1
|
Zhang YZ, Wang MM, Wang SY, Wang XF, Yang WJ, Zhao YN, Han FT, Zhang Y, Gu N, Wang CL. Novel Cyclic Endomorphin Analogues with Multiple Modifications and Oligoarginine Vector Exhibit Potent Antinociception with Reduced Opioid-like Side Effects. J Med Chem 2021; 64:16801-16819. [PMID: 34781680 DOI: 10.1021/acs.jmedchem.1c01631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Endomorphins (EMs) are potent pharmaceuticals for the treatment of pain. Herein, we investigated several novel EM analogues with multiple modifications and oligoarginine conjugation. Our results showed that analogues 1-6 behaved as potent μ-opioid agonists and enhanced stability and lipophilicity. Analogues 5 and 6 administered centrally and peripherally induced significant and prolonged antinociceptive effects in acute pain. Both analogues also produced long-acting antiallodynic effects against neuropathic and inflammatory pain. Furthermore, they showed a reduced acute antinociceptive tolerance. Analogue 6 decreased the extent of chronic antinociceptive tolerance, and analogue 5 exhibited no tolerance at the supraspinal level. Particularly, they displayed nontolerance-forming antinociception at the peripheral level. In addition, analogues 5 and 6 exhibited reduced or no opioid-like side effects on gastrointestinal transit, conditioned place preference (CPP), and motor impairment. The present investigation established that multiple modifications and oligoarginine-vector conjugation of EMs would be helpful in developing novel analgesics with fewer side effects.
Collapse
Affiliation(s)
- Yu-Zhe Zhang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Meng-Meng Wang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Si-Yu Wang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Xiao-Fang Wang
- Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Wen-Jiao Yang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Ya-Nan Zhao
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Feng-Tong Han
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Yao Zhang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Ning Gu
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Chang-Lin Wang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China.,Stake Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
2
|
Endomorphin-2 analogs with C-terminal esterification produce potent systemic antinociception with reduced tolerance and gastrointestinal side effects. Neuropharmacology 2017; 116:98-109. [DOI: 10.1016/j.neuropharm.2016.12.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/19/2016] [Accepted: 12/29/2016] [Indexed: 01/28/2023]
|
3
|
Wang CL, Qiu TT, Diao YX, Zhang Y, Gu N. Novel endomorphin-1 analogs with C-terminal oligoarginine-conjugation display systemic antinociceptive activity with less gastrointestinal side effects. Biochimie 2015; 116:24-33. [PMID: 26115815 DOI: 10.1016/j.biochi.2015.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 06/13/2015] [Indexed: 10/23/2022]
Abstract
In recent study, in order to improve the bioavailability of endomorphin-1 (EM-1), we designed and synthesized a series of novel EM-1 analogs by replacement of L-Pro(2) by β-Pro, D-Ala or Sar, together with C-terminal oligoarginine-conjugation. Our results indicated that the introduction of D-Ala and β-Pro in position 2, along with oligoarginine-conjugation, didn't significantly decrease the μ-affinity and in vitro bioactivity, and the enhancement of arginine residues did not markedly influence the μ-affinity of these analogs. All analogs displayed a significant enhancement of stability, which may be due to increased resistance to proline-specific enzymatic degradation. Moreover, following intracerebroventricular (i.c.v.) administration, analogs 1, 2, 4 and 5 produced significant antinociception and increased duration of action, with the ED50 values being about 1.8- to 4.2-fold less potent than that of EM-1. In addition, our results indicated that no significant antinociceptive activity of EM-1 was seen following subcutaneous (s.c.) injection, whereas analogs 1, 2, 4 and 5 with equimolar dose induced significant and prolonged antinociception by an opioid and central mechanism. Herein, we further examined the gastrointestinal transit and colonic propulsive latencies of EM-1 and its four analogs administered centrally and peripherally. I.c.v. administration of EM-1 and analogs 1, 2, 4 and 5 significantly delayed gastrointestinal transit and colonic bead propulsion in mice, but the inhibitory effects induced by these analogs were largely attenuated. It is noteworthy that no significant gastrointestinal side effects induced by these four analogs were observed after s.c. administration. Our results demonstrated that combined modifications of EM-1 with unnatural amino acid substitutions and oligoarginine-conjugation gave an efficient strategy to improve the analgesic profile of EM-1 analogs but with less gastrointestinal side effects when administered peripherally.
Collapse
Affiliation(s)
- Chang-lin Wang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China.
| | - Ting-ting Qiu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Yu-xiang Diao
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Yao Zhang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Ning Gu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| |
Collapse
|
4
|
Robinson MA, Guan F, McDonnell S, Uboh CE, Soma LR. Pharmacokinetics and pharmacodynamics of dermorphin in the horse. J Vet Pharmacol Ther 2014; 38:321-9. [DOI: 10.1111/jvp.12179] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 09/18/2014] [Indexed: 11/28/2022]
Affiliation(s)
- M. A. Robinson
- Department of Clinical Studies; School of Veterinary Medicine; University of Pennsylvania; Kennett Square PA USA
- PA Equine Toxicology and Research Laboratory; West Chester PA USA
| | - F. Guan
- Department of Clinical Studies; School of Veterinary Medicine; University of Pennsylvania; Kennett Square PA USA
| | - S. McDonnell
- Department of Clinical Studies; School of Veterinary Medicine; University of Pennsylvania; Kennett Square PA USA
| | - C. E. Uboh
- Department of Clinical Studies; School of Veterinary Medicine; University of Pennsylvania; Kennett Square PA USA
- PA Equine Toxicology and Research Laboratory; West Chester PA USA
| | - L. R. Soma
- Department of Clinical Studies; School of Veterinary Medicine; University of Pennsylvania; Kennett Square PA USA
| |
Collapse
|
5
|
|
6
|
Su SF, Yang AM, Yang SB, Wang NB, Lu SS, Wang HH, Chen Q. Intracerebroventricular administration of neuronostatin delays gastric emptying and gastrointestinal transit in mice. Peptides 2012; 35:31-5. [PMID: 22465660 DOI: 10.1016/j.peptides.2012.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 03/14/2012] [Accepted: 03/14/2012] [Indexed: 11/26/2022]
Abstract
Neuronostatin is a 13-amino acid amidated peptide widely distributed in various organs including gastrointestinal tract. However, the effect of neuronostatin on gastrointestinal motility has not been well characterized. In the present work, effects of central administration of neuronostatin on gastric emptying and gastrointestinal transit were investigated. The results indicated that intracerebroventricular (i.c.v.) administration of neuronostatin (1, 5, 10 or 20nmol/mouse) delayed gastric emptying and gastrointestinal transit in a dose-related manner in mice. The effects were significantly reversed by melanocortin 3/4 receptor antagonist SHU9119 or classical opioid receptor antagonist naloxone, suggesting that the central melanocortin system and opioid system may be involved in the gastrointestinal effects elicited by i.c.v. administration of neuronostatin. In addition, we found that C-terminal amidation modification of neuronostatin is essential to exert its gastrointestinal effects. These results indicated that neuronostatin may play an important role in regulating gastrointestinal function.
Collapse
Affiliation(s)
- Shu-Fang Su
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tian Shui South Road, Lanzhou 730000, PR China
| | | | | | | | | | | | | |
Collapse
|
7
|
Petrella C, Agostini S, Guerrini R, Calò G, Giaquinto A, De Nuccio C, Improta G, Broccardo M. Neuropeptide S inhibits stress-stimulated faecal output in the rat. Pharmacol Res 2011; 64:471-7. [DOI: 10.1016/j.phrs.2011.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 06/03/2011] [Accepted: 06/10/2011] [Indexed: 01/16/2023]
|
8
|
Lv SY, Yang YJ, Qin YJ, Xiong W, Chen Q. Effect of centrally administered apelin-13 on gastric emptying and gastrointestinal transit in mice. Peptides 2011; 32:978-82. [PMID: 21291936 DOI: 10.1016/j.peptides.2011.01.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 01/17/2011] [Accepted: 01/18/2011] [Indexed: 01/25/2023]
Abstract
Apelin, as the endogenous ligand for the APJ, regulates many biological functions, including blood pressure, neuroendocrine, drinking behavior, food intake and colonic motility. The present study was designed to investigate the effect of central apelin-13 on gastric emptying and gastrointestinal transit in mice. Intracerebroventricular (i.c.v.) injection of apelin-13 (3 and 10 μg/mouse) decreased gastric emptying rate by 10.9% and 17.1%. This effect was significantly antagonized by the APJ receptor antagonist apelin-13(F13A) and the opioid receptor antagonist naloxone, respectively. However, intraperitoneal (i.p.) injection of apelin-13 (10-100 μg/mouse) did not affect gastric emptying. Apelin-13 (0.3, 1 and 3 μg/mouse, i.c.v.) inhibited gastrointestinal transit by 16.8%, 23.4% and 19.2%. Apelin-13(F13A) and naloxone could also reverse this antitransit effect induced by apelin-13. Taken together, these results suggest that i.c.v. injected apelin-13 inhibits gastric emptying and gastrointestinal transit and it seems that APJ receptor and opioid receptor might be involved in these processes.
Collapse
Affiliation(s)
- Shuang-Yu Lv
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, 222 Tian Shui South Road, Lanzhou 730000, PR China
| | | | | | | | | |
Collapse
|
9
|
Emel’yanova TG, Guzevatykh LS, Andreeva LA, Alfeeva LY, Myasoedov NF. The relationship between the structure of dermorphines and their thermoregulatory activity. BIOL BULL+ 2007. [DOI: 10.1134/s1062359007060106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Gromovykh PS, Guzevatykh LS, Shevchenko KV, Andreeva LA, Alfeeva LY, Shevchenko VP, Nagaev IY, Voronina TA, Myasoedov NF. Synthesis, pharmacokinetics, and metabolism of the C-terminal tripeptide of dermorphin and its diastereomer. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2007; 33:581-7. [DOI: 10.1134/s1068162007060015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Guzevatykh LS, Voronina TA, Emel’yanova TG, Andreeva LA, Gromovykh PS, Myasoedov NF, Seredenin SB. Comparative analysis of analgesic activities of dermorphin, [DPro6]-dermorphin, and their C-terminal tripeptides. BIOL BULL+ 2007. [DOI: 10.1134/s106235900705010x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Gromovykh PS, Andreeva LA, Alfeeva LY, Shevchenko VP, Shevchenko KV, Nagaev IY, Myasoedov NF, Guzevatykh LS, Voronina TA. Synthesis of tritium-labeled dermorphin fragments and kinetics of radioactivity distribution in rat organs upon intramuscular injection of these peptides. RADIOCHEMISTRY 2007. [DOI: 10.1134/s1066362207010195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Lattanzi R, Spetea M, Schüllner F, Rief SB, Krassnig R, Negri L, Schmidhammer H. Synthesis and biological evaluation of 14-alkoxymorphinans. 22.(1) Influence of the 14-alkoxy group and the substitution in position 5 in 14-alkoxymorphinan-6-ones on in vitro and in vivo activities. J Med Chem 2005; 48:3372-8. [PMID: 15857143 DOI: 10.1021/jm040894o] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Novel 14-alkoxy-substituted (e.g. allyloxy, benzyloxy, naphthylmethoxy) morphinan-6-one derivatives were synthesized and biologically evaluated. Compounds 6-9 and 11 displayed affinities in the subnanomolar range to mu opioid receptors which were comparable to 14-O-methyloxymorphone (1) and 14-methoxymetopon (3), and higher than oxymorphone (2). Opioid binding affinity was sensitive to the character and length of the substituent in position 14. In smooth muscle preparations they behaved as potent agonists. Antinociceptive potencies of compounds 6-11 in the hot-plate test after sc administration in mice were considerably greater than the potency of morphine. In the colonic propulsion test, the most potent analgesic compound 7 showed negligible constipating activity at the analgesic dose. These findings provide further evidence that the nature of the substituent at position 14 has a major impact on the abilities of morphinans to interact with opioid receptors. Introduction of a 5-methyl group has no significant effect on in vitro biological activities, but resulted in decreased antinociceptive potency.
Collapse
MESH Headings
- Analgesics, Opioid/adverse effects
- Analgesics, Opioid/chemical synthesis
- Analgesics, Opioid/pharmacology
- Animals
- Brain/metabolism
- Gastrointestinal Motility/drug effects
- Guinea Pigs
- In Vitro Techniques
- Intestine, Small/drug effects
- Intestine, Small/physiology
- Male
- Mice
- Morphinans/adverse effects
- Morphinans/chemical synthesis
- Morphinans/pharmacology
- Muscle Contraction/drug effects
- Muscle, Smooth/drug effects
- Muscle, Smooth/physiology
- Oxymorphone/adverse effects
- Oxymorphone/analogs & derivatives
- Oxymorphone/chemical synthesis
- Oxymorphone/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, mu/agonists
- Structure-Activity Relationship
- Vas Deferens/drug effects
- Vas Deferens/physiology
Collapse
Affiliation(s)
- Roberta Lattanzi
- Department of Human Physiology and Pharmacology, University 'La Sapienza', P.le Aldo Moro 5, I-00185 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
14
|
Emel?yanova TG, Guzevatykh LS, Goryacheva NN, Andreeva LA, Alfeeva LY, Myasoedov NF. Study of thermoregulatory activity of a fragment of natural dermorphin precursor Arg-Dermorphin and its analogs. BIOL BULL+ 2005. [DOI: 10.1007/s10525-005-0007-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Yu Y, Jawa A, Pan W, Kastin AJ. Effects of peptides, with emphasis on feeding, pain, and behavior A 5-year (1999-2003) review of publications in Peptides. Peptides 2004; 25:2257-89. [PMID: 15572212 DOI: 10.1016/j.peptides.2004.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Accepted: 09/21/2004] [Indexed: 11/28/2022]
Abstract
Novel effects of naturally occurring peptides are continuing to be discovered, and their mechanisms of actions as well as interactions with other substances, organs, and systems have been elucidated. Synthetic analogs may have actions similar or antagonistic to the endogenous peptides, and both the native peptides and analogs have potential as drugs or drug targets. The journal Peptides publishes many leading articles on the structure-activity relationship of peptides as well as outstanding reviews on some families of peptides. Complementary to the reviews, here we extract information from the original papers published during the past five years in Peptides (1999-2003) to summarize the effects of different classes of peptides, their modulation by other chemicals and various pathophysiological states, and the mechanisms by which the effects are exerted. Special attention is given to peptides related to feeding, pain, and other behaviors. By presenting in condensed form the effects of peptides which are essential for systems biology, we hope that this summary of existing knowledge will encourage additional novel research to be presented in Peptides.
Collapse
Affiliation(s)
- Yongmei Yu
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | | | |
Collapse
|
16
|
Banta CA, Clemens ET, Krinsky MM, Sheffy BE. Sites of organic acid production and patterns of digesta movement in the gastrointestinal tract of dogs. J Nutr 1979; 738:1-7. [PMID: 39123 DOI: 10.1016/j.ejphar.2014.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 04/29/2014] [Accepted: 05/12/2014] [Indexed: 12/12/2022] Open
|