1
|
Chawathe A, Ahire V, Luthra K, Patil B, Garkhal K, Sharma N. Analytical and drug delivery strategies for short peptides: From manufacturing to market. Anal Biochem 2025; 696:115699. [PMID: 39461693 DOI: 10.1016/j.ab.2024.115699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
In recent times, biopharmaceuticals have gained attention because of their tremendous potential to benefit millions of patients globally by treating widespread diseases such as cancer, diabetes and many rare diseases. Short peptides (SP), also termed as oligopeptides, are one such class of biopharmaceuticals, that are majorly involved in efficient functioning of biological systems. Peptide chains that are 2-20 amino acids long are considered as oligopeptides by researchers and are some of the functionally vital compounds with widespread applications including self-assembly material for drug delivery, targeting ligands for precise/specific targeting and other biological uses. Using functionalised biomacromolecules such as short chained peptides, helps in improving pharmacokinetic properties and biodistribution profile of the drug. Apart from this, functionalised SP are being employed as cell penetrating peptides and prodrug to specifically and selectively target tumor sites. In order to minimize any unwanted interaction and adverse effects, the stability and safety of SP should be ensured throughout its development from manufacturing to market. Formulation development and characterization strategies of these potential molecules are described in the following review along with various applications and details of marketed formulations.
Collapse
Affiliation(s)
- Ashwini Chawathe
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Vishal Ahire
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Kshitiz Luthra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Bhumika Patil
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Kalpna Garkhal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India.
| | - Nitish Sharma
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
2
|
Serafin P, Kleczkowska P. Bombesins: A New Frontier in Hybrid Compound Development. Pharmaceutics 2023; 15:2597. [PMID: 38004575 PMCID: PMC10674911 DOI: 10.3390/pharmaceutics15112597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Recently, bombesin (BN) and its analogs have attracted much attention as excellent anticancer agents because they interact with specific receptors widely distributed on the surface of various cancer cells. However, their biological properties proceed far beyond this, given a broad spectrum of activity. Bombesin receptor ligands are effective drugs for the treatment of rheumatoid arthritis or gastrointestinal diseases. However, most diseases are complex, and the use of polytherapy may lead to pharmacokinetic and pharmacodynamic drug-drug interactions, resulting in side effects. Therefore, there is a need to develop effective compounds that also contain BN or its analogs, which are combined with other structural entities, thus generating a so-called hybrid drug. Hybrid drugs that contain bombesin pharmacophore(s) may be proposed as a solution to the problem of polytherapy or the lack of an effective cure. Such structures have now demonstrated the desired efficacy, though information on these aforementioned compounds is relatively scarce. Therefore, our paper aims to encourage researchers to focus on bombesins. Herein, we indicate that the hybrid approach should also be firmly applied to bombesins and the BN receptor family. This paper's structure is divided into two main sections demonstrating bombesins and their properties, as well as recent data on bombesin-based hybrid compounds and their potential usefulness in medicine. Overall, it refers to the discovery and synthesis of modified bombesin-based hybrid compounds.
Collapse
Affiliation(s)
- Pawel Serafin
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland;
| | - Patrycja Kleczkowska
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland;
- Maria Sklodowska-Curie, Medical Academy in Warsaw, Solidarnosci 12 Str., 03-411 Warsaw, Poland
| |
Collapse
|
3
|
Tighe RM, Heck K, Soderblom E, Zhou S, Birukova A, Young K, Rouse D, Vidas J, Komforti MK, Toomey CB, Cuttitta F, Sunday ME. Immediate Release of Gastrin-Releasing Peptide Mediates Delayed Radiation-Induced Pulmonary Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1029-1040. [PMID: 30898588 DOI: 10.1016/j.ajpath.2019.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/07/2019] [Accepted: 01/31/2019] [Indexed: 12/21/2022]
Abstract
Radiation-induced pulmonary fibrosis (RTPF) is a progressive, serious condition in many subjects treated for thoracic malignancies or after accidental nuclear exposure. No biomarker exists for identifying the irradiated subjects most susceptible to pulmonary fibrosis (PF). Previously, we determined that gastrin-releasing peptide (GRP) was elevated within days after birth in newborns exposed to hyperoxia who later developed chronic lung disease. The goal of the current study was to test whether radiation (RT) exposure triggers GRP release in mice and whether this contributes to RTPF in vivo. We determined urine GRP levels and lung GRP immunostaining in mice 0 to 24 after post-thoracic RT (15 Gy). Urine GRP levels were significantly elevated between 24 hours post-RT; GRP-blocking monoclonal antibody 2A11, given minutes post-RT, abrogated urine GRP levels by 6 to 12 hours and also altered phosphoprotein signaling pathways at 24 hours post-RT. Strong extracellular GRP immunostaining was observed in lung at 6 hours post-RT. Mice given one dose of GRP monoclonal antibody 2A11 24 hours post-RT had significantly reduced myofibroblast accumulation and collagen deposition 15 weeks later, indicating protection against lung fibrosis. Therefore, elevation of urine GRP could be predictive of RTPF development. In addition, transient GRP blockade could mitigate PF in normal lung after therapeutic or accidental RT exposure.
Collapse
Affiliation(s)
- Robert M Tighe
- Division of Pulmonary-Critical Care, Department of Medicine, Duke University Durham, North Carolina
| | - Karissa Heck
- Department of Pathology, Duke University Durham, North Carolina
| | - Erik Soderblom
- Department of Cell Biology, Duke University Durham, North Carolina
| | - Shutang Zhou
- Department of Pathology, Duke University Durham, North Carolina
| | - Anastasiya Birukova
- Division of Pulmonary-Critical Care, Department of Medicine, Duke University Durham, North Carolina
| | - Kenneth Young
- Department of Radiation Oncology, Duke University Durham, North Carolina
| | - Douglas Rouse
- Division of Laboratory Animal Resources, Duke University Durham, North Carolina
| | - Jessica Vidas
- Department of Pathology, Duke University Durham, North Carolina
| | | | | | - Frank Cuttitta
- Mouse, Cancer and Genetics Program, National Cancer Institute, Frederick, Maryland
| | - Mary E Sunday
- Division of Pulmonary-Critical Care, Department of Medicine, Duke University Durham, North Carolina; Department of Pathology, Duke University Durham, North Carolina.
| |
Collapse
|
4
|
Shimizu T, Shimizu S, Higashi Y, Nakamura K, Yoshimura N, Saito M. A Stress-Related Peptide Bombesin Centrally Induces Frequent Urination through Brain Bombesin Receptor Types 1 and 2 in the Rat. J Pharmacol Exp Ther 2016; 356:693-701. [PMID: 26729307 DOI: 10.1124/jpet.115.230334] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/30/2015] [Indexed: 12/20/2022] Open
Abstract
Stress exacerbates symptoms of bladder dysfunction including overactive bladder and bladder pain syndrome, but the underlying mechanisms are unknown. Bombesin-like peptides and bombesin receptor types 1 and 2 (BB1 and BB2, respectively) in the brain have been implicated in the mediation/integration of stress responses. In this study, we examined effects of centrally administered bombesin on micturition, focusing on their dependence on 1) the sympathoadrenomedullary system (a representative mechanism activated by stress exposure) and 2) brain BB receptors in urethane-anesthetized (1.0-1.2 g/kg, i.p.) male rats. Intracerebroventricularly administered bombesin significantly shortened intercontraction intervals (ICI) at both doses (0.1 and 1 nmol/animal) without affecting maximal voiding pressure. Bombesin at 1 nmol induced significant increments of plasma noradrenaline and adrenaline levels, which were both abolished by acute bilateral adrenalectomy. On the other hand, adrenalectomy showed no effects on the bombesin-induced shortening of ICI. Much lower doses of bombesin (0.01 and 0.03 nmol/animal, i.c.v.) dose-dependently shortened ICI. Pretreatment with either a BB1 receptor antagonist (BIM-23127; d-Nal-cyclo[Cys-Tyr-d-Trp-Orn-Val-Cys]-Nal-NH2; 3 nmol/animal, i.c.v.) or a BB2 receptor antagonist (BEA; H-d-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-NHEt; 3 nmol/animal, i.c.v.), respectively, suppressed the BB (0.03 nmol/animal, i.c.v.)-induced shortening of ICI, whereas each antagonist by itself (1 and 3 nmol/animal, i.c.v.) had no significant effects on ICI. Bombesin (0.03 nmol/animal, i.c.v.) significantly reduced voided volume per micturition and bladder capacity without affecting postvoid residual volume or voiding efficiency. These results suggest that brain bombesin and BB receptors are involved in facilitation of the rat micturition reflex to induce bladder overactivity, which is independent of the sympathoadrenomedullary outflow modulation.
Collapse
Affiliation(s)
- Takahiro Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan (T.S., S.S., Y.H., K.N., M.S.); and Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (T.S., N.Y.)
| | - Shogo Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan (T.S., S.S., Y.H., K.N., M.S.); and Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (T.S., N.Y.)
| | - Youichirou Higashi
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan (T.S., S.S., Y.H., K.N., M.S.); and Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (T.S., N.Y.)
| | - Kumiko Nakamura
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan (T.S., S.S., Y.H., K.N., M.S.); and Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (T.S., N.Y.)
| | - Naoki Yoshimura
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan (T.S., S.S., Y.H., K.N., M.S.); and Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (T.S., N.Y.)
| | - Motoaki Saito
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan (T.S., S.S., Y.H., K.N., M.S.); and Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania (T.S., N.Y.)
| |
Collapse
|
5
|
Deiana S, Gabbani T, Bagnoli S, Annese V. Emerging drug for diarrhea predominant irritable bowel syndrome. Expert Opin Emerg Drugs 2015; 20:247-61. [PMID: 25732091 DOI: 10.1517/14728214.2015.1013935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Irritable bowel syndrome (IBS) is one of the most common gastrointestinal disorders with a 9 - 23% prevalence estimated in the general population. Patients can be subdivided into those who tend to have predominant diarrhea (IBS-D) or predominant constipation (IBS-C). Total annual productivity loss related to IBS in US is estimated at $205 million, with a significant impairment of health-related quality of life. A gold standard for the treatment of IBS is not established. Symptoms might improve with the use of few drugs and behavioral therapy, however, data concerning efficacy, safety and tolerability are limited. Therefore, development and validation of new therapies targeting at the molecular level are widely awaited. AREAS COVERED We will specifically describe in this review Phase II and Phase III trials, with specific focus on treatment of IBS-D patients. Unfortunately, it is difficult to draw definite conclusions from Phase II and Phase III trials, because of the known high placebo effect. EXPERT OPINION Drugs active on opioid receptor subtypes and neurokinin (NK) receptors seem to be the most promising, but substantial progress of information in this field is still needed. The achievement of more insights on the pathogenesis of IBS could surely better drive and target the therapy, but still strong efforts are awaited.
Collapse
Affiliation(s)
- Simona Deiana
- Emergency Department, Gastroenterology SOD2, AOU Careggi , Florence , Italy +39 55 7946035 ;
| | | | | | | |
Collapse
|
6
|
Stengel A, Mori M, Taché Y. The role of nesfatin-1 in the regulation of food intake and body weight: recent developments and future endeavors. Obes Rev 2013; 14:859-70. [PMID: 23980879 PMCID: PMC3810163 DOI: 10.1111/obr.12063] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 06/29/2013] [Accepted: 07/09/2013] [Indexed: 01/07/2023]
Abstract
Nesfatin-1 was discovered in 2006 and introduced as a potential novel anorexigenic modulator of food intake and body weight. The past years have witnessed increasing evidence establishing nesfatin-1 as a potent physiological inhibitor of food intake and body weight and unravelled nesfatin-1's interaction with other brain transmitters to exert its food consumption inhibitory effect. As observed for other anorexigenic brain neuropeptides, nesfatin-1 is also likely to exert additional, if not pleiotropic, actions in the brain and periphery. Recent studies established the prominent expression of the nesfatin-1 precursor, nucleobindin2 (NUCB2), in the stomach and pancreas, where nesfatin-1 influences endocrine secretion. This review will highlight the current experimental state-of-knowledge on the effects of NUCB2/nesfatin-1 on food intake, body weight and glucose homeostasis. Potential implications in human obesity will be discussed in relation to the evidence of changes in circulating levels of NUCB2/nesfatin-1 in disease states, the occurrence of genetic NUCB2 polymorphisms and--in contrast to several other hormones--the independence of leptin signalling known to be blunted under conditions of chronically increased body weight.
Collapse
Affiliation(s)
- A Stengel
- Charité Center for Internal Medicine and Dermatology, Division for General Internal and Psychosomatic Medicine, Charité- Universitätsmedizin Berlin, Berlin, Germany
| | | | | |
Collapse
|
7
|
Merali Z, Graitson S, Mackay JC, Kent P. Stress and eating: a dual role for bombesin-like peptides. Front Neurosci 2013; 7:193. [PMID: 24298233 PMCID: PMC3829480 DOI: 10.3389/fnins.2013.00193] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 10/07/2013] [Indexed: 12/28/2022] Open
Abstract
The current obesity “epidemic” in the developed world is a major health concern; over half of adult Canadians are now classified as overweight or obese. Although the reasons for high obesity rates remain unknown, an important factor appears to be the role stressors play in overconsumption of food and weight gain. In this context, increased stressor exposure and/or perceived stress may influence eating behavior and food choices. Stress-induced anorexia is often noted in rats exposed to chronic stress (e.g., repeated restraint) and access to standard Chow diet; associated reduced consumption and weight loss. However, if a similar stressor exposure takes place in the presence of palatable, calorie dense food, rats often consume an increase proportion of palatable food relative to Chow, leading to weight gain and obesity. In humans, a similar desire to eat palatable or “comfort” foods has been noted under stressful situations; it is thought that this response may potentially be attributable to stress-buffering properties and/or through activation of reward pathways. The complex interplay between stress-induced anorexia and stress-induced obesity is discussed in terms of the overlapping circuitry and neurochemicals that mediate feeding, stress and reward pathways. In particular, this paper draws attention to the bombesin family of peptides (BBs) initially shown to regulate food intake and subsequently shown to mediate stress response as well. Evidence is presented to support the hypothesis that BBs may be involved in stress-induced anorexia under certain conditions, but that the same peptides could also be involved in stress-induced obesity. This hypothesis is based on the unique distribution of BBs in key cortico-limbic brain regions involved in food regulation, reward, incentive salience and motivationally driven behavior.
Collapse
Affiliation(s)
- Z Merali
- Department of Psychology, University of Ottawa Ottawa, ON, Canada ; Department of Cellular and Molecular Medicine, University of Ottawa Ottawa, ON, Canada ; University of Ottawa Institute of Mental Health Research Ottawa, ON, Canada
| | | | | | | |
Collapse
|
8
|
Fournier P, Dumulon-Perreault V, Ait-Mohand S, Tremblay S, Bénard F, Lecomte R, Guérin B. Novel Radiolabeled Peptides for Breast and Prostate Tumor PET Imaging: 64Cu/and 68Ga/NOTA-PEG-[d-Tyr6,βAla11,Thi13,Nle14]BBN(6–14). Bioconjug Chem 2012; 23:1687-93. [DOI: 10.1021/bc3002437] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Patrick Fournier
- Centre d’imagerie moléculaire
de Sherbrooke (CIMS), Centre Hospitalier Universitaire de Sherbrooke
and, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, 3001, 12th Avenue
North, Sherbrooke, Quebec, Canada, J1H 5N4
| | - Véronique Dumulon-Perreault
- Centre d’imagerie moléculaire
de Sherbrooke (CIMS), Centre Hospitalier Universitaire de Sherbrooke
and, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, 3001, 12th Avenue
North, Sherbrooke, Quebec, Canada, J1H 5N4
| | - Samia Ait-Mohand
- Centre d’imagerie moléculaire
de Sherbrooke (CIMS), Centre Hospitalier Universitaire de Sherbrooke
and, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, 3001, 12th Avenue
North, Sherbrooke, Quebec, Canada, J1H 5N4
| | - Sébastien Tremblay
- Centre d’imagerie moléculaire
de Sherbrooke (CIMS), Centre Hospitalier Universitaire de Sherbrooke
and, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, 3001, 12th Avenue
North, Sherbrooke, Quebec, Canada, J1H 5N4
| | - François Bénard
- BC Cancer Agency Research Centre, Vancouver, British Columbia, Canada
| | - Roger Lecomte
- Centre d’imagerie moléculaire
de Sherbrooke (CIMS), Centre Hospitalier Universitaire de Sherbrooke
and, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, 3001, 12th Avenue
North, Sherbrooke, Quebec, Canada, J1H 5N4
| | - Brigitte Guérin
- Centre d’imagerie moléculaire
de Sherbrooke (CIMS), Centre Hospitalier Universitaire de Sherbrooke
and, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, 3001, 12th Avenue
North, Sherbrooke, Quebec, Canada, J1H 5N4
| |
Collapse
|
9
|
Tache Y. Brainstem neuropeptides and vagal protection of the gastric mucosal against injury: role of prostaglandins, nitric oxide and calcitonin-gene related peptide in capsaicin afferents. Curr Med Chem 2012; 19:35-42. [PMID: 22300074 DOI: 10.2174/092986712803414097] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 11/10/2011] [Accepted: 11/14/2011] [Indexed: 12/29/2022]
Abstract
Earlier experimental studies indicated that the integrity of vagal pathway was required to confer gastric protection against damaging agents. Several peptides located in the brainstem initially identified to influence vagal outflow to the stomach, as assessed by electrophysiological approach or by vagal dependent alterations of gastric secretory and motor function, were investigated for their influence in the vagal regulation of the resistance of the gastric mucosa to injury. Thyrotropin releasing hormone (TRH), or its stable TRH analog, RX-77368, injected at low doses into the cisterna magna or the dorsal motor nucleus (DMN) was the first peptide reported to protect the gastric mucosa against ethanol injury through stimulation of vagal cholinergic pathways, inducing the release of gastric prostaglandins/nitric oxide (NO) and the recruitment of efferent function of capsaicin sensitive afferent fibers containing calcitonin-gene related peptide (CGRP). Activation of endogenous TRH-TRH1 receptor signaling located in the brainstem plays a role in adaptive gastric protection against damaging agents. Since then, an expanding number of peptides, namely peptide YY, CGRP, adrenomedullin, amylin, glugacon-like peptide, opioid peptides acting on µ, δ1 or δ2 receptors, nocicpetin, nocistatin, ghrelin, leptin and TLQP-21, a peptide derived from VGF prohormone, have been reported to act in the brainstem to afford gastric protection against ethanol injury largely through similar peripheral effectors mechanisms than TRH. Therefore gastric prostaglandins and CGRP/NO pathways represent a common final mechanism through which brain peptides confer vagally mediated gastroprotection against injury. A better understanding of brain circuitries through which these peptides are released will provide new strategies to recruit integrated and multifaceted gastroprotective mechanisms.
Collapse
Affiliation(s)
- Y Tache
- CURE: Digestive Diseases Research Center, Digestive Diseases Division, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California 90073, USA.
| |
Collapse
|
10
|
Fournier P, Dumulon-Perreault V, Ait-Mohand S, Langlois R, Bénard F, Lecomte R, Guérin B. Comparative study of 64Cu/NOTA-[D-Tyr6,βAla11,Thi13,Nle14]BBN(6-14) monomer and dimers for prostate cancer PET imaging. EJNMMI Res 2012; 2:8. [PMID: 22333272 PMCID: PMC3323469 DOI: 10.1186/2191-219x-2-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 02/14/2012] [Indexed: 01/15/2023] Open
Abstract
Background Gastrin-releasing peptide receptors [GRPR] are highly over-expressed in multiple cancers and have been studied as a diagnostic target. Multimeric gastrin-releasing peptides are expected to have enhanced tumor uptake and affinity for GRPR. In this study, a 64Cu-labeled 1,4,7-triazacyclononane-1,4,7-triacetic acid [NOTA]-monomer and two NOTA-dimers of [D-Tyr6,βAla11, Thi13, Nle14]bombesin(6-14) ] [BBN(6-14)] were compared. Methods Monomeric and dimeric peptides were synthesized on solid phase support and radiolabeled with 64Cu. NOTA-dimer 1 consists of asymmetrically linked BBN(6-14), while NOTA-dimer 2 has similar spacer between the two BBN(6-14) ligands and the chelator. In vitro GRPR-binding affinities were determined with competitive binding assays on PC3 human prostate cancer cells. In vivo stability and biodistribution of radiolabeled compounds were assessed in Balb/c mice. Cellular uptake and efflux were measured with radiolabeled NOTA-monomer and NOTA-dimer 2 on PC3 cells for up to 4 h. In vivo biodistribution kinetics were measured in PC3 tumor-bearing Balb/c nude mice by μ-positron emission tomography [μPET] imaging and confirmed by dissection and counting. Results NOTA-monomer, NOTA-dimers 1 and 2 were prepared with purity of 99%. The inhibition constants of the three BBN peptides were comparable and in the low nanomolar range. All 64Cu-labeled peptides were stable up to 24 h in mouse plasma and 1 h in vivo. 64Cu/NOTA-dimer 2 featuring a longer spacer between the two BBN(6-14) ligands is a more potent GRPR-targeting probe than 64Cu/NOTA-dimer 1. PC3 tumor uptake profiles are slightly different for 64Cu/NOTA-monomer and 64Cu/NOTA-dimer 2; the monomeric BBN-peptide tracer exhibited higher tumor uptake during the first 0.5 h and a fast renal clearance resulting in higher tumor-to-muscle ratio when compared to 64Cu/NOTA-dimer 2. The latter exhibited higher tumor-to-blood ratio and was retained longer at the tumor site when compared to 64Cu/NOTA-monomer. Lower ratios of tumor-to-blood and tumor-to-muscle in blocking experiments showed GRPR-dependant tumor uptake for both tracers. Conclusion Both 64Cu/NOTA-monomer and 64Cu/NOTA-dimer 2 are suitable for detecting GRPR-positive prostate cancer in vivo by PET. Tumor retention was improved in vivo with 64Cu/NOTA-dimer 2 by applying polyvalency effect and/or statistical rebinding.
Collapse
Affiliation(s)
- Patrick Fournier
- Centre d'imagerie moléculaire de Sherbrooke (CIMS), Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, 3001, 12th North Avenue, Sherbrooke, Quebec, J1H 5N4, Canada.
| | | | | | | | | | | | | |
Collapse
|
11
|
Gastrin-releasing peptide receptor (GRPR) mediates chemotaxis in neutrophils. Proc Natl Acad Sci U S A 2011; 109:547-52. [PMID: 22203955 DOI: 10.1073/pnas.1110996109] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neutrophil migration to inflamed sites is crucial for both the initiation of inflammation and resolution of infection, yet these cells are involved in perpetuation of different chronic inflammatory diseases. Gastrin-releasing peptide (GRP) is a neuropeptide that acts through G protein coupled receptors (GPCRs) involved in signal transmission in both central and peripheral nervous systems. Its receptor, gastrin-releasing peptide receptor (GRPR), is expressed by various cell types, and it is overexpressed in cancer cells. RC-3095 is a selective GRPR antagonist, recently found to have antiinflammatory properties in arthritis and sepsis models. Here we demonstrate that i.p. injection of GRP attracts neutrophils in 4 h, and attraction is blocked by RC-3095. Macrophage depletion or neutralization of TNF abrogates GRP-induced neutrophil recruitment to the peritoneum. In vitro, GRP-induced neutrophil migration was dependent on PLC-β2, PI3K, ERK, p38 and independent of Gαi protein, and neutrophil migration toward synovial fluid of arthritis patients was inhibited by treatment with RC-3095. We propose that GRPR is an alternative chemotactic receptor that may play a role in the pathogenesis of inflammatory disorders.
Collapse
|
12
|
The gastrin-releasing peptide system in the spinal cord mediates masculine sexual function. Anat Sci Int 2010; 86:19-29. [DOI: 10.1007/s12565-010-0097-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Accepted: 09/29/2010] [Indexed: 10/18/2022]
|
13
|
Yavropoulou MP, Kotsa K, Anastasiou OE, O'Dorisio TM, Pappas TN, Yovos JG. Intracerebroventricular infusion of bombesin modulates GIP secretion in conscious dogs. Neuropharmacology 2010; 58:226-32. [DOI: 10.1016/j.neuropharm.2009.06.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 06/09/2009] [Accepted: 06/24/2009] [Indexed: 10/20/2022]
|
14
|
Heat shock protein 27 mediates repression of androgen receptor function by protein kinase D1 in prostate cancer cells. Oncogene 2009; 28:4386-96. [DOI: 10.1038/onc.2009.291] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
15
|
|
16
|
Jensen RT, Battey JF, Spindel ER, Benya RV. International Union of Pharmacology. LXVIII. Mammalian bombesin receptors: nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states. Pharmacol Rev 2008; 60:1-42. [PMID: 18055507 PMCID: PMC2517428 DOI: 10.1124/pr.107.07108] [Citation(s) in RCA: 395] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The mammalian bombesin receptor family comprises three G protein-coupled heptahelical receptors: the neuromedin B (NMB) receptor (BB(1)), the gastrin-releasing peptide (GRP) receptor (BB(2)), and the orphan receptor bombesin receptor subtype 3 (BRS-3) (BB(3)). Each receptor is widely distributed, especially in the gastrointestinal (GI) tract and central nervous system (CNS), and the receptors have a large range of effects in both normal physiology and pathophysiological conditions. The mammalian bombesin peptides, GRP and NMB, demonstrate a broad spectrum of pharmacological/biological responses. GRP stimulates smooth muscle contraction and GI motility, release of numerous GI hormones/neurotransmitters, and secretion and/or hormone release from the pancreas, stomach, colon, and numerous endocrine organs and has potent effects on immune cells, potent growth effects on both normal tissues and tumors, potent CNS effects, including regulation of circadian rhythm, thermoregulation; anxiety/fear responses, food intake, and numerous CNS effects on the GI tract as well as the spinal transmission of chronic pruritus. NMB causes contraction of smooth muscle, has growth effects in various tissues, has CNS effects, including effects on feeding and thermoregulation, regulates thyroid-stimulating hormone release, stimulates various CNS neurons, has behavioral effects, and has effects on spinal sensory transmission. GRP, and to a lesser extent NMB, affects growth and/or differentiation of various human tumors, including colon, prostate, lung, and some gynecologic cancers. Knockout studies show that BB(3) has important effects in energy balance, glucose homeostasis, control of body weight, lung development and response to injury, tumor growth, and perhaps GI motility. This review summarizes advances in our understanding of the biology/pharmacology of these receptors, including their classification, structure, pharmacology, physiology, and role in pathophysiological conditions.
Collapse
Affiliation(s)
- R T Jensen
- Digestive Diseases Branch, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | |
Collapse
|
17
|
Browning KN, Zheng Z, Gettys TW, Travagli RA. Vagal afferent control of opioidergic effects in rat brainstem circuits. J Physiol 2006; 575:761-76. [PMID: 16825311 PMCID: PMC1995679 DOI: 10.1113/jphysiol.2006.111104] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We demonstrated recently that increasing the levels of cAMP allows opioids to modulate GABAergic synaptic transmission between the nucleus of the tractus solitarius (NTS) and dorsal motor nucleus of the vagus (DMV). Using a combination of electrophysiological, immunohistochemical and biochemical approaches, we provide evidence that vagal afferent fibres dampen cAMP levels within the vagal brainstem circuits via tonic activation of group II metabotropic glutamate receptors (mGluRs). Whole-cell patch-clamp recordings were made from identified neurons of the rat DMV. Following chronic vagal deafferentation, the opioid agonist methionine-enkephalin (ME) inhibited the amplitude of evoked IPSC (eIPSC) in 32 of 33 neurons, without exogenous enhancement of cAMP levels. The ME-induced inhibition was prevented by the group II mGluR-selective agonist APDC. Following perfusion with the group II mGluR-selective antagonist EGLU, ME inhibited eIPSC amplitude in brainstem slices of control rats. Immunohistochemical experiments revealed that, following vagal deafferentation, mu-opioid receptors were colocalized on GABAergic profiles apposing DMV neurons; the number of colocalized profiles was significantly decreased by pretreatment with APDC. Radioimmunoassay and Western blot analysis showed that cAMP and phosphorylated cyclic AMP response element binding protein (pCREB) levels in the dorsal vagal complex were increased following vagal deafferentation. Our data show that by tonically dampening the levels of cAMP within the GABAergic synaptic contacts, activated group II mGluRs prevent the modulation of this synapse by endogenous opioids. These data suggest that the plasticity, hence the response, of central circuits controlling the vagal motor outflow to visceral organs is modulated and finely tuned by vagal afferent fibres.
Collapse
Affiliation(s)
- Kirsteen N Browning
- Department of Neuroscience, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | | | | | | |
Collapse
|
18
|
Taché Y, Yang H, Miampamba M, Martinez V, Yuan PQ. Role of brainstem TRH/TRH-R1 receptors in the vagal gastric cholinergic response to various stimuli including sham-feeding. Auton Neurosci 2006; 125:42-52. [PMID: 16520096 PMCID: PMC8086327 DOI: 10.1016/j.autneu.2006.01.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 01/13/2006] [Accepted: 01/14/2006] [Indexed: 12/11/2022]
Abstract
Pavlov's pioneering work established that sham-feeding induced by sight or smell of food or feeding in dogs with permanent esophagostomy stimulates gastric acid secretion through vagal pathways. Brain circuitries and transmitters involved in the central vagal regulation of gastric function have recently been unraveled. Neurons in the dorsal vagal complex including the dorsal motor nucleus of the vagus (DMN) express thyrotropin-releasing hormone (TRH) receptor and are innervated by TRH fibers originating from TRH synthesizing neurons in the raphe pallidus, raphe obscurus and the parapyramidal regions. TRH injected into the DMN or cisterna magna increases the firing of DMN neurons and gastric vagal efferent discharge, activates cholinergic neurons in gastric submucosal and myenteric plexuses, and induces a vagal-dependent, atropine-sensitive stimulation of gastric secretory (acid, pepsin) and motor functions. TRH antibody or TRH-R1 receptor oligodeoxynucleotide antisense pretreatment in the cisterna magna or DMN abolished vagal-dependent gastric secretory and motor responses to sham-feeding, 2-deoxy-D-glucose, cold exposure and chemical activation of cell bodies in medullary raphe nuclei. TRH excitatory action in the DMN is potentiated by co-released prepro-TRH-(160-169) flanking peptide, Ps4 and 5-HT, and inhibited by a number of peptides involved in the stress/immune response and inhibition of food-intake. These neuroanatomical, electrophysiological and neuropharmacological data are consistent with a physiological role of brainstem TRH in the central vagal stimulation of gastric myenteric cholinergic neurons in response to several vagal dependent stimuli including sham-feeding.
Collapse
Affiliation(s)
- Y Taché
- CURE: Digestive Diseases Research Center and Center for Neurovisceral Sciences and Women's Health, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA.
| | | | | | | | | |
Collapse
|
19
|
Canosa LF, Unniappan S, Peter RE. Periprandial changes in growth hormone release in goldfish: role of somatostatin, ghrelin, and gastrin-releasing peptide. Am J Physiol Regul Integr Comp Physiol 2005; 289:R125-33. [PMID: 15746304 DOI: 10.1152/ajpregu.00759.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In goldfish, growth hormone (GH) transiently rises 30 min after meals, returning to baseline at 1 h postmeal. Somatostatin (SRIF) is the major inhibitor of GH release. Three cDNAs encoding pre-pro-SRIF (PSS) have been previously cloned from goldfish brain: PSS-I, which encodes SRIF-14; PSS-II, which is potentially processed into gSRIF-28 that has [Glu1,Tyr7,Gly10]SRIF-14 at the COOH terminus; and PSS-III, which encodes [Pro2]SRIF-14 at its COOH terminus. In goldfish, bombesin (BBS), mimicking the endogenous gastrin-releasing peptide (GRP), acutely suppresses food intake and also stimulates GH release. Ghrelin was recently characterized in goldfish as a GH secretagogue and an orexigen. In this paper, we studied the changes in SRIF mRNA levels during feeding and analyzed the influences of BBS and ghrelin peptides on forebrain PSS expression. The results showed a 60% reduction in PSS-II mRNA after meals, but no changes in the expression of PSS-I and PSS-III were found. Intraperitoneal injections of 100 ng/g body wt of BBS increased GH secretion and decreased PSS-I and PSS-II gene expression. Intraperitoneal injection of goldfish ghrelin (100 ng/g body wt) transiently increased the serum GH levels and increased PSS-I, while decreasing PSS-II mRNA levels. Ghrelin (50 ng/g body wt) blocked the effects of BBS (100 ng/g body wt) on PSS-I but not on PSS-II expression. Coadministration of BBS and ghrelin decreased only the PSS-II gene expression. We conclude that the interactions between BBS/GRP and ghrelin can account for the postprandial variations in serum GH levels and the forebrain expression of PSS-II. Furthermore, we demonstrate that intraperitoneal administration of BBS reduces the ghrelin expression levels in the gut. Thus the inhibition of production of ghrelin in the gut may contribute to the satiety effects of BBS/GRP peptides.
Collapse
Affiliation(s)
- Luis Fabián Canosa
- Department of Biological Sciences, CW405 Biological Sciences Bldg., University of Alberta, Edmonton, AB, Canada T6G 2E9
| | | | | |
Collapse
|
20
|
Tsushima H, Mori M. Mechanisms underlying anorexia after microinjection of bombesin into the lateral cerebroventricle. Pharmacol Biochem Behav 2004; 80:289-96. [PMID: 15680182 DOI: 10.1016/j.pbb.2004.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Revised: 11/26/2004] [Accepted: 11/29/2004] [Indexed: 11/23/2022]
Abstract
Intracerebroventricular (i.c.v.) injections of bombesin (BN) and gastrin-releasing peptide (GRP) dose-dependently decreased food intake in male Wistar rats fasted for 17 h. Neuromedin B (NMB) did not show any effect on food intake. After BN administration, locomotor activity did not significantly change, compared with a vehicle-injected group. The anorexia induced by BN (0.3 microg) was perfectly inhibited by pretreatment with a GRP-receptor antagonist, [D-Tyr(6)]BN(6-13) methyl ester (10 microg), an NO synthase inhibitor, L-nitro-arginine (30 microg), and a PKG inhibitor, H-9 (2 microg). The cGMP concentration in the hypothalamus increased 1 h after administration when compared with the vehicle-injected group. On the other hand, an NMB-receptor antagonist, BIM23127 (10 microg), and the protein kinase (PK) C inhibitors, chelerythrine (2 microg) and Go6983 (2 microg), inhibited only the late phase of the anorexia. A PKC activator, phorbol 12, 13-dibutyrate (3 microg), injected into the ventricle decreased food intake. These findings suggest that BN suppresses food intake mainly mediated through the GRP receptor and NO-cGMP-PKG pathway, and NMB receptor and PKC is partly involved in the late phase of the anorexia.
Collapse
Affiliation(s)
- Hiromi Tsushima
- Department of Cellular and Molecular Pharmacology, Nagoya City University Graduate School of Medical Sciences, Kawasumi, Mizuho-ku, Nagoya 467-8601, Japan.
| | | |
Collapse
|
21
|
Piqueras L, Taché Y, Martínez V. Somatostatin receptor type 2 mediates bombesin-induced inhibition of gastric acid secretion in mice. J Physiol 2003; 549:889-901. [PMID: 12692184 PMCID: PMC2342983 DOI: 10.1113/jphysiol.2003.039750] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Studies in isolated mouse stomach showed that bombesin releases somatostatin. We characterized the effects of exogenous bombesin on gastric acid secretion in mice and determined the involvement of somatostatin and somatostatin receptor type 2 (SSTR2) by using somatostatin immunoneutralization, the SSTR2 antagonist, PRL-2903, and SSTR2 knockout mice. Gastric acid secretion was monitored under basal and pentagastrin-, histamine- or bethanechol-stimulated conditions in urethane-anaesthetized mice. Bombesin (10-40 micro g kg-1 h-1) and somatostatin-14 (20 micro g kg-1 h-1) were infused I.V. 10 and 30 min after PRL-2903 or somatostatin antibody pretreatment, respectively. Urethane-anaesthetized wild-type mice had low basal acid secretion (0.12 +/- 0.01 micro mol (10 min)-1) compared with SSTR2 knockout mice (1.43 +/- 0.10 micro mol (10 min)-1). Somatostatin antibody and PRL-2903 increased basal secretion in wild-type mice but not in SSTR2 knockout animals. In wild-type mice, bombesin inhibited secretagogue-stimulated acid secretion in a dose-dependent manner, and somatostatin-14 inhibited pentagastrin-stimulated secretion. In wild-type mice pretreated with somatostatin antibody or PRL-2903 and in SSTR2 knockout mice, bombesin and somatostatin-14 I.V. infusion did not alter the increased gastric acid secretion. These results indicate that, in mice, bombesin inhibits gastric acid secretion through the release of somatostatin and the activation of SSTR2. These observations strengthen the important role of SSTR2 in mediating somatostatin inhibitory actions on gastric acid secretion.
Collapse
Affiliation(s)
- Laura Piqueras
- Department of Physiology, Pharmacology and Toxicology, Cardenal Herrera CEU University, Valencia, Spain
| | | | | |
Collapse
|
22
|
Irazusta J, Gil J, Ruiz F, Agirregoitia N, Casis L, Silveira PF. Effect of the disruption of body fluid balance on pyroglutamyl aminopeptidase (Type-1) in rat brain structures. Neuropeptides 2002; 36:333-40. [PMID: 12450739 DOI: 10.1016/s0143-4179(02)00089-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The activity of soluble and membrane-bound pyroglutamyl aminopeptidase Type-1 (PAP I) was evaluated in the hypothalamus, hippocampus, thalamus, brain cortex, and pituitary gland of rats after applying certain hydromineral challenges. Compared to euhydrated rats, decreased enzyme activity was found in the hypophysis of rats deprived of water for 48 h, or rats drinking ad libitum hypertonic sodium chloride solution (2%) for 6 days or distilled water for 6 days and then submitted to acute water overload. PAP I cleaves the pGlu-amino acid bond of neuropeptides such as thyroliberin, luliberin, neurotensin, and bombesin. The decay of particulate PAP I activity may cause an increase of these pyroglutamate peptides in the whole pituitary. Although the deleterious or pro-homeostatic influence of this decay remains to be elucidated, the present data provide evidence for the involvement of this enzyme activity at this anatomical location in the water-electrolyte imbalance.
Collapse
Affiliation(s)
- J Irazusta
- Department of Physiology, Facultad de Medicina, Universidad del País Vasco, 48080 Leioa, Bizkaia, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Scopinaro F, Varvarigou AD, Ussof W, De Vincentis G, Sourlingas TG, Evangelatos GP, Datsteris J, Archimandritis SC. Technetium labeled bombesin-like peptide: preliminary report on breast cancer uptake in patients. Cancer Biother Radiopharm 2002; 17:327-35. [PMID: 12136525 DOI: 10.1089/10849780260179297] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bombesin-like peptides are neurotransmitters and cancer growth factors. Several tumors, breast cancer among them, show one or more than one of the three known bombesin receptors. We have synthesized and labeled with technetium 99m a new pentadecapeptide, analogue to the leu13 amphibian bombesin (99mTc BN). Labeling yield was 83 +/- 4%. Prone Scintimammography was performed on five patients affected by breast cancers (T categorization: two T1b and three T1c), after injecting 0.7 mg, 185 to 296 MBq (5 to 8 mCi) of the peptide. Total body scan did not show free technetium biodistribution. No adverse reaction was observed. Prone Scintimammography with 99mTc Sestamibi (99mTc SM) was also performed few days later. 99mTc BN detected all 5 cancers, whereas 99mTc SM only four: all the T1c and one T1b cancer. Two of them showed axillary node invasion that was detected by both the radiotracers. A fibroadenoma present on contralateral breast to the one with cancer, was not detected neither by 99mTc SM nor by 99mTc BN. Tumor/breast normal tissue ratio (T/B) was constantly higher with 99mTc BN than with 99mTc SM. Maximal T/B was measured as 1.79 with 99mTc SM and 2.25 with 99mTc BN 5 min after fast i.v. administration. In conclusion our 99mTc BN is taken up by primary breast cancer showing higher T/B than 99mTc SM (p < 0.01). In our limited scale, 99mTc BN appears to be safe and, in our limited scale, even more accurate than 99mTc SM for detecting breast cancer.
Collapse
Affiliation(s)
- F Scopinaro
- Sezione di Medicina Nucleare % Ist Radiologia Centrale, Policlinico Umberto I, Università di Roma La Sapienza, Viale Regina Elena, 324 00161 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Ishikawa T, Yang H, Taché Y. Microinjection of bombesin into the ventrolateral reticular formation inhibits peripherally stimulated gastric acid secretion through spinal pathways in rats. Brain Res 2001; 918:1-9. [PMID: 11684036 DOI: 10.1016/s0006-8993(01)02833-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bombesin injected into the cisterna magna potently inhibits gastric acid secretion stimulated by intravenous infusion of pentagastrin. Sites in the medulla oblongata where bombesin acts to suppress gastric acid secretion were investigated in urethane-anesthetized rats with gastric cannula. Bombesin or vehicle was injected into the medullary parenchyma or intracisternally (i.c.) 60 min after the start of an intravenous pentagastrin infusion; gastric acid secretion was monitored every 10 min for 20 min before and 150 min after the start of pentagastrin. Bombesin (0.2, 0.6 or 6.2 pmol) microinjected into the ventrolateral reticular formation (VLRF) inhibited dose-dependently the net acid response to pentagastrin by 40.8+/-11.1, 75.4+/-12.8 and 96.7+/-19.4%, respectively, at the 40-50 min period after microinjection compared with the vehicle group. Bombesin action in the VLRF was long lasting (96% inhibition still observed at 90 min after 6.2 pmol), and completely abolished by cervical spinal cord transection at the C6 level. By contrast, bombesin injected i.c. at 0.2 or 0.6 pmol had no effect while at 6.2 pmol, there was a 79.0+/-3.9% peak inhibition of pentagastrin-stimulated acid secretion. Bombesin (6.2 pmol) injected into the dorsal motor nucleus reduced the acid response to pentagastrin by 29%. The parvicellular and gigantocellular reticular nuclei were not responsive to bombesin. These results indicate that bombesin acts in the VLRF to inhibit pentagastrin-stimulated gastric acid secretion through spinal pathways, suggesting a potential role of medullary VLRF area in the sympathetic control of gastric acid secretion.
Collapse
Affiliation(s)
- T Ishikawa
- CURE: Digestive Diseases Research Center, Veterans Administration Greater Los Angeles Healthcare System, Department of Medicine, Digestive Diseases Division and Brain Research Institute, University of California at Los Angeles, Los Angeles, CA 90073, USA
| | | | | |
Collapse
|