1
|
Koh ES, Lim JY. Impacts of whole-body vibration on denervated skeletal-muscle atrophy in rats. J Orthop Res 2023; 41:2579-2587. [PMID: 37132369 DOI: 10.1002/jor.25589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/14/2023] [Accepted: 05/01/2023] [Indexed: 05/04/2023]
Abstract
Whole-body vibration has been considered as a countermeasure against muscle atrophy. However, its effects on muscle atrophy are poorly understood. We evaluated the effects of whole-body vibration on denervated skeletal muscle atrophy. Whole-body vibration was performed on rats from Day 15 to 28 after denervation injury. Motor performance was evaluated using an inclined-plane test. Compound muscle action potentials of the tibial nerve were examined. Muscle wet weight and muscle fiber cross-sectional area were measured. Myosin heavy chain isoforms were analyzed in both muscle homogenates and single myofibers. Whole-body vibration resulted in a significantly decreased inclination angle and muscle weight, but not muscle fiber cross-sectional area of fast-twitch gastrocnemius compared to denervation only. In denervated gastrocnemius, a fast-to-slow shift was observed in myosin heavy chain isoform composition following whole-body vibration. There were no significant changes in muscle weight, muscle fiber cross-sectional area, and myosin heavy chain isoform composition in denervated slow-twitch soleus. These results imply that whole-body vibration does not promote recovery of denervation-induced muscle atrophy.
Collapse
Affiliation(s)
- Eun Sil Koh
- Department of Rehabilitation Medicine, National Medical Center, Seoul, Republic of Korea
| | - Jae-Young Lim
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Institute on Aging, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Medler S. Mixing it up: the biological significance of hybrid skeletal muscle fibers. ACTA ACUST UNITED AC 2019; 222:222/23/jeb200832. [PMID: 31784473 DOI: 10.1242/jeb.200832] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Skeletal muscle fibers are classified according to the myosin heavy chain (MHC) isoforms and other myofibrillar proteins expressed within these cells. In addition to 'pure' fibers expressing single MHC isoforms, many fibers are 'hybrids' that co-express two or more different isoforms of MHC or other myofibrillar proteins. Although hybrid fibers have been recognized by muscle biologists for more than three decades, uncertainty persists about their prevalence in normal muscles, their role in fiber-type transitions, and what they might tell us about fiber-type regulation at the cellular and molecular levels. This Review summarizes current knowledge on the relative abundance of hybrid fibers in a variety of muscles from different species. Data from more than 150 muscles from 39 species demonstrate that hybrid fibers are common, frequently representing 25% or more of the fibers in normal muscles. Hybrid fibers appear to have two main roles: (1) they function as intermediates during the fiber-type transitions associated with skeletal muscle development, adaptation to exercise and aging; and (2) they provide a functional continuum of fiber phenotypes, as they possess physiological properties that are intermediate to those of pure fiber types. One aspect of hybrid fibers that is not widely recognized is that fiber-type asymmetries - such as dramatic differences in the MHC composition along the length of single fibers - appear to be a common aspect of many fibers. The final section of this Review examines the possible role of differential activities of nuclei in different myonuclear domains in establishing fiber-type asymmetries.
Collapse
Affiliation(s)
- Scott Medler
- Biology Department, State University of New York at Fredonia, Fredonia, NY 14063, USA
| |
Collapse
|
3
|
Vahabzadeh-Hagh AM, Pillutla P, Zhang Z, Chhetri DK. Dynamics of Intrinsic Laryngeal Muscle Contraction. Laryngoscope 2019; 129:E21-E25. [PMID: 30325497 PMCID: PMC6320299 DOI: 10.1002/lary.27353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/04/2018] [Accepted: 05/21/2018] [Indexed: 11/11/2022]
Abstract
OBJECTIVES Laryngeal function requires neuromuscular activation of the intrinsic laryngeal muscles (ILMs). Rapid activation of the ILMs occurs in cough, laughter, and voice-unvoiced-voiced segments in speech and singing. Abnormal activation is observed in hyperfunctional disorders such as vocal tremor and dystonia. In this study, we evaluate the dynamics of ILM contraction. STUDY/DESIGN Basic science study in an in vivo canine model. METHODS The following ILMs were stimulated: thyroarytenoid (TA), lateral cricoarytenoid/interarytenoid (LCA/IA), cricothyroid (CT), all laryngeal adductors (LCA/IA/TA), and the posterior cricoarytenoid (PCA). Neuromuscular stimulation was performed via the respective nerves at current levels needed to achieve maximum vocal fold posture change. Muscle contraction and posture changes were recorded with high speed video (HSV). HSV frames were then analyzed to measure response times required from the onset of muscle contraction to the time the vocal folds achieved maximum posture change. RESULTS In all muscles, the onset of posture change occurred within 10 to 12 milliseconds after neuromuscular stimulation. The average times ( ± standard deviation) to achieve final posture were as follows: TA 34.5 ± 6 ms (N = 15), LCA/IA 55 ± 12 ms (N = 14), recurrent laryngeal nerve 43 ± 8 ms (N = 18), CT 100.8 ± 17 ms (N = 26), and PCA 91.2 ± 8 ms (N = 3). Data distribution appeared normal. CONCLUSION Results showed a difference in muscle activation time between different ILMs consistent with reported differences in muscle fiber composition. These data also provide an estimate of the limits of laryngeal contraction frequency in physiologic and pathologic laryngeal states. LEVEL OF EVIDENCE NA Laryngoscope, 129:E21-E25, 2019.
Collapse
Affiliation(s)
- Andrew M Vahabzadeh-Hagh
- Department of Head and Neck Surgery, UCLA David Geffen School of Medicine, Los Angeles, California
| | - Pranati Pillutla
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, U.S.A
| | - Zhaoyan Zhang
- Department of Head and Neck Surgery, UCLA David Geffen School of Medicine, Los Angeles, California
| | - Dinesh K Chhetri
- Department of Head and Neck Surgery, UCLA David Geffen School of Medicine, Los Angeles, California
| |
Collapse
|
4
|
Ras YA, Imam M, El-Banna MM, Hamouda NH. Voice outcome following electrical stimulation-supported voice therapy in cases of unilateral vocal fold paralysis. THE EGYPTIAN JOURNAL OF OTOLARYNGOLOGY 2016. [DOI: 10.4103/1012-5574.192543] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
5
|
Rhee HS, Lucas CA, Hoh JFY. Fiber Types in Rat Laryngeal Muscles and Their Transformations After Denervation and Reinnervation. J Histochem Cytochem 2016; 52:581-90. [PMID: 15100236 DOI: 10.1177/002215540405200503] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The intrinsic laryngeal muscles cricothyroid (CT) and thyroarythenoid (TA) differ in myosin expression. CT expresses limb myosin heavy chains (MyHCs) and TA expresses an MyHC found in extraocular (EO) muscles, in addition to limb isoforms. We used immunohistochemical (IHC) analyses with highly specific monoclonal antibodies (MAbs) against various MyHCs to study muscle fiber types in rat CT and TA and to investigate whether nerves to laryngeal muscles control MyHC expression. CT was found to have the full complement of limb fiber types. TA had three major fiber types: 2b/eo, co-expressing 2B and EO MyHCs, 2x/2b, co-expressing 2X and 2B MyHCs, and 2x, expressing 2X MyHC. Type 2a and slow fibers were absent. TA consisted of two divisions: the external division (TA-X), which is homogeneously 2b/eo, and the vocalis division (TA-V), composed principally of 2x and 2b/eo fibers with a minority of 2x/2b fibers. TA-V had two compartments that differ in fiber type composition. At 4 weeks after cutting and re-uniting the recurrent laryngeal nerve (RLN), many 2b/eo fibers in the TA-X began to express 2X MyHC, while EO and 2B MyHC expression in these fibers progressively declined. By 12 weeks, up to 16.5% of fibers in the TA-X were of type 2x. These findings suggest that nerve fibers originally innervating 2x fibers in TA-V and other muscles have randomly cross-innervated 2b/eo fibers in the TA-X and converted them into 2x fibers. We conclude that CT and TA are distinct muscle allo-types and that laryngeal muscle fibers are subject to neural regulation.
Collapse
Affiliation(s)
- Hannah S Rhee
- Department of Physiology and Institute for Biomedical Research, School of Medical Sciences, Faculty of Medicine, University of Sydney, New South Wales, Australia
| | | | | |
Collapse
|
6
|
Bartlett RS, Jetté ME, King SN, Schaser A, Thibeault SL. Fundamental approaches in molecular biology for communication sciences and disorders. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2012; 55:1220-1231. [PMID: 22232415 PMCID: PMC3418393 DOI: 10.1044/1092-4388(2011/11-0152)] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
PURPOSE This contemporary tutorial will introduce general principles of molecular biology, common deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein assays and their relevance in the field of communication sciences and disorders. METHOD Over the past 2 decades, knowledge of the molecular pathophysiology of human disease has increased at a remarkable pace. Most of this progress can be attributed to concomitant advances in basic molecular biology and, specifically, the development of an ever-expanding armamentarium of technologies for analysis of DNA, RNA, and protein structure and function. Details of these methodologies, their limitations, and examples from the communication sciences and disorders literature are presented. Results/Conclusions The use of molecular biology techniques in the fields of speech, language, and hearing sciences is increasing, facilitating the need for an understanding of molecular biology fundamentals and common experimental assays.
Collapse
|
7
|
McLoon LK, Park HN, Kim JH, Pedrosa-Domellöf F, Thompson LV. A continuum of myofibers in adult rabbit extraocular muscle: force, shortening velocity, and patterns of myosin heavy chain colocalization. J Appl Physiol (1985) 2011; 111:1178-89. [PMID: 21778415 DOI: 10.1152/japplphysiol.00368.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Extraocular muscle (EOM) myofibers do not fit the traditional fiber typing classifications normally used in noncranial skeletal muscle, in part, due to the complexity of their individual myofibers. With single skinned myofibers isolated from rectus muscles of normal adult rabbits, force and shortening velocity were determined for 220 fibers. Each fiber was examined for myosin heavy chain (MyHC) isoform composition by densitometric analysis of electrophoresis gels. Rectus muscle serial sections were examined for coexpression of eight MyHC isoforms. A continuum was seen in single myofiber shortening velocities as well as force generation, both in absolute force (g) and specific tension (kN/m(2)). Shortening velocity correlated with MyHCIIB, IIA, and I content, the more abundant MyHC isoforms expressed within individual myofibers. Importantly, single fibers with similar or identical shortening velocities expressed significantly different ratios of MyHC isoforms. The vast majority of myofibers in both the orbital and global layers expressed more than one MyHC isoform, with up to six isoforms in single fiber segments. MyHC expression varied significantly and unpredictably along the length of single myofibers. Thus EOM myofibers represent a continuum in their histological and physiological characteristics. This continuum would facilitate fine motor control of eye position, speed, and direction of movement in all positions of gaze and with all types of eye movements-from slow vergence movements to fast saccades. To fully understand how the brain controls eye position and movements, it is critical that this significant EOM myofiber heterogeneity be integrated into hypotheses of oculomotor control.
Collapse
Affiliation(s)
- Linda K McLoon
- Dept. of Ophthalmology, Univ. of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
8
|
Physiological Attributes of Vocal Fatigue and Their Acoustic Effects: A Synthesis of Findings for a Criterion-Based Prevention of Acquired Voice Disorders. J Voice 2010; 24:324-36. [DOI: 10.1016/j.jvoice.2008.10.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 10/02/2008] [Indexed: 11/19/2022]
|
9
|
Smerdu V, Cehovin T, Strbenc M, Fazarinc G. Enzyme- and immunohistochemical aspects of skeletal muscle fibers in brown bear (Ursus arctos). J Morphol 2009; 270:154-61. [PMID: 18798247 DOI: 10.1002/jmor.10673] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To further elucidate the pattern of MHC isoform expression in skeletal muscles of large mammals, in this study the skeletal muscles of brown bear, one of the largest mammalian predators with an extraordinary locomotor capacity, were analyzed. Fiber types in longissimus dorsi, triceps brachii caput longum, and rectus femoris muscles were determined according to the myofibrillar ATPase (mATPase) histochemistry and MHC isoform expression, revealed by a set of antibodies specific to MHC isoforms. The oxidative (SDH) and glycolytic enzyme (alpha-GPDH) capacity of fibers was demonstrated as well. By mATPase histochemistry five fiber types, i.e., I, IIC, IIA, IIAX, IIX were distinguished. Analyzing the MHC isoform expression, we assume that MHC-I, -IIa, and -IIx are expressed in the muscles of adolescent bears. MHC-I isoform was expressed in Type-I fibers and coexpressed with presumably -IIa isoform, in Type-IIC fibers. Surprisingly, two antibodies specific to rat MHC-IIa stained those fast fibers, that were histochemically and immunohistochemically classified as Type IIX. This assumption was additionally confirmed by complete absence of fiber staining with antibody specific to rat MHC-IIb and all fast fiber staining with antibody that according to our experience recognizes MHC-IIa and -IIx of rat. Furthermore, quite high-oxidative capacity of all fast fiber types and their weak glycolytic capacity also imply for MHC-IIa and -IIx isoform expression in fast fibers of bear. However, in adult, full-grown animal, only MHC-I and MHC-IIa isoforms were expressed. The expression of only two fast isoforms in bear, like in many other large mammals (humans, cat, dog, goat, cattle, and horse) obviously meets the weight-bearing and locomotor demands of these mammals.
Collapse
Affiliation(s)
- Vika Smerdu
- Institute of Anatomy, Medical Faculty, Korytkova 2, 1000 Ljubljana, Slovenia
| | | | | | | |
Collapse
|
10
|
Rhee HS, Hoh JFY. Immunohistochemical analysis of myosin heavy chain expression in laryngeal muscles of the rabbit, cat, and baboon. J Histochem Cytochem 2008; 56:929-50. [PMID: 18606609 DOI: 10.1369/jhc.2008.951756] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We studied myosin heavy chain (MyHC) expression and fiber type distribution in laryngeal muscles in the rabbit, cat, and baboon using immunohistochemistry with highly MyHC-specific antibodies. Two types of variation in MyHC expression were found: between muscles of different function within species and within specific muscles between species. Within species, thyroarytenoid (Ta), an adductor, had faster MyHCs and fiber type profiles than the abductor, posterior cricoarytenoid (PCA), which expressed faster MyHCs than the vocal fold tensor, cricothyroid (CT). Between species, laryngeal muscles generally expressed faster MyHCs in small animals than in larger ones: extraocular (EO) MyHC was expressed in the Ta and PCA of the rabbit but not in the cat and baboon, whereas 2B MyHC was expressed in these muscles of the cat but not of the baboon. The CT expressed only MyHC isoforms and fiber types found in the limb muscles of the same species. These results are discussed in light of the hypothesis that the between-species variations in laryngeal muscle fiber types are evolutionary adaptations in response to changes in body mass and respiratory frequency. Within-species variations in fiber types ensure that protective closure of the glottis is always faster than movements regulating airflow during respiration.
Collapse
Affiliation(s)
- Hannah S Rhee
- Discipline of Physiology, Building F13, University of Sydney, NSW 2006, Australia
| | | |
Collapse
|
11
|
Strbenc M, Smerdu V, Pogacnik A, Fazarinc G. Myosin heavy chain isoform transitions in canine skeletal muscles during postnatal growth. J Anat 2007; 209:149-63. [PMID: 16879596 PMCID: PMC2100321 DOI: 10.1111/j.1469-7580.2006.00599.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
To gain a better understanding of the normal characteristics of developing canine muscles, myosin heavy chain (MHC) isoform expression was analysed in the axial and limb skeletal muscles of 18 young dogs whose ages ranged from the late prenatal stage to 6 months. We compared the results of immunohistochemistry using ten monoclonal antibodies, specific to different MHC isoforms, and enzyme-histochemical reactions, which demonstrate the activity of myofibrillar ATPase, succinate dehydrogenase (SDH) and alpha-glycerophosphate dehydrogenase (alpha-GPDH). In the skeletal muscles of fetuses and neonatal dogs the developmental isoforms MHC-emb and MHC-neo were prevalent. In all muscles the primary fibres, located centrally in each muscle fascicle, strongly expressed the slow isoform MHC-I. The adult fast isoform MHC-IIa was first noted in some of the secondary fibres on fetal day 55. During the first 10 days after birth, the expression of MHC-emb declined, as did that of MHC-neo during the second and third weeks. Correspondingly, the expression of MHC-IIa, and later, of MHC-I increased in the secondary fibres. Between the sixth week and second month the expression of MHC-IIx became prominent. The slow rhomboideus muscle exhibited an early expression of the slow isoform in the secondary fibres. Our results indicate that the timing of muscle maturation depends on its activity immediately following birth. The fastest developing muscle was the diaphragm, followed by the fast muscles. A pronounced changeover from developmental to adult isoforms was noted at 4-6 weeks of age, which coincides with the increased physical activity of puppies.
Collapse
MESH Headings
- Adenosine Triphosphatases/metabolism
- Animals
- Animals, Newborn
- Dogs
- Glycerolphosphate Dehydrogenase/metabolism
- Muscle Fibers, Fast-Twitch/cytology
- Muscle Fibers, Fast-Twitch/enzymology
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Slow-Twitch/cytology
- Muscle Fibers, Slow-Twitch/enzymology
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- Myosin Heavy Chains/metabolism
- Protein Isoforms
- Succinate Dehydrogenase/metabolism
Collapse
Affiliation(s)
- Malan Strbenc
- Institute of Anatomy, Histology and Embryology, Veterinary Faculty, University of Ljubljana, Slovenia
| | | | | | | |
Collapse
|
12
|
Alipour F, Titze IR, Hunter E, Tayama N. Active and passive properties of canine abduction/adduction laryngeal muscles. J Voice 2006; 19:350-9. [PMID: 16102663 PMCID: PMC1552101 DOI: 10.1016/j.jvoice.2004.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2004] [Indexed: 11/16/2022]
Abstract
Active and passive characteristics of the canine adductor- abductor muscles were investigated through a series of experiments conducted in vitro. Samples of canine posterior cricoarytenoid muscle (PCA), lateral cricoarytenoid muscle (LCA), and interarytenoid muscle (IA) were dissected from dog larynges excised a few minutes before death and kept in Krebs-Ringer solution at a temperature of 37 degrees C +/- 1 degree C and a pH of 7.4 +/- 0.05. Active twitch and tetanic force was obtained in an isometric condition by applying field stimulation to the muscle samples through a pair of parallel-plate platinum electrodes. Force and elongation of the samples were obtained electronically with a dual-servo system (ergometer). The results indicate that the twitch contraction times of the three muscles are very similar, with the average of 32 +/- 1.9 ms for PCA, 29 +/- 1.6 ms for LCA, and 32 +/- 2.4 ms for IA across all elongations. Thus, PCA, LCA, and IA muscles are all faster than the cricothyroid (CT) muscles but slower than the thyroarytenoid (TA) muscles. The tetanic force response times of these muscles are also similar, with a maximum rate of force increase of 0.14 N/ms.
Collapse
Affiliation(s)
- Fariborz Alipour
- Department of Speech Pathology and Audiology, The University of Iowa, Iowa City, 52242, USA.
| | | | | | | |
Collapse
|
13
|
Bergrin M, Bicer S, Lucas CA, Reiser PJ. Three-dimensional compartmentalization of myosin heavy chain and myosin light chain isoforms in dog thyroarytenoid muscle. Am J Physiol Cell Physiol 2005; 290:C1446-58. [PMID: 16371441 DOI: 10.1152/ajpcell.00323.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The thyroarytenoid muscle, a vocal fold adductor, has important roles in airway protection (e.g., prevention of aspiration) and phonation. Isoform expression of myosin heavy chain (MHC), a major determinant of muscle-shortening velocity, has been reported to be heterogeneous in this muscle in several mammals, differing markedly between the medial and lateral divisions. The objective was to determine the isoform expression patterns of both MHC and myosin light chain (MLC), with the latter having a modulatory role in determining shortening velocity, to further test whether the expression of both myosin subunits differs in multiple specific sites within the divisions of the dog thyroarytenoid muscle, potentially revealing even greater compartmentalization in this muscle. Our results indicate the existence of large gradients in the relative levels of individual MHC isoforms in the craniocaudal axis along the medial layer (i.e., airflow axis), where levels of MHC-I and MHC-IIA are low at both ends of the axis and high in the middle and MHC-IIB has a reciprocal distribution. The lateral layer is more uniform, with high levels of MHC-IIB throughout. The level of MHC-IID is relatively constant along the axis in both layers. Large differences exist in the distribution of MHC isoforms among single fibers isolated from sites along the craniocaudal axis, especially in the lateral layer. Systematic regional variations are apparent in the MLC isoform composition of single fibers as well, including some MLC isoform combinations that are not observed in dog limb muscles. Variations of MHC and MLC isoform expression in the dog thyroarytenoid muscle are greater than previously recognized and suggest an even broader range of contractile properties within this multifunctional muscle.
Collapse
Affiliation(s)
- Mark Bergrin
- Department of Oral Biology, College of Dentistry, The Ohio State University, 305 W. 12th Avenue, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
14
|
Acevedo LM, Rivero JLL. New insights into skeletal muscle fibre types in the dog with particular focus towards hybrid myosin phenotypes. Cell Tissue Res 2005; 323:283-303. [PMID: 16163488 DOI: 10.1007/s00441-005-0057-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Accepted: 07/20/2005] [Indexed: 11/28/2022]
Abstract
Electrophoresis, immunoblots, immunohistochemistry and image analysis methods were applied to characterise canine trunk and appendicular muscle fibres according to their myosin heavy chain (MyHC) composition and to determine, on a fibre-to-fibre basis, the correlation between contractile [MyHC (s), myofibrillar ATPase (mATPase) and sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) isoforms], metabolic [succinate dehydrogenase (SDH) and glycerol-3-phosphate dehydrogenase (GPDH) activities and glycogen and phospholamban (PLB) content] and morphological (cross-sectional area and capillary and nuclear densities) features of individual myofibres. An accurate delineation of MyHC-based fibre types was obtained with the developed immunohistochemical method, which showed high sensitivity and objectivity to delineate hybrid fibres with overwhelming dominance of one MyHC isoform. Phenotypic differences in contractile, metabolic and morphological properties seen between fibre types were related to MyHC content. All canine skeletal muscle fibre types had a relatively high histochemical SDH activity but significant differences existed in the order IIA>I>IIX. Mean GPDH was ranked according to fibre type such that I<IIA<IIX. Type IIA fibres were the smallest, type IIX fibres the largest and type I of intermediate size. Capillary and nuclear density decreased in the order IIA>I>IIX. Hybrid fibres, which represented nearly one third of the whole pool of skeletal muscle fibres analysed, had mean values intermediate between their respective pure phenotypes. Slow fibres expressed the slow SERCA isoform and PLB, whereas type II fibres expressed the fast SERCA isoform. Discrimination of myofibres according to their MyHC content was possible on the basis of their contractile, metabolic and morphological features. These intrafibre interrelationships suggest that myofibres of control dogs exhibit a high degree of co-ordination in their physiological, biochemical and morphological characteristics. This study demonstrates that canine skeletal muscle fibres have been misclassified in numerous previous studies and offers useful baseline data and new prospects for future work on muscle-fibre-typing in canine experimental studies.
Collapse
Affiliation(s)
- Luz M Acevedo
- Laboratory of Muscular Biopathology, Department of Comparative Anatomy and Pathological Anatomy, Faculty of Veterinary Sciences, University of Cordoba, 14071 Cordoba, Spain
| | | |
Collapse
|
15
|
Smerdu V, Strbenc M, Meznaric-Petrusa M, Fazarinc G. Identification of Myosin Heavy Chain I, IIa and IIx in Canine Skeletal Muscles by an Electrophoretic and Immunoblotting Study. Cells Tissues Organs 2005; 180:106-16. [PMID: 16113539 DOI: 10.1159/000086751] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2005] [Indexed: 11/19/2022] Open
Abstract
To determine which myosin heavy chain (MHC) isoforms are expressed in canine skeletal muscles, different muscle samples of five mixed-breed dogs were analysed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The separated MHC isoforms were identified by immunoblotting technique using a set of specific monoclonal antibodies. To compare the results of the electrophoretic and immunoblotting study, the pattern of MHC isoform expression and histochemical profiles of canine fibres were additionally demonstrated on serial muscle sections by immunohistochemistry and myofibrillar adenosine triphosphatase (mATPase) histochemistry. Not more than three MHC isoforms were demonstrated by SDS-PAGE in the analysed canine muscles. By the immunoblotting technique, the fastest migrating MHC band was identified as slow or MHC-I, the intermediate one as MHC-IIx and the slowest migrating band as MHC-IIa isoform. Since none of the three MHC bands and none of the analysed fibres were recognized by the antibody specific to MHC-IIb of rats, we concluded that MHC-IIb is not expressed in large skeletal muscles of dogs. Similarly, only three major fibre types, i.e. I, IIA and IIX, were revealed according to the pattern of MHC immunohistochemistry and mATPase reaction. Type IIA fibres were more alkali- and acid-stable than type IIX fibres after mATPase histochemistry; hence, the latter corresponded to type IIDog fibres. However, beside the three major fibre types, scarce hybrid fibres co-expressing two MHC isoforms (I/IIA and IIA/IIX) were demonstrated by immunohistochemistry.
Collapse
Affiliation(s)
- V Smerdu
- Institute of Anatomy, Medical Faculty, University in Ljubljana, Ljubljana, Slovenia.
| | | | | | | |
Collapse
|
16
|
Abstract
The internal laryngeal muscles have evolved to subserve the highly specialized functions of airways protection, respiration, and phonation. Their contractile properties, histochemistry, biochemical properties, myosin heavy chain (MyHC) expression and their regulation by nerves and hormones are reviewed and compared with limb muscle fibres. Cricothyroid, the vocal cord tensor, is limb-like in MyHC composition and fibre type properties, while the vocal fold abductor and adductors are allotypically different, with capacity for expressing an isoform of MyHC that is kinetically faster than the fastest limb MyHC. In rats and rabbits the faster isoform is the extraocular (EO) MyHC, while in carnivores, it is the IIB MyHC. These adaptations enable the abductor and adductor muscles to remain always faster than the cricothyroid as the latter changes in speed during evolution to match changing metabolic and respiratory rates in relation to scaling with body mass. Such phylogenetic plasticity is vital to the airways protection and respiratory functions of these muscles. The posterior cricoarythenoid, the abductor muscle, is tonically driven during expiration, and consequently has a slower fibre type profile than the principal adductor, the thyroarythenoid. The human thyroarythenoid appears not to express EO or IIB MyHC significantly, but is unique in expressing the slow-tonic MyHC. The concepts of allotype and phylogenetic plasticity help to explain differences in fibre type between limb and laryngeal muscles and between homologous laryngeal muscles in different species. Laryngeal muscle fibres exhibit physiological plasticity as do limb muscles, being subject to neural and hormonal modulation.
Collapse
Affiliation(s)
- J F Y Hoh
- Discipline of Physiology, Institute for Biomedical Research, Faculty of Medicine, School of Medical Sciences, The University of Sydney, NSW, Australia
| |
Collapse
|
17
|
Strbenc M, Smerdu V, Zupanc M, Tozon N, Fazarinc G. Pattern of Myosin Heavy Chain Isoforms in Different Fibre Types of Canine Trunk and Limb Skeletal Muscles. Cells Tissues Organs 2004; 176:178-86. [PMID: 15118397 DOI: 10.1159/000077034] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2003] [Indexed: 11/19/2022] Open
Abstract
The aim of this study was to determine the pattern of myosin heavy chain (MHC) isoform expressions within the muscle fibres of functionally diverse trunk and limb dog muscles using monoclonal antibodies that are specific to MHC isoforms. We found that three MHC isoforms are expressed in dog skeletal muscles. The pattern of their expressions determined the existence of 'pure' fibres, i.e. I and IIa, both expressing only one MHC isoform, and 'hybrid' fibres, i.e. I/IIa and IIa/x, that co-expressed two MHC isoforms. While the MHCI, MHCIIa and MHCI/IIa fibres corresponded to the myofibrillar ATPase type fibres I, IIA and IIC, respectively, the hybrid MHCIIa/x fibres mostly behaved like the IIDog fibre type in myofibrillar ATPase reaction as described by Latorre et al. No pure MHCIIx fibres were found. Though MHCIIa/x fibres were quite numerous, their presence varied not only within different muscles but within the same muscle of different animals as well. We suggest that the discrepancies in the classification of fibre types according to their myofibrillar ATPase activity between different studies of dog skeletal muscles are probably a consequence of the variable content of the MHCIIa and MHCIIx isoforms in the MHCIIa/x hybrid fibres. Estimating the histochemical metabolic profile of fibres we found that in all fast fibres oxidative-glycolytic metabolism prevailed, whereas in slow fibres oxidative metabolism was more pronounced.
Collapse
Affiliation(s)
- M Strbenc
- Institute for Anatomy, Histology and Embryology, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
18
|
Li ZB, Lehar M, Nakagawa H, Hoh JFY, Flint PW. Differential expression of myosin heavy chain isoforms between abductor and adductor muscles in the human larynx. Otolaryngol Head Neck Surg 2004; 130:217-22. [PMID: 14990919 DOI: 10.1016/j.otohns.2003.09.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE This study examines the differential expression of myosin heavy chain (MyHC) components in human laryngeal muscle groups. STUDY DESIGN A battery of monospecific monoclonal antibodies in Western blots was used to determine expression of IIX, extraocular-specific (EOM), and IIB MyHCs for the thyroarytenoid (TA), vocalis (VOC), lateral cricoarytenoid (LCA), cricothyroid (CT), and posterior cricoarytenoid (PCA) muscles obtained from fresh cadaver specimens. RESULTS Fast IIX MyHC was only expressed in the TA, VOC, and LCA muscles. Fast IIA and slow MyHCs were expressed in all laryngeal muscles including the CT and PCA. The CT with mixed phonatory and respiratory function and the PCA with respiratory function did not express IIX MyHC. The 2 MyHC isoforms associated with the highest speeds of contraction in rat laryngeal muscle, namely, the EOM MyHC and IIB MyHC, were not detected in human laryngeal muscles. Novel MyHC bands were not detected in SDS-PAGE gels or Western blots using a broad specificity MyHC antibody. CONCLUSION The profile of MyHC expression in human laryngeal muscles differs from that observed in human extraocular and masticator muscles, and other mammalian species. Our data demonstrate that IIX MyHC expression is associated primarily with muscles affecting glottic closure and is absent in CT and PCA. SIGNIFICANCE A higher percentage of IIX MyHC is expected to impart a high speed of shortening to the TA and LCA muscles. The absence of IIX MyHC in muscles with respiratory (PCA) and mixed respiratory/phonatory function (CT) further supports the inference that the physiologic difference between laryngeal muscles is reflected in the molecular composition of contractile protein.
Collapse
Affiliation(s)
- Zhao-Bo Li
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | | | | | | | |
Collapse
|
19
|
D'Antona G, Megighian A, Bortolotto S, Pellegrino MA, Marchese-Ragona R, Staffieri A, Bottinelli R, Reggiani C. Contractile properties and myosin heavy chain isoform composition in single fibre of human laryngeal muscles. J Muscle Res Cell Motil 2003; 23:187-95. [PMID: 12500898 DOI: 10.1023/a:1020963021105] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the present study we aimed to determine the functional properties and the myosin heavy chain (MHC) isoform composition of single chemically skinned fibres from the vocal muscle of four adult men (age: 55-67 years). Single fibres, dissected from the bioptic samples, were chemically skinned and isometric tension (P0) and maximal shortening velocity (V0) were measured at pCa 4.6. MHC and myosin light chain (MLC) composition of fibre segments and MHC distribution of the biopsy samples were analysed by SDS-poly-acrylamide gel electrophoresis (SDS-PAGE) and densitometry. Four MHC isoforms (1, 2A, 2X and a fourth isoform, provisionally called L) and five MLC isoforms (MLC1s, MLC1f, MLC3f, MLC2f, MLC2s) were identified. The major findings of this study were: (1) fast MHC isoforms (in particular MHC-2A) and fast fibres were predominant, (2) one-third of the fibres were mixed or hybrid, i.e. expressed more than one MHC isoform, (3) V0 and P0 values were determined by the MHC isoform composition and mixed fibres showed functional properties which were intermediate between pure fibres; MHC-L was associated with V0 values similar to those of MHC-2A, (4) compared with limb muscles, V0 values of laryngeal fibres were similar to those of limb muscle fibres containing the same MHC isoform whereas P0 values were lower for slow and fast 2X fibres and similar for fibres expressing MHC-2A.
Collapse
Affiliation(s)
- Giuseppe D'Antona
- Institute of Human Physiology, University of Pavia, via Forlanini 6, 27100 Pavia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Yasuda K, Okuda D, Tanaka M, Mori R, Hasumi-Nakayama Y, Tanaka M, Yamaoka M, Furusawa K. Central distribution of neuronal cell bodies innervating the levator veli palatini muscle and associated pattern of myosin heavy chain isoform expression in rat. Brain Res 2003; 968:80-8. [PMID: 12644266 DOI: 10.1016/s0006-8993(02)04273-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The levator veli palatini (LVP) is a muscle that plays a very important role in the complex functions regulating velopharyngeal function. Although previous studies have indicated that the contraction properties of the LVP closely resemble those of the intrinsic laryngeal muscle, histological evidence has not yet been obtained. The LVP is generally considered to be innervated by the glossopharyngeal nerve, which contains efferent and afferent components. LVP motoneurons are localized in the nucleus ambiguus (Amb), and afferent neurons project into the bilateral regions of the nucleus of the solitary tract (NST). However, the position of neuronal cell bodies on afferent neurons has remained unknown. The present study examined serial muscle cross-sections using monoclonal antibodies specific for myosin heavy chain (MyHC), to characterize muscle fibers of the LVP, clarify the central distribution of LVP motoneurons within the Amb and afferent terminals within the NST, and elucidate the location of LVP afferent neuronal cell bodies. Clear separation was observed within the LVP between fibers containing only fast MyHC and others positive for both slow and fast MyHC. Horseradish peroxidase (HRP)-labeled motoneurons in the Amb were separated into rostral and caudal divisions, corresponding to the Bötzinger complex and the rostral ventral respiratory group, respectively. HRP-labeled afferent neuronal cell bodies were observed in a glossopharyngo-vagal complex ganglion, and HRP-labeled afferent terminals were observed in bilateral lateral regions of the NST. These results suggest a relationship between MyHC isoform expression and the central distribution of LVP motoneurons or central projections of afferent neurons, with regard to activity of the LVP during both inspiration and expiration.
Collapse
Affiliation(s)
- Kouichi Yasuda
- Department of Oral and Maxillofacial Surgery, Matsumoto Dental University School of Dentistry, Nagano 399-0781, Shiojiri, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Sciote JJ, Morris TJ, Brandon CA, Horton MJ, Rosen C. Unloaded shortening velocity and myosin heavy chain variations in human laryngeal muscle fibers. Ann Otol Rhinol Laryngol 2002; 111:120-7. [PMID: 11860063 PMCID: PMC3848194 DOI: 10.1177/000348940211100203] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Myosin description in human laryngeal muscles is incomplete, but evidence suggests the presence of type I, IIA, IIX, and tonic myosin heavy chain (MHC) fibers. This study describes the unloaded shortening velocity (V0) of chemically skinned laryngeal muscle fibers measured by the slack test method in relation to MHC content. Skeletal fibers from human laryngeal and limb muscle biopsy specimens were obtained for determination of V0, and subsequently, glycerol-sodium dodecyl sulfate-polyacrylamide gel electrophoresis was used to determine the MHC isoform content. The fibers from human limb muscle had shortening speeds similar to those in previous reports on human skeletal fibers. Type I, IIA, and IIX fibers of laryngeal muscle had shortening speeds similar to those of fibers from limb muscle, but laryngeal fibers with heterogeneous MHC expression had a wide range of shortening speeds, some being nearly twice as fast as limb fibers. In addition, MHC isoform bands from human extraocular muscle comigrated with some bands from laryngeal muscle--a finding suggesting that extraocular myosin may also be expressed.
Collapse
Affiliation(s)
- James J Sciote
- Department of Orthodontics, University of Pittsburgh School of Dental Medicine, Pennsylvania 15261-1032, USA
| | | | | | | | | |
Collapse
|
22
|
Abstract
1. The main aim of the present review is to raise awareness of the molecular complexity of single skeletal muscle fibres from "normal" and "transforming" muscles, in recognition of the many types of hybrids that have been observed in vertebrate skeletal muscle. The data used to illustrate various points made in the review were taken from studies on mammalian (mostly rat) and amphibian muscles. 2. The review provides a brief overview of the pattern and extent of molecular heterogeneity in hybrid muscle fibres and of the methodological problems encountered when attempting to identify and characterize such fibres. Particular attention is given to four types of skeletal muscle hybrids: (i) myosin heavy chain (MHC) hybrids; (ii) mismatched MHC-myosin light chains (MLC) hybrids; (iii) mismatched MHC-regulatory protein hybrids; and (iv) hybrids containing mismatched MHC-sarcoplasmic reticulum protein isoforms. 3. Some of the current ideas regarding the functional significance, origin and cognitive value of hybrid fibres are examined critically.
Collapse
Affiliation(s)
- G M Stephenson
- Muscle Cell Biochemistry Laboratory, School of Life Sciences and Technology, Victoria University, Melbourne, Victoria 8001, Australia.
| |
Collapse
|
23
|
Abstract
In this review, the adaptations in myosin heavy chain (MHC) isoform expression induced by chronic reductions in neuromuscular activity (including electrical activation and load bearing) of the intact neuromuscular unit are summarized and evaluated. Several different animal models and human clinical conditions of reduced neuromuscular activity are categorized based on the manner and extent to which they alter the levels of electrical activation and load bearing, resulting in three main categories of reduced activity. These are: 1) reduced activation and load bearing (including spinal cord injury, spinal cord transection, and limb immobilization with the muscle in a shortened position); 2) reduced loading (including spaceflight, hindlimb unloading, bed rest, and unilateral limb unloading); and 3) inactivity (including spinal cord isolation and blockage of motoneuron action potential conduction by tetrodotoxin). All of the models discussed resulted in increased expression of fast MHC isoforms at the protein and/or mRNA levels in slow and fast muscles (with the possible exception of unilateral limb unloading in humans). However, the specific fast MHC isoforms that are induced (usually the MHC-IIx isoform in slow muscle and the MHC-IIb isoform in fast muscle) and the degree and rate of adaptation are dependent upon the animal species and the specific model or condition that is being studied. Recent studies designed to elucidate the mechanisms by which electrical activation and load bearing alter expression of MHC isoforms at the cellular and genetic levels are also reviewed. Two main mechanisms have been proposed, the myogenin:MyoD and calcineurin:NF-AT pathways. Collectively, the data suggest that the regulation of MHC isoform expression involves a complex interaction of multiple control mechanisms including the myogenin:MyoD and calcineurin:NF-AT pathways; however, other intracellular signaling pathways are likely to contribute.
Collapse
Affiliation(s)
- R J Talmadge
- Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0430, USA.
| |
Collapse
|
24
|
Abstract
First described in 1982, laryngeal synkinesis continues to play an important diagnostic and therapeutic role following recurrent laryngeal nerve (RLN) injury. Vocal fold motion impairment (formerly called "vocal cord paralysis"), hyperadducted and hyperabducted vocal folds, and certain laryngeal spasmodic and tremor disorders are often best explained by synkinesis. A closer look at these mechanisms confirms that following RLN injury, immobile vocal folds may be nearly normally functional (favorable), or spastic, hyperadducted, or hyperabducted (unfavorable). This has resulted in a functional classification of laryngeal synkinesis as follows: type I laryngeal synkinesis, with satisfactory voice and airway (vocal fold poorly mobile, or immobile); type II synkinesis, with spasmodic vocal folds and an unsatisfactory voice and/or airway; type III synkinesis, with hyperadducted vocal folds and airway compromise; and type IV synkinesis, with hyperabducted vocal folds, poor voice, and possible aspiration. This classification facilitates the understanding of laryngeal pathophysiology following RLN injuries and promotes a more scientific basis for management.
Collapse
Affiliation(s)
- R L Crumley
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, USA
| |
Collapse
|
25
|
Périé S, Agbulut O, St Guily JL, Butler-Browne GS. Myosin heavy chain expression in human laryngeal muscle fibers. A biochemical study. Ann Otol Rhinol Laryngol 2000; 109:216-20. [PMID: 10685576 DOI: 10.1177/000348940010900218] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Since the intrinsic laryngeal muscles in humans are involved in specialized functions, one may suppose that this would be associated with the expression of specific myosin heavy chain (MHC) isoforms, as has been reported for the rat, dog, and rabbit. In order to determine which MHCs are expressed in the human laryngeal muscles, biochemical analysis using sodium dodecyl sulfate-polyacrylamide gel electrophoresis was performed. Thyroarytenoid and posterior cricoarytenoid muscles were obtained from a 7-month-old infant and 4 adults. In the adult human laryngeal muscles, 3 bands were resolved identical to those previously described in the human limb muscles (I, IIA, and IIB MHCs). In contrast, muscles from the infant also expressed fetal MHC and a novel MHC not observed in other human skeletal muscles. This novel band migrated at the same level as the laryngeal MHC previously described in the rat. Since these 2 isoforms disappear in the adult, the persistence in the infant could be correlated with the immature development of laryngeal functions and, in particular, phonation.
Collapse
Affiliation(s)
- S Périé
- Service d'Oto-Rhino-Laryngologie et Chirurgie de la Face et du Cou, Faculté de Médecine Saint Antoine, Université Paris VI, Hôpital Tenon, Paris, France
| | | | | | | |
Collapse
|
26
|
Ludlow CL, Bielamowicz S, Daniels Rosenberg M, Ambalavanar R, Rossini K, Gillespie M, Hampshire V, Testerman R, Erickson D, Carraro U. Chronic intermittent stimulation of the thyroarytenoid muscle maintains dynamic control of glottal adduction. Muscle Nerve 2000; 23:44-57. [PMID: 10590405 DOI: 10.1002/(sici)1097-4598(200001)23:1<44::aid-mus6>3.0.co;2-e] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Patients with laryngeal motor control disorders need improved dynamic glottal closure for speech and swallowing. To evaluate the functional outcome of intermittent chronic thyroarytenoid muscle stimulation in an animal model, 6 canines were implanted with bilateral Medtronic Xtrel systems containing Peterson-type electrodes in the inferior and superior portions of the thyroarytenoid muscle. Stimulation was on one side only at 60 Hz, for 5 s on and 5 s off, over 8 h, 5 days per week, up to 8 months. Monthly videorecordings were done under anesthesia to measure the voltage threshold for detectable movement on each side, and vocal fold displacement and velocity during maximal stimulation of each side. Movement thresholds were lower in the inferior portion of the thyroarytenoid muscle (P </= 0.0005). Movement velocity was greater on the stimulated than on the nonstimulated side after 3 to 8 months (P = 0.039). No differences in the percentage distribution of different myosin heavy chain types were found between the stimulated and nonstimulated muscle samples. Sustained dynamic glottal adduction with no alteration in thyroarytenoid muscle function or fiber type was achieved with intermittent stimulation over 8 months. The results suggest that chronic intermittent thyroarytenoid stimulation has good potential for improving airway protection in dysphagia.
Collapse
Affiliation(s)
- C L Ludlow
- Laryngeal and Speech Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 10, Room 5D38, 10 Center Drive, MSC 1416, Bethesda, Maryland, 20892-1416, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
OBJECTIVES Myosin heavy chain (MHC) composition of human thyroarytenoid (TA), lateral cricoarytenoid (LCA), interarytenoid (IA), vocalis, posterior cricoarytenoid (PCA), and cricothyroid muscles were examined using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Western bolt techniques. The presence of superfast MHC was also assessed using antibodies directed against the extraocular MHC. STUDY DESIGN MHC protein was analyzed using fresh human laryngeal muscles. METHODS Laryngeal muscles excised from cadavers were processed for SDS-PAGE. The composition of MHC isoforms was determined by densitometry. Western blot was carried out to identify specific bands. RESULTS MHC types IIA and IIB are the predominant MHC components in human laryngeal muscles. The adductor muscles--TA, LCA, and IA--have a higher percentage of type IIB MHC and a lower percentage of type I when compared with the abductor--PCA. The rank file order for type IIB MHC composition (TA > LCA > or = IA > PCA) is the same in all specimens. A band migrating between type IIA and type I was observed in several specimens. Although similar to type IIL in rats, this atypical band did not react with anti-extraocular MHC antibody on Western blot. CONCLUSION Characterization of laryngeal muscles determined by the composition of MHC is correlated with function and neural input. Human laryngeal muscle is characterized by a predominance of fast-type MHCs in laryngeal closing muscle and mixed fast-slow type MHCs in respiratory and phonatory muscle groups. Although an atypical myosin band similar to type IIL (superfast) MHC in rat was identified, it did not react with anti-extraocular MHC antibody.
Collapse
Affiliation(s)
- A Shiotani
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21203-6402, USA
| | | | | |
Collapse
|