Intensity. SENSORS (BASEL, SWITZERLAND) 2023; 23:9286. [PMID: 38005672 PMCID: PMC10675731 DOI: 10.3390/s23229286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Tactile perception encompasses several submodalities that are realized with distinct sensory subsystems. The processing of those submodalities and their interactions remains understudied. We developed a paradigm consisting of three types of touch tuned in terms of their force and velocity for different submodalities: discriminative touch (haptics), affective touch (C-tactile touch), and knismesis (alerting tickle). Touch was delivered with a high-precision robotic rotary touch stimulation device. A total of 39 healthy individuals participated in the study. EEG cluster analysis revealed a decrease in alpha and beta range (mu-rhythm) as well as theta and delta increase most pronounced to the most salient and fastest type of stimulation. The participants confirmed that slower stimuli targeted to affective touch low-threshold receptors were the most pleasant ones, and less intense stimuli aimed at knismesis were indeed the most ticklish ones, but those sensations did not form an EEG cluster, probably implying their processing involves deeper brain structures that are less accessible with EEG.
Collapse
Affiliation(s)
- Alexander Kuc
- Tactile Communication Research Laboratory, Pushkin State Russian Language Institute, 117485 Moscow, Russia; (A.K.); (I.S.); (A.S.); (G.K.); (V.M.); (S.G.)
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
| | - Ivan Skorokhodov
- Tactile Communication Research Laboratory, Pushkin State Russian Language Institute, 117485 Moscow, Russia; (A.K.); (I.S.); (A.S.); (G.K.); (V.M.); (S.G.)
| | - Alexey Semirechenko
- Tactile Communication Research Laboratory, Pushkin State Russian Language Institute, 117485 Moscow, Russia; (A.K.); (I.S.); (A.S.); (G.K.); (V.M.); (S.G.)
| | - Guzal Khayrullina
- Tactile Communication Research Laboratory, Pushkin State Russian Language Institute, 117485 Moscow, Russia; (A.K.); (I.S.); (A.S.); (G.K.); (V.M.); (S.G.)
| | - Vladimir Maksimenko
- Tactile Communication Research Laboratory, Pushkin State Russian Language Institute, 117485 Moscow, Russia; (A.K.); (I.S.); (A.S.); (G.K.); (V.M.); (S.G.)
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
| | - Anton Varlamov
- Autonomous Non-Profit Organization “Our Sunny World”, 109052 Moscow, Russia;
| | - Susanna Gordleeva
- Tactile Communication Research Laboratory, Pushkin State Russian Language Institute, 117485 Moscow, Russia; (A.K.); (I.S.); (A.S.); (G.K.); (V.M.); (S.G.)
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
| | - Alexander Hramov
- Tactile Communication Research Laboratory, Pushkin State Russian Language Institute, 117485 Moscow, Russia; (A.K.); (I.S.); (A.S.); (G.K.); (V.M.); (S.G.)
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
| |
Collapse
|
3
|
Proelss S, Ishiyama S, Maier E, Schultze-Kraft M, Brecht M. The human tickle response and mechanisms of self-tickle suppression. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210185. [PMID: 36126671 PMCID: PMC9489287 DOI: 10.1098/rstb.2021.0185] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/13/2021] [Indexed: 11/19/2022] Open
Abstract
A tickle is a complex sensation: it occurs in response to touch but not unequivocally so, and makes us laugh albeit not when we self-tickle. We quantified human ticklishness by means of physiological, visual and acoustic measures alongside subjective reports, and assessed mechanisms of self-tickle suppression. Tickle responses arose faster than previously reported as changes in thoracic circumference and joyous facial expressions co-emerge approximately 300 ms after tickle onset and are followed by vocalizations starting after an additional 200 ms. The timing and acoustic properties of vocalizations tightly correlated with subjective reports: the faster, louder and higher-pitched participants laughed, the stronger they rated the experienced ticklishness. Externally evoked ticklishness is reduced by simultaneous self-tickling, whereby self-touch evokes stronger suppression than sole self-tickle movement without touch. We suggest that self-tickle suppression can be understood as broad attenuation of sensory temporally coincident inputs. Our study provides new insight on the nature of human ticklishness and the attenuating effects of self-tickling. This article is part of the theme issue 'Cracking the laugh code: laughter through the lens of biology, psychology and neuroscience'.
Collapse
Affiliation(s)
- Sandra Proelss
- Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
- NeuroCure Cluster of Excellence, Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Shimpei Ishiyama
- Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
- Institut für Pathophysiologie, Universitätsmedizin der Johannes-Gutenberg-Universität Mainz, 55128 Mainz, Germany
| | - Eduard Maier
- Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
| | - Matthias Schultze-Kraft
- Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Michael Brecht
- Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
- NeuroCure Cluster of Excellence, Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
4
|
|
5
|
Portnova GV, Proskurnina EV, Sokolova SV, Skorokhodov IV, Varlamov AA. Perceived pleasantness of gentle touch in healthy individuals is related to salivary oxytocin response and EEG markers of arousal. Exp Brain Res 2020; 238:2257-2268. [PMID: 32719908 DOI: 10.1007/s00221-020-05891-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022]
Abstract
Affective touch plays an important role in human social bonding, affiliative behavior, and in general emotional well-being. A system of unmyelinated low-threshold mechanosensitive C-type afferents innervating hairy skin (C-tactile or CT system) is postulated to provide the neurophysiological background of affective touch perception. C-tactile afferents respond optimally to soft and slow strokes, and this response correlates positively with pleasure ratings of tactile stimuli. As gentle touch is consistently associated with oxytocin release further promoting prosocial behavior, it has been suggested that this effect is mediated by the response of C-tactile afferents. This study assesses a possible link between CT-optimal touch, its subjective pleasantness, EEG indices of cortical arousal, and peripheral oxytocin response. EEG was recorded in 28 healthy volunteers during resting state and tactile stimulation[gentle slow brush strokes on forearm (CT-targeted touch) and palm (non-CT-targeted touch)]. Saliva samples were collected before and after the touch stimulation. Oxytocin concentration increase was significantly associated with greater subjective ratings of CT-targeted touch but not of non-CT-targeted touch, and with lower peak alpha frequency values indicating decreased cortical arousal. The findings suggest that CT-targeted stimulation triggers oxytocin release but only when the touch is perceived at an individual level as having clearly positive affective salience. This corresponds to previous studies reporting that oxytocin response to touch can be related to different personality factors, and bears important implications for planning touch-based interventions in social and medical care.
Collapse
Affiliation(s)
- Galina V Portnova
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, 5A Butlerova St, Moscow, 117485, Russia.
- Pushkin State Russian Language Institute, Moscow, Russia.
| | | | - Svetlana V Sokolova
- Medical Research and Educational Center, Lomonosov Moscow State University, Moscow, Russia
| | - Ivan V Skorokhodov
- Rehabilitation Center for Children With Autistic Spectrum Disorders "OUR SUNNY WORLD" (Non-Government, Non-Profit Organization), Moscow, Russia
| | - Anton A Varlamov
- Rehabilitation Center for Children With Autistic Spectrum Disorders "OUR SUNNY WORLD" (Non-Government, Non-Profit Organization), Moscow, Russia
- Pushkin State Russian Language Institute, Moscow, Russia
| |
Collapse
|
6
|
Abstract
A quick guide to tickling, a form of laughter-evoking play that can be considered as an index of agency, with a discussion of its taxonomic distribution and its possible relationship to traditional measures of self-recognition.
Collapse
Affiliation(s)
- David A Leavens
- School of Psychology, University of Sussex, Falmer, East Sussex BN1 9QH, UK.
| | - Kim A Bard
- University of Portsmouth, Centre for Comparative and Evolutionary Psychology, King Henry Building, Portsmouth PO1 2DY, UK.
| |
Collapse
|
7
|
Ikeda A, Itakura S. Influence of Maternal Social Communication on Ticklishness in Infants: A Comparison With Being Stroked. INFANCY 2013. [DOI: 10.1111/infa.12029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ayaka Ikeda
- Department of Psychology; Graduate School of Letters; Kyoto University
| | - Shoji Itakura
- Department of Psychology; Graduate School of Letters; Kyoto University
| |
Collapse
|
8
|
Doucet YS, Woo SH, Ruiz ME, Owens DM. The touch dome defines an epidermal niche specialized for mechanosensory signaling. Cell Rep 2013; 3:1759-65. [PMID: 23727240 DOI: 10.1016/j.celrep.2013.04.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 03/29/2013] [Accepted: 04/25/2013] [Indexed: 12/22/2022] Open
Abstract
In mammalian skin, Merkel cells are mechanoreceptor cells that are required for the perception of gentle touch. Recent evidence indicates that mature Merkel cells descend from the proliferative layer of skin epidermis; however, the stem cell niche for Merkel cell homeostasis has not been reported. Here, we provide genetic evidence for maintenance of mature Merkel cells during homeostasis by Krt17+ stem cells located in epidermal touch domes of hairy skin and in the tips of the rete ridges of glabrous skin. Lineage tracing analysis indicated that the entire pool of mature Merkel cells is turned over every 7-8 weeks in the adult epidermis and that Krt17+ stem cells also maintain squamous differentiation in the touch dome and in glabrous skin. Finally, selective genetic ablation of Krt17+ touch-dome keratinocytes indicates that these cells, and not mature Merkel cells, are primarily responsible for maintaining innervation of the Merkel cell-neurite complex.
Collapse
Affiliation(s)
- Yanne S Doucet
- Department of Dermatology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | |
Collapse
|
9
|
Mora-Ripoll R, Ubal-López R. La risa: diferencias según el género. Rev Clin Esp 2011; 211:360-6. [DOI: 10.1016/j.rce.2010.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Revised: 10/02/2010] [Accepted: 10/18/2010] [Indexed: 11/28/2022]
|
10
|
Abstract
The sense of touch detects forces that bombard the body's surface. In metazoans, an assortment of morphologically and functionally distinct mechanosensory cell types are tuned to selectively respond to diverse mechanical stimuli, such as vibration, stretch, and pressure. A comparative evolutionary approach across mechanosensory cell types and genetically tractable species is beginning to uncover the cellular logic of touch reception.
Collapse
Affiliation(s)
- Ellen A Lumpkin
- Department of Dermatology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| | | | | |
Collapse
|
11
|
Abstract
New acoustic analyses of the calls of great apes and humans in response to tickling reveal the probable evolutionary history of laughter in humans and our nearest living relatives, the great apes.
Collapse
|
12
|
Mällo T, Matrov D, Herm L, Kõiv K, Eller M, Rinken A, Harro J. Tickling-induced 50-kHz ultrasonic vocalization is individually stable and predicts behaviour in tests of anxiety and depression in rats. Behav Brain Res 2007; 184:57-71. [PMID: 17675169 DOI: 10.1016/j.bbr.2007.06.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 06/17/2007] [Accepted: 06/26/2007] [Indexed: 11/16/2022]
Abstract
Manipulation of juvenile rats in a way that mimics the rough-and-tumble play and resembles tickling elicits 50-kHz ultrasonic vocalizations (USVs) that have been proposed as a measure of positive affect. In the present experiments the stability of the 50-kHz USV response (chirping) over 1.5 months of daily manipulation and the effect of tickling was studied. By the second week of tickling rats of both sexes developed a level of 50-kHz USVs that remained individually characteristic. During tickling the rats also emitted low levels of 22-kHz USVs. No correlation was found between the two types of USVs. In tests used in anxiety and depression research, tickling on its own had an anxiolytic effect in many experimental settings. Significantly lower levels of [(35)S]GTPgammaS binding to the dopamine-activated receptor-G protein complex in striatum and serotonin transporter levels in the frontal cortex were found in female control rats as compared to males. These differences were eliminated by tickling. Rats which expressed high level of chirping (HC-rats) were similar to low-chirping (LC) rats in anxiety measures but had lower activity in an exploration test and lower sucrose preference. LC-rats adopted more active coping strategies in the forced swimming test. These findings suggest that there are individually characteristic 50-kHz USV response levels to tickling in rats, and that HC- and LC-rats are similar with regard to anxiety levels but have different coping strategies to novelty. The anxiolytic-like changes in behaviour that were brought about by tickling could be mediated by changes in dopamine- and serotonergic systems.
Collapse
Affiliation(s)
- Tanel Mällo
- Department of Psychology, Centre of Behavioural and Health Sciences, University of Tartu, Tiigi 78, 50410 Tartu, Estonia
| | | | | | | | | | | | | |
Collapse
|
13
|
Blakemore SJ, Tavassoli T, Calò S, Thomas RM, Catmur C, Frith U, Haggard P. Tactile sensitivity in Asperger syndrome. Brain Cogn 2006; 61:5-13. [PMID: 16500009 DOI: 10.1016/j.bandc.2005.12.013] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2005] [Indexed: 10/25/2022]
Abstract
People with autism and Asperger syndrome are anecdotally said to be hypersensitive to touch. In two experiments, we measured tactile thresholds and suprathreshold tactile sensitivity in a group of adults with Asperger syndrome. In the first experiment, tactile perceptual thresholds were measured. Two frequencies of vibrotactile stimulation were used: 30 and 200 Hz. The results demonstrated significantly lower tactile perceptual thresholds in the Asperger group at 200 Hz but not at 30 Hz, thus confirming tactile hypersensitivity but only for one class of stimulus. A second experiment investigated whether self-produced movement affected the perception of touch in a group of adults with Asperger syndrome. A suprathreshold tactile stimulus was produced either by the participant (self-produced condition) or by the experimenter (externally produced condition) and participants were asked to rate the perception of the tactile stimulation. The results demonstrated that, while both Asperger and control groups rated self-produced touch as less tickly than external touch, the Asperger group rated both types of tactile stimulus as significantly more tickly and intense than did the control group. This experiment confirms the finding of tactile hypersensitivity, but shows that the perceptual consequences of self-produced touch are attenuated in the normal way in people with Asperger syndrome. An abnormality in this process cannot therefore account for their tactile hypersensitivity.
Collapse
Affiliation(s)
- Sarah-Jayne Blakemore
- Department of Psychology, Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AR, UK.
| | | | | | | | | | | | | |
Collapse
|