1
|
de Vries T, Boucherie DM, Chan KY, Rubio-Beltrán E, Labastida-Ramírez A, Labruijere S, Gupta S, van den Bogaerdt A, Vincent A, Dammers R, Danser AHJ, MaassenVanDenBrink A. Sex differences in CGRP-induced vasodilation of human middle meningeal arteries but not human coronary arteries: implications for migraine. Cephalalgia 2024; 44:3331024241254088. [PMID: 39043230 DOI: 10.1177/03331024241254088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
BACKGROUND Migraine prevalence and levels of calcitonin gene-related peptide (CGRP), a peptide involved in migraine pathophysiology, differ between men and women, and appear to be affected by changes in sex hormones. The present study investigated the sex-specific responses to CGRP in human isolated arteries. METHODS CGRP-induced relaxation of 62 (28 men and 34 women) human isolated middle meningeal arteries (HMMA) and 139 (69 men and 70 women) human isolated coronary arteries (HCA) was compared between men and women in groups <50 years and ≥50 years of age as a proxy for pre- and postmenopausal status in women, as well as matched-age groups for men. RESULTS In HCA, no differences were observed between male and female tissue, or between the different age groups. However, in HMMA, the maximum response was significantly smaller and CGRP was less potent in females <50 compared with males <50 years of age. No differences were observed between the older age groups. CONCLUSIONS Sex differences were observed for CGRP-induced relaxation of HMMA, but not HCA. These differences could arise from differential receptor expression in the vascular beds combined with the effect of sex hormones on CGRP and subsequent receptor desensitization.
Collapse
Affiliation(s)
- Tessa de Vries
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Deirdre M Boucherie
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Kayi Y Chan
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Eloísa Rubio-Beltrán
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Alejandro Labastida-Ramírez
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Sieneke Labruijere
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Saurabh Gupta
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | | | - Arnaud Vincent
- Department of Neurosurgery, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Ruben Dammers
- Department of Neurosurgery, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Antoinette MaassenVanDenBrink
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| |
Collapse
|
2
|
Al-Karagholi MAM, Kalatharan V, Ghanizada H, Gram C, Dussor G, Ashina M. Prolactin in headache and migraine: A systematic review of clinical studies. Cephalalgia 2023; 43:3331024221136286. [PMID: 36718026 DOI: 10.1177/03331024221136286] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE To systemically review clinical studies investigating the role of prolactin and its receptors in headache and migraine. BACKGROUND Migraine prevalence is more common in women compared to men. As prolactin is a crucial regulator of the hypothalamus-pituitary-gonadal axis, prolactin and its receptors might contribute to signaling mechanisms underlying migraine. METHODS In this systematic review, we searched PubMed and EMBASE with the terms: prolactin, hyperprolactinemia, macroprolactinemia, hypoprolactinemia, migraine, headache, head pain and trigeminal pain pathway for clinical studies investigating prolactin signaling in headache and migraine. Two reviewers independently screened 841 articles for population, intervention, comparison, outcome, and study design. Studies were restricted to the English language and were excluded if they had a nonexperimental methodology. RESULTS Nineteen clinical studies met the inclusion criteria and were included in the qualitative and quantitative analysis. The main findings were that serum prolactin levels were found to be higher in individuals with migraine compared to healthy controls, and prolactinomas (prolactin-secreting pituitary adenomas) were correlated with higher incidence of headache in otherwise healthy individuals and migraine attacks in individuals with migraine. CONCLUSION Considerable evidence suggests a key role of prolactin and its receptors in migraine pathophysiology. Further randomized and placebo-controlled clinical studies targeting prolactin signaling are needed to further clarify influences of prolactin in migraine attack initiation.
Collapse
Affiliation(s)
- Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Veberka Kalatharan
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Hashmat Ghanizada
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Christian Gram
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Gregory Dussor
- School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, USA
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark.,Danish Headache Knowledge Center on Headache Disorders, Rigshospitalet - Glostrup, Glostrup, Denmark
| |
Collapse
|
3
|
Abstract
Cluster headache is a primary headache form occurring in paroxysmal excruciatingly severe unilateral head pain attacks usually grouped in periods lasting 1-2months, the cluster periods. A genetic component is suggested by the familial occurrence of the disease but a genetic linkage is yet to be identified. Contemporary activation of trigeminal and cranial parasympathetic systems-the so-called trigemino-parasympathetic reflex-during the headache attacks seem to cause the pain and accompanying oculo-facial autonomic phenomena respectively. At peripheral level, the increased calcitonin gene related peptide (CGRP) plasma levels suggests trigeminal system activation during cluster headache attacks. The temporal pattern of the disease both in terms of circadian rhythmicity and seasonal recurrence has suggested involvement of the hypothalamic biological clock in the pathophysiology of cluster headache. The posterior hypothalamus was investigate as the cluster generator leading to activation of the trigemino-parasympathetic reflex, but the accumulated experience after 20 years of hypothalamic electrical stimulation to treat the condition indicate that this brain region rather acts as pain modulator. Efficacy of monoclonal antibodies to treat episodic cluster headache points to a key role of CGRP in the pathophysiology of the condition.
Collapse
|
4
|
Marichal-Cancino BA, González-Hernández A, Muñoz-Islas E, Villalón CM. Monoaminergic Receptors as Modulators of the Perivascular Sympathetic and Sensory CGRPergic Outflows. Curr Neuropharmacol 2021; 18:790-808. [PMID: 32364079 PMCID: PMC7569320 DOI: 10.2174/1570159x18666200503223240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 03/02/2020] [Accepted: 04/24/2020] [Indexed: 12/27/2022] Open
Abstract
Blood pressure is a highly controlled cardiovascular parameter that normally guarantees an adequate blood supply to all body tissues. This parameter is mainly regulated by peripheral vascular resistance and is maintained by local mediators (i.e., autacoids), and by the nervous and endocrine systems. Regarding the nervous system, blood pressure can be modulated at the central level by regulating the autonomic output. However, at peripheral level, there exists a modulation by activation of prejunctional monoaminergic receptors in autonomic- or sensory-perivascular fibers. These modulatory mechanisms on resistance blood vessels exert an effect on the release of neuroactive substances from the autonomic or sensory fibers that modify blood pressure. Certainly, resistance blood vessels are innervated by perivascular: (i) autonomic sympathetic fibers (producing vasoconstriction mainly by noradrenaline release); and (ii) peptidergic sensory fibers [producing vasodilatation mainly by calcitonin gene-related peptide (CGRP) release]. In the last years, by using pithed rats, several monoaminergic mechanisms for controlling both the sympathetic and sensory perivascular outflows have been elucidated. Additionally, several studies have shown the functions of many monoaminergic auto-receptors and hetero-receptors expressed on perivascular fibers that modulate neurotransmitter release. On this basis, the present review: (i) summarizes the modulation of the peripheral vascular tone by adrenergic, serotoninergic, dopaminergic, and histaminergic receptors on perivascular autonomic (sympathetic) and sensory fibers, and (ii) highlights that these monoaminergic receptors are potential therapeutic targets for the development of novel medications to treat cardiovascular diseases (with some of them explored in clinical trials or already in clinical use).
Collapse
Affiliation(s)
- Bruno A Marichal-Cancino
- Departamento de Fisiologia y Farmacologia, Centro de Ciencias Basicas, Universidad Autonoma de Aguascalientes, Ciudad Universitaria, 20131 Aguascalientes, Ags., Mexico
| | | | - Enriqueta Muñoz-Islas
- Unidad Academica Multidisciplinaria Reynosa-Aztlan, Universidad Autonoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | - Carlos M Villalón
- Departamento de Farmacobiologia, Cinvestav-Coapa, Czda. Tenorios 235, Col. Granjas-Coapa, Deleg. Tlalpan, 14330 Mexico City, Mexico
| |
Collapse
|
5
|
Abstract
Migraine sciences have witnessed tremendous advances in recent years. Pre-clinical and clinical experimental models have contributed significantly to provide useful insights into the brain structures that mediate migraine attacks. These models have contributed to elucidate the role of neurotransmission pathways and to identify the role of important molecules within the complex network involved in migraine pathogenesis. The contribution and efforts of several research groups from all over the world has ultimately lead to the generation of novel therapeutic approaches, specifically targeted for the prevention of migraine attacks, the monoclonal antibodies directed against calcitonin gene-related peptide or its receptor. These drugs have been validated in randomized placebo-controlled trials and are now ready to improve the lives of a large multitude of migraine sufferers. Others are in the pipeline and will soon be available.
Collapse
|
6
|
Abstract
The middle meningeal artery is a proposed surrogate marker for activation of trigeminal nociceptors during migraine. Previous studies focused on the extracranial part of the artery; hence, vasoreactivity in the intradural arteries during migraine is unknown. Thirty-four patients with migraine without aura were given sildenafil on one day and calcitonin gene-related peptide on another in double-blind crossover fashion. Patients were scanned with 3.0 T MR angiography before drug administration and again 6 hours later during induced attacks of migraine. We measured circumference of the intradural segment of the middle meningeal artery before and during induced migraine attacks. The middle cerebral and superficial temporal arteries were also examined. Fourteen patients had attacks during the second scan after both study drugs and 11 had a migraine after either one or the other, resulting in a total of 39 attacks included in the final analysis. Mean circumference of the intradural middle meningeal artery at baseline was 3.18 mm with an increase of 0.11 mm during attacks (P = 0.005), corresponding to a relative dilation of 3.6% [95% CI: 1.4%-5.7%]. Middle cerebral artery dilated by 9.4% [95% CI: 7.1%-11.7%] and superficial temporal artery by 2.3% [95% CI: 0.2%-4.4%]. Our study shows that the intradural middle meningeal artery and the middle cerebral artery are dilated during migraine induced by calcitonin gene-related peptide as well as sildenafil. We propose that intradural vasculature is affected by migraine-driven activation of trigeminal afferents during migraine attacks.
Collapse
|
7
|
Al-Karagholi MAM, Gram C, Nielsen CAW, Ashina M. Targeting BK Ca Channels in Migraine: Rationale and Perspectives. CNS Drugs 2020; 34:325-335. [PMID: 32060729 DOI: 10.1007/s40263-020-00706-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Large (big)-conductance calcium-activated potassium (BKCa) channels are expressed in migraine-related structures such as the cranial arteries, trigeminal ganglion and trigeminal spinal nucleus, and they play a substantial role in vascular tonus and neuronal excitability. Using synthetic BKCa channels openers was associated with headache as a frequent adverse effect in healthy volunteers. Additionally, BKCa channels are downstream molecules in migraine signalling pathways that are activated by several compounds known to provoke migraine, including calcitonin gene-related peptide (CGRP), pituitary adenylate cyclase-activating polypeptide (PACAP) and glyceryl trinitrate (GTN). Also, there is a high affinity and a close coupling between BKCa channels and ATP-sensitive potassium (KATP) channels, the role of which has recently been established in migraine pathophysiology. These observations raise the question as to whether direct BKCa channel activation can provoke migraine in migraine patients, and whether the BKCa channel could be a potential novel anti-migraine target. Hence, randomized and placebo-controlled clinical studies on BKCa channel openers or blockers in migraine patients are needed.
Collapse
Affiliation(s)
- Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center, Department of Neurology, University of Copenhagen, Valdemar Hansen Vej 5, 2600, Glostrup, Denmark
| | - Christian Gram
- Danish Headache Center, Department of Neurology, University of Copenhagen, Valdemar Hansen Vej 5, 2600, Glostrup, Denmark
| | - Cherie Amalie Waldorff Nielsen
- Danish Headache Center, Department of Neurology, University of Copenhagen, Valdemar Hansen Vej 5, 2600, Glostrup, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, University of Copenhagen, Valdemar Hansen Vej 5, 2600, Glostrup, Denmark. .,Glostrup Research Park, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark.
| |
Collapse
|
8
|
Tardiolo G, Bramanti P, Mazzon E. Migraine: Experimental Models and Novel Therapeutic Approaches. Int J Mol Sci 2019; 20:E2932. [PMID: 31208068 PMCID: PMC6628212 DOI: 10.3390/ijms20122932] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 12/24/2022] Open
Abstract
Migraine is a disorder affecting an increasing number of subjects. Currently, this disorder is not entirely understood, and limited therapeutic solutions are available. Migraine manifests as a debilitating headache associated with an altered sensory perception that may compromise the quality of life. Animal models have been developed using chemical, physical or genetic modifications, to evoke migraine-like hallmarks for the identification of novel molecules for the treatment of migraine. In this context, experimental models based on the use of chemicals as nitroglycerin or inflammatory soup were extensively used to mimic the acute state and the chronicity of the disorder. This manuscript is aimed to provide an overview of murine models used to investigate migraine pathophysiology. Pharmacological targets as 5-HT and calcitonin gene-related peptide (CGRP) receptors were evaluated for their relevance in the development of migraine therapeutics. Drug delivery systems using nanoparticles may be helpful for the enhancement of the brain targeting and bioavailability of anti-migraine drugs as triptans. In conclusion, the progresses in migraine management have been reached with the development of emerging agonists of 5-HT receptors and novel antagonists of CGRP receptors. The nanoformulations may represent a future perspective in which already known anti-migraine drugs showed to better exert their therapeutic effects.
Collapse
Affiliation(s)
| | | | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino Pulejo", 98124 Messina, Italy.
| |
Collapse
|
9
|
Ong JJY, Wei DYT, Goadsby PJ. Recent Advances in Pharmacotherapy for Migraine Prevention: From Pathophysiology to New Drugs. Drugs 2019; 78:411-437. [PMID: 29396834 DOI: 10.1007/s40265-018-0865-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Migraine is a common and disabling neurological disorder, with a significant socioeconomic burden. Its pathophysiology involves abnormalities in complex neuronal networks, interacting at different levels of the central and peripheral nervous system, resulting in the constellation of symptoms characteristic of a migraine attack. Management of migraine is individualised and often necessitates the commencement of preventive medication. Recent advancements in the understanding of the neurobiology of migraine have begun to account for some parts of the symptomatology, which has led to the development of novel target-based therapies that may revolutionise how migraine is treated in the future. This review will explore recent advances in the understanding of migraine pathophysiology, and pharmacotherapeutic developments for migraine prevention, with particular emphasis on novel treatments targeted at the calcitonin gene-related peptide (CGRP) pathway.
Collapse
Affiliation(s)
- Jonathan Jia Yuan Ong
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,NIHR-Wellcome Trust King's Clinical Research Facility, King's College Hospital, Wellcome Foundation Building, London, SE5 9PJ, UK.,Division of Neurology, Department of Medicine, National University Health System, University Medicine Cluster, Singapore, Singapore
| | - Diana Yi-Ting Wei
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,NIHR-Wellcome Trust King's Clinical Research Facility, King's College Hospital, Wellcome Foundation Building, London, SE5 9PJ, UK
| | - Peter J Goadsby
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK. .,NIHR-Wellcome Trust King's Clinical Research Facility, King's College Hospital, Wellcome Foundation Building, London, SE5 9PJ, UK.
| |
Collapse
|
10
|
Syed AU, Koide M, Brayden JE, Wellman GC. Tonic regulation of middle meningeal artery diameter by ATP-sensitive potassium channels. J Cereb Blood Flow Metab 2019; 39:670-679. [PMID: 29260608 PMCID: PMC6446425 DOI: 10.1177/0271678x17749392] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 11/20/2017] [Accepted: 11/23/2017] [Indexed: 01/10/2023]
Abstract
Activation of ATP-sensitive potassium (KATP) channels in arterial smooth muscle (ASM) contributes to vasodilation evoked by a variety of endogenous and exogenous compounds. Although controversial, activation of KATP channels by neuropeptides such as calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase activating peptide (PACAP) in the trigeminovascular system, including the middle meningeal artery (MMA), has been linked to migraine headache. The objective of the current study was to determine if ongoing KATP channel activity also influences MMA diameter. In the absence of other exogenous compounds, the KATP channel inhibitors glibenclamide and PNU37883A induced constriction of isolated and pressurized MMAs. In contrast, KATP channel inhibition did not alter cerebral artery diameter. Consistent with tonic KATP activity in MMA, glibenclamide also induced ASM membrane potential depolarization and increased cytosolic Ca2+. Inhibitors of cAMP-dependent protein kinase (PKA) abolished basal KATP activation in MMA and caused a marked decrease in sensitivity to the synthetic KATP channel opener, cromakalim. In vivo MMA constriction in response to gibenclamide was observed using two-photon imaging of arterial diameter. Together these results indicate that PKA-mediated tonic KATP channel activity contributes to the regulation of MMA diameter.
Collapse
Affiliation(s)
- Arsalan U Syed
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Masayo Koide
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
| | - Joseph E Brayden
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
| | - George C Wellman
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
| |
Collapse
|
11
|
Abstract
Vascular theories of migraine and cluster headache have dominated for many years the pathobiological concept of these disorders. This view is supported by observations that trigeminal activation induces a vascular response and that several vasodilating molecules trigger acute attacks of migraine and cluster headache in susceptible individuals. Over the past 30 years, this rationale has been questioned as it became clear that the actions of some of these molecules, in particular, calcitonin gene-related peptide and pituitary adenylate cyclase-activating peptide, extend far beyond the vasoactive effects, as they possess the ability to modulate nociceptive neuronal activity in several key regions of the trigeminovascular system. These findings have shifted our understanding of these disorders to a primarily neuronal origin with the vascular manifestations being the consequence rather than the origin of trigeminal activation. Nevertheless, the neurovascular component, or coupling, seems to be far more complex than initially thought, being involved in several accompanying features. The review will discuss in detail the anatomical basis and the functional role of the neurovascular mechanisms relevant to migraine and cluster headache.
Collapse
Affiliation(s)
- Jan Hoffmann
- 1 Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Serapio M Baca
- 2 Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Simon Akerman
- 3 Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD, USA
| |
Collapse
|
12
|
|
13
|
Christensen CE, Amin FM, Younis S, Lindberg U, de Koning P, Petersen ET, Paulson OB, Larsson HBW, Ashina M. Sildenafil and calcitonin gene-related peptide dilate intradural arteries: A 3T MR angiography study in healthy volunteers. Cephalalgia 2018; 39:264-273. [DOI: 10.1177/0333102418787336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background Sildenafil and calcitonin gene-related peptide are vasoactive substances that induce migraine attacks in patients. The intradural arteries are thought to be involved, but these have never been examined in vivo. Sildenafil is the only migraine-inducing compound for which cephalic, extracranial artery dilation is not reported. Here, we investigate the effects of sildenafil and calcitonin gene-related peptide on the extracranial and intradural parts of the middle meningeal artery. Methods In a double-blind, randomized, three-way crossover, placebo-controlled head-to-head comparison study, MR-angiography was recorded in healthy volunteers at baseline and twice after study drug (sildenafil/ calcitonin gene-related peptide/saline) administration. Circumferences of extracranial and intradural middle meningeal artery segments were measured using semi-automated analysis software. The area under the curve for circumference change was compared using paired t-tests between study days. Results Twelve healthy volunteers completed the study. The area under the curveBaseline-120min was significantly larger on both the sildenafil and the calcitonin gene-related peptide day in the intradural middle meningeal artery (calcitonin gene-related peptide, p = 0.013; sildenafil, p = 0.027) and the extracranial middle meningeal artery (calcitonin gene-related peptide, p = 0.0003; sildenafil, p = 0.021), compared to placebo. Peak intradural middle meningeal artery dilation was 9.9% (95% CI [2.9–16.9]) after sildenafil (T30min) and 12.5% (95% CI [8.1–16.8]) after calcitonin gene-related peptide (T30min). Peak dilation of the extracranial middle meningeal artery after calcitonin gene-related peptide (T30min) was 15.7% (95% CI [11.2–20.1]) and 18.9% (95% CI [12.8–24.9]) after sildenafil (T120min). Conclusion An important novel finding is that both sildenafil and calcitonin gene-related peptide dilate intradural arteries, supporting the notion that all known pharmacological migraine triggers dilate cephalic vessels. We suggest that intradural artery dilation is associated with headache induced by calcitonin gene-related peptide and sildenafil.
Collapse
Affiliation(s)
- Casper Emil Christensen
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Faisal Mohammad Amin
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Samaira Younis
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulrich Lindberg
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Patrick de Koning
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Esben Thade Petersen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and research, Amager and Hvidovre Hospital, Copenhagen, Denmark
| | - Olaf Bjarne Paulson
- Neurobiology Research Unit, Department of Neurology, Rigshospitalet Blegdamsvej, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Bo Wiberg Larsson
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Ramachandran R. Neurogenic inflammation and its role in migraine. Semin Immunopathol 2018; 40:301-314. [PMID: 29568973 DOI: 10.1007/s00281-018-0676-y] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/06/2018] [Indexed: 11/28/2022]
Abstract
The etiology of migraine pain involves sensitized meningeal afferents that densely innervate the dural vasculature. These afferents, with their cell bodies located in the trigeminal ganglion, project to the nucleus caudalis, which in turn transmits signals to higher brain centers. Factors such as chronic stress, diet, hormonal fluctuations, or events like cortical spreading depression can generate a state of "sterile inflammation" in the intracranial meninges resulting in the sensitization and activation of trigeminal meningeal nociceptors. This sterile inflammatory phenotype also referred to as neurogenic inflammation is characterized by the release of neuropeptides (such as substance P, calcitonin gene related peptide) from the trigeminal innervation. This release leads to vasodilation, plasma extravasation secondary to capillary leakage, edema, and mast cell degranulation. Although neurogenic inflammation has been observed and extensively studied in peripheral tissues, its role has been primarily investigated in the genesis and maintenance of migraine pain. While some aspects of neurogenic inflammation has been disregarded in the occurrence of migraine pain, targeted analysis of factors have opened up the possibilities of a dialogue between the neurons and immune cells in driving such a sterile neuroinflammatory state in migraine pathophysiology.
Collapse
Affiliation(s)
- Roshni Ramachandran
- Anesthesiology Research, Department of Anesthesiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
15
|
Sokolov AY, Murzina AA, Osipchuk AV, Lyubashina OA, Amelin AV. Cholinergic mechanisms of headaches. NEUROCHEM J+ 2017. [DOI: 10.1134/s1819712417020131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Al-Karagholi MAM, Hansen JM, Severinsen J, Jansen-Olesen I, Ashina M. The K ATP channel in migraine pathophysiology: a novel therapeutic target for migraine. J Headache Pain 2017; 18:90. [PMID: 28831746 PMCID: PMC5567577 DOI: 10.1186/s10194-017-0800-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/15/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND To review the distribution and function of KATP channels, describe the use of KATP channels openers in clinical trials and make the case that these channels may play a role in headache and migraine. DISCUSSION KATP channels are widely present in the trigeminovascular system and play an important role in the regulation of tone in cerebral and meningeal arteries. Clinical trials using synthetic KATP channel openers report headache as a prevalent-side effect in non-migraine sufferers, indicating that KATP channel opening may cause headache, possibly due to vascular mechanisms. Whether KATP channel openers can provoke migraine in migraine sufferers is not known. CONCLUSION We suggest that KATP channels may play an important role in migraine pathogenesis and could be a potential novel therapeutic anti-migraine target.
Collapse
Affiliation(s)
- Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Nordre Ringvej 57, DK-2600 Copenhagen, Denmark
| | - Jakob Møller Hansen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Nordre Ringvej 57, DK-2600 Copenhagen, Denmark
| | - Johanne Severinsen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Nordre Ringvej 57, DK-2600 Copenhagen, Denmark
| | - Inger Jansen-Olesen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Nordre Ringvej 57, DK-2600 Copenhagen, Denmark
- Danish Headache Center, Department of Neurology, Glostrup Research Park, Rigshospitalet Glostrup, Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Nordre Ringvej 57, DK-2600 Copenhagen, Denmark
| |
Collapse
|
17
|
Coles JA, Myburgh E, Brewer JM, McMenamin PG. Where are we? The anatomy of the murine cortical meninges revisited for intravital imaging, immunology, and clearance of waste from the brain. Prog Neurobiol 2017; 156:107-148. [PMID: 28552391 DOI: 10.1016/j.pneurobio.2017.05.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 04/25/2017] [Accepted: 05/08/2017] [Indexed: 12/15/2022]
Abstract
Rapid progress is being made in understanding the roles of the cerebral meninges in the maintenance of normal brain function, in immune surveillance, and as a site of disease. Most basic research on the meninges and the neural brain is now done on mice, major attractions being the availability of reporter mice with fluorescent cells, and of a huge range of antibodies useful for immunocytochemistry and the characterization of isolated cells. In addition, two-photon microscopy through the unperforated calvaria allows intravital imaging of the undisturbed meninges with sub-micron resolution. The anatomy of the dorsal meninges of the mouse (and, indeed, of all mammals) differs considerably from that shown in many published diagrams: over cortical convexities, the outer layer, the dura, is usually thicker than the inner layer, the leptomeninx, and both layers are richly vascularized and innervated, and communicate with the lymphatic system. A membrane barrier separates them and, in disease, inflammation can be localized to one layer or the other, so experimentalists must be able to identify the compartment they are studying. Here, we present current knowledge of the functional anatomy of the meninges, particularly as it appears in intravital imaging, and review their role as a gateway between the brain, blood, and lymphatics, drawing on information that is scattered among works on different pathologies.
Collapse
Affiliation(s)
- Jonathan A Coles
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davis Building, University of Glasgow, Glasgow, G12 8TA, United Kingdom.
| | - Elmarie Myburgh
- Centre for Immunology and Infection Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, United Kingdom
| | - James M Brewer
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davis Building, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Paul G McMenamin
- Department of Anatomy & Developmental Biology, School of Biomedical and Psychological Sciences and Monash Biomedical Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, 10 Chancellor's Walk, Clayton, Victoria, 3800, Australia
| |
Collapse
|
18
|
Heteroreceptors Modulating CGRP Release at Neurovascular Junction: Potential Therapeutic Implications on Some Vascular-Related Diseases. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2056786. [PMID: 28116293 PMCID: PMC5223010 DOI: 10.1155/2016/2056786] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 11/12/2016] [Accepted: 11/27/2016] [Indexed: 01/23/2023]
Abstract
Calcitonin gene-related peptide (CGRP) is a 37-amino-acid neuropeptide belonging to the calcitonin gene peptide superfamily. CGRP is a potent vasodilator with potential therapeutic usefulness for treating vascular-related disease. This peptide is primarily located on C- and Aδ-fibers, which have extensive perivascular presence and a dual sensory-efferent function. Although CGRP has two major isoforms (α-CGRP and β-CGRP), the α-CGRP is the isoform related to vascular actions. Release of CGRP from afferent perivascular nerve terminals has been shown to result in vasodilatation, an effect mediated by at least one receptor (the CGRP receptor). This receptor is an atypical G-protein coupled receptor (GPCR) composed of three functional proteins: (i) the calcitonin receptor-like receptor (CRLR; a seven-transmembrane protein), (ii) the activity-modifying protein type 1 (RAMP1), and (iii) a receptor component protein (RCP). Although under physiological conditions, CGRP seems not to play an important role in vascular tone regulation, this peptide has been strongly related as a key player in migraine and other vascular-related disorders (e.g., hypertension and preeclampsia). The present review aims at providing an overview on the role of sensory fibers and CGRP release on the modulation of vascular tone.
Collapse
|
19
|
Edvinsson L. Blockade of CGRP Receptors in the Intracranial Vasculature: A New Target in the Treatment of Headache. Cephalalgia 2016; 24:611-22. [PMID: 15265049 DOI: 10.1111/j.1468-2982.2003.00719.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In primary headaches, there is a clear association between the headache and the release of calcitonin gene-related peptide (CGRP) but not with any of the other neuronal messengers. The purpose of this review is to describe the role of CGRP in the intracranial circulation and to elucidate a possible role for a specific CGRP receptor antagonist in the treatment of primary headaches. Acute treatment with a 5-HT1B/1D agonist (triptan) results in alleviation of the headache and normalization of the cranial venous CGRP levels, in part due to a presynaptic inhibitory effect on sensory nerves. The central role of CGRP in migraine and cluster headache pathophysiology has led to the search for small molecule CGRP antagonists with few cardiovascular side-effects. The initial pharmacological profile of such a group of compounds has recently been disclosed. One of these compounds has been found to be efficacious in the relief of acute attacks of migraine.
Collapse
Affiliation(s)
- L Edvinsson
- Department of Internal Medicine, Lund University Hospital, Lund, Sweden.
| |
Collapse
|
20
|
Abstract
Migraine and cluster headache are primary headache disorders commonly encountered in clinical practice. Despite the profound disability caused by these primary headache disorders, available acute and preventive treatment options are limited. Recent understanding of headache pathophysiology has led to the development of new drug formulations and novel drug targets that are extremely promising. This article will highlight several of the new treatments that are currently under investigation including novel delivery mechanisms of already existing medications, calcitonin gene-related peptide (CGRP) receptor antagonists, antibodies to CGRP and its receptor, serotonin receptor agonists, transient receptor potential vanilloid receptor modulators, orexin receptor antagonists, glial cell modulators, and neuromodulation. If data is supportive, these therapies will be welcome additions to the headache specialist's armamentarium.
Collapse
|
21
|
|
22
|
Russell FA, King R, Smillie SJ, Kodji X, Brain SD. Calcitonin gene-related peptide: physiology and pathophysiology. Physiol Rev 2014; 94:1099-142. [PMID: 25287861 PMCID: PMC4187032 DOI: 10.1152/physrev.00034.2013] [Citation(s) in RCA: 849] [Impact Index Per Article: 77.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a 37-amino acid neuropeptide. Discovered 30 years ago, it is produced as a consequence of alternative RNA processing of the calcitonin gene. CGRP has two major forms (α and β). It belongs to a group of peptides that all act on an unusual receptor family. These receptors consist of calcitonin receptor-like receptor (CLR) linked to an essential receptor activity modifying protein (RAMP) that is necessary for full functionality. CGRP is a highly potent vasodilator and, partly as a consequence, possesses protective mechanisms that are important for physiological and pathological conditions involving the cardiovascular system and wound healing. CGRP is primarily released from sensory nerves and thus is implicated in pain pathways. The proven ability of CGRP antagonists to alleviate migraine has been of most interest in terms of drug development, and knowledge to date concerning this potential therapeutic area is discussed. Other areas covered, where there is less information known on CGRP, include arthritis, skin conditions, diabetes, and obesity. It is concluded that CGRP is an important peptide in mammalian biology, but it is too early at present to know if new medicines for disease treatment will emerge from our knowledge concerning this molecule.
Collapse
Affiliation(s)
- F A Russell
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| | - R King
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| | - S-J Smillie
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| | - X Kodji
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| | - S D Brain
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| |
Collapse
|
23
|
Schueler M, Neuhuber WL, De Col R, Messlinger K. Innervation of Rat and Human Dura Mater and Pericranial Tissues in the Parieto-Temporal Region by Meningeal Afferents. Headache 2014; 54:996-1009. [DOI: 10.1111/head.12371] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Markus Schueler
- Institute of Physiology and Pathophysiology; Friedrich-Alexander University Erlangen-Nürnberg; Erlangen Germany
- Department of Nephrology and Hypertensiology; Friedrich-Alexander University Erlangen-Nürnberg; Erlangen Germany
| | - Winfried L. Neuhuber
- Institute of Anatomy; Friedrich-Alexander University Erlangen-Nürnberg; Erlangen Germany
| | - Roberto De Col
- Department of Anaesthesiology and Operative Intensive Care; Faculty of Clinical Medicine Mannheim; University of Heidelberg; Mannheim Germany
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology; Friedrich-Alexander University Erlangen-Nürnberg; Erlangen Germany
| |
Collapse
|
24
|
Benemei S, Fusi C, Trevisan G, Geppetti P. The TRPA1 channel in migraine mechanism and treatment. Br J Pharmacol 2014; 171:2552-67. [PMID: 24206166 PMCID: PMC4008999 DOI: 10.1111/bph.12512] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/31/2013] [Accepted: 11/04/2013] [Indexed: 01/07/2023] Open
Abstract
Migraine remains an elusive and poorly understood disease. The uncertainty is reflected by the currently unsatisfactory acute and prophylactic treatments for this disease. Genetic and pharmacological information points to the involvement of some transient receptor potential (TRP) channels in pain mechanisms. In particular, the TRP vanilloid 1 (TRPV1) and TRP ankyrin 1 (TRPA1) channels seem to play a major role in different models of pain diseases. Recent findings have underscored the possibility that TRP channels expressed in the nerve terminals of peptidergic nociceptors contribute to the migraine mechanism. Among this channel subset, TRPA1, a sensor of oxidative, nitrative and electrophilic stress, is activated by an unprecedented series of irritant and pain-provoking exogenous and endogenous agents, which release the pro-migraine peptide, calcitonin gene-related peptide, through this neuronal pathway. Some of the recently identified TRPA1 activators have long been known as migraine triggers. Furthermore, specific analgesic and antimigraine medicines have been shown to inhibit or desensitize TRPA1 channels. Thus, TRPA1 is emerging as a major contributing pathway in migraine and as a novel target for the development of drugs for pain and migraine treatment.
Collapse
Affiliation(s)
- S Benemei
- Clinical Pharmacology Unit, Department of Health Sciences, University of FlorenceFlorence, Italy
- Headache Centre, Department of Health Sciences, University of FlorenceFlorence, Italy
| | - C Fusi
- Clinical Pharmacology Unit, Department of Health Sciences, University of FlorenceFlorence, Italy
| | - Gabriela Trevisan
- Clinical Pharmacology Unit, Department of Health Sciences, University of FlorenceFlorence, Italy
| | - Pierangelo Geppetti
- Headache Centre, Department of Health Sciences, University of FlorenceFlorence, Italy
| |
Collapse
|
25
|
Abstract
Migraine is a common and highly disabling neurological disorder. Despite the complexity of its pathophysiology, substantial advances have been achieved over the past 20 years in its understanding, as well as the development of pharmacological treatment options. The development of serotonin 5-HT(1B/1D) receptor agonists ("triptans") substantially improved the acute treatment of migraine attacks. However, many migraineurs do not respond satisfactorily to triptans and cardiovascular co-morbidities limit their use in a significant number of patients. As migraine is increasingly considered to be a disorder of the brain, and preclinical and clinical data indicate that the observed vasodilation is merely an epiphenomenon, research has recently focused on the development of neurally acting compounds that lack vasoconstrictor properties. This review highlights the most important pharmacological targets for which compounds have been developed that are highly likely to enter or have already advanced into clinical trials for the acute and preventive treatment of migraine. In this context, preclinical and clinical data on compounds acting on calcitonin gene-related peptide or its receptor, the 5-HT(1F) receptor, nitric oxide synthase, and acid-sensing ion channel blockers are discussed.
Collapse
Affiliation(s)
- Jan Hoffmann
- Headache Group, Department of Neurology, University of California, San Francisco, 1701 Divisadero St, San Francisco, CA, 94115, USA
| | | |
Collapse
|
26
|
Chen SP, Yang AC, Fuh JL, Wang SJ. Autonomic dysfunction in reversible cerebral vasoconstriction syndromes. J Headache Pain 2013; 14:94. [PMID: 24274860 PMCID: PMC4177393 DOI: 10.1186/1129-2377-14-94] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 11/19/2013] [Indexed: 12/22/2022] Open
Abstract
Background Autonomic imbalance may play an important role in the pathogenesis of reversible cerebral vasoconstriction syndromes (RCVS). This study aimed to assess the autonomic function by analyzing heart rate variability (HRV) in patients with RCVS. Methods Patients with RCVS and age- and gender-matched controls were consecutively recruited. All patients (both ictal and remission stage) and controls underwent 24-hour ambulatory electrocardiographic (ECG) recordings. HRV measures covering time and frequency domains were used to assess autonomic functioning. Results Thirty-nine patients with RCVS and 39 controls completed the study. Compared to the controls, RCVS patients during the ictal stage showed reductions in parasympathetic-related indices, including the root mean square of difference of consecutive interbeat intervals (RMSSD) (22.1 ± 7.0 vs. 35.2 ± 14.2, p < 0.001), the percentage of adjacent intervals that varied by more than 50 ms (pNN50) (3.7 ± 3.4 vs. 10.6 ± 8.1, p < 0.001), and high-frequency power (HF) (5.82 ± 0.73 vs. 6.77 ± 0.74; p < 0.001), and increased low-frequency/high-frequency (LF/HF) ratio (index of sympathovagal balance) (3.38 ± 1.32 vs. 2.48 ± 1.07; p =0.001). These HRV indices improved partially but remained significantly different from controls during remission. Conclusions Decreased parasympathetic modulations and accentuated sympathetic activity might be a biological trait in patients with RCVS.
Collapse
Affiliation(s)
- Shih-Pin Chen
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.
| | | | | | | |
Collapse
|
27
|
Westcott EB, Segal SS. Perivascular innervation: a multiplicity of roles in vasomotor control and myoendothelial signaling. Microcirculation 2013; 20:217-38. [PMID: 23289720 DOI: 10.1111/micc.12035] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 12/25/2012] [Indexed: 12/30/2022]
Abstract
The control of vascular resistance and tissue perfusion reflect coordinated changes in the diameter of feed arteries and the arteriolar networks they supply. Against a background of myogenic tone and metabolic demand, vasoactive signals originating from perivascular sympathetic and sensory nerves are integrated with endothelium-derived signals to produce vasodilation or vasoconstriction. PVNs release adrenergic, cholinergic, peptidergic, purinergic, and nitrergic neurotransmitters that lead to SMC contraction or relaxation via their actions on SMCs, ECs, or other PVNs. ECs release autacoids that can have opposing actions on SMCs. Respective cell layers are connected directly to each other through GJs at discrete sites via MEJs projecting through holes in the IEL. Whereas studies of intercellular communication in the vascular wall have centered on endothelium-derived signals that govern SMC relaxation, attention has increasingly focused on signaling from SMCs to ECs. Thus, via MEJs, neurotransmission from PVNs can evoke distinct responses from ECs subsequent to acting on SMCs. To integrate this emerging area of investigation in light of vasomotor control, the present review synthesizes current understanding of signaling events that originate within SMCs in response to perivascular neurotransmission in light of EC feedback. Although often ignored in studies of the resistance vasculature, PVNs are integral to blood flow control and can provide a physiological stimulus for myoendothelial communication. Greater understanding of these underlying signaling events and how they may be affected by aging and disease will provide new approaches for selective therapeutic interventions.
Collapse
Affiliation(s)
- Erika B Westcott
- Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri 65212, USA
| | | |
Collapse
|
28
|
Abstract
Migraine is a common, disabling, neurovascular disorder characterized by episodic attacks of head pain and associated disability plus systemic autonomic and neurologic symptoms. The advent of the triptan class of medication in the 1990s revolutionized the acute treatment of migraine, but many migraineurs do not respond optimally or at all to triptans, have intolerable adverse effects, or have contraindications to their use. Preventive pharmacotherapy has advanced mostly through serendipity, with new drugs being found effective while being used for other indications. There remains a significant need for new medications and devices that can provide effective, rapid, and sustained pain relief without adverse effects or recurrence. Several new acute and preventive therapies for the treatment of migraine and cluster headaches have shown promise and are currently under investigation. This article covers innovative delivery mechanisms, calcitonin gene-related peptide receptor antagonists, antibodies to calcitonin gene-related peptide and its receptor, 5-HT1F receptor agonists, transient receptor potential vanilloid receptor modulators, orexin receptor antagonists, glial cell modulators, and neurostimulation.
Collapse
|
29
|
Eftekhari S, Warfvinge K, Blixt FW, Edvinsson L. Differentiation of nerve fibers storing CGRP and CGRP receptors in the peripheral trigeminovascular system. THE JOURNAL OF PAIN 2013; 14:1289-303. [PMID: 23958278 DOI: 10.1016/j.jpain.2013.03.010] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 02/26/2013] [Accepted: 03/20/2013] [Indexed: 11/29/2022]
Abstract
UNLABELLED Primary headaches such as migraine are postulated to involve the activation of sensory trigeminal pain neurons that innervate intracranial blood vessels and the dura mater. It is suggested that local activation of these sensory nerves may involve dural mast cells as one factor in local inflammation, causing sensitization of meningeal nociceptors. Immunofluorescence was used to study the detailed distribution of calcitonin gene-related peptide (CGRP) and its receptor components calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1) in whole-mount rat dura mater and in human dural vessels. The relative distributions of CGRP, CLR, and RAMP1 were evaluated with respect to each other and in relationship to mast cells, myelin, substance P, neuronal nitric oxide synthase, pituitary adenylate cyclase-activating polypeptide, and vasoactive intestinal peptide. CGRP expression was found in thin unmyelinated fibers, whereas CLR and RAMP1 were expressed in thicker myelinated fibers coexpressed with an A-fiber marker. CLR and RAMP1 immunoreactivity colocalized with mast cell tryptase in rodent; however, expression of both receptor components was not observed in human mast cells. Immunoreactive substance P fibers coexpressed CGRP, although neuronal nitric oxide synthase and vasoactive intestinal peptide expression was very limited, and these fibers were distinct from the CGRP-positive fibers. Few pituitary adenylate cyclase-activating polypeptide immunoreactive fibers occurred and some colocalized with CGRP. PERSPECTIVE This study demonstrates the detailed distribution of CGRP and its receptor in the dura mater. These data suggest that CGRP is expressed in C-fibers and may act on A-fibers, rodent mast cells, and vascular smooth muscle cells that express the CGRP receptor. These sites represent potential pathophysiological targets of novel antimigraine agents such as the newly developed CGRP receptor antagonists.
Collapse
Affiliation(s)
- Sajedeh Eftekhari
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden.
| | | | | | | |
Collapse
|
30
|
Basic mechanisms of migraine and its acute treatment. Pharmacol Ther 2012; 136:319-33. [DOI: 10.1016/j.pharmthera.2012.08.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 08/13/2012] [Indexed: 12/27/2022]
|
31
|
New Agents for Acute Treatment of Migraine: CGRP Receptor Antagonists, iNOS Inhibitors. Curr Treat Options Neurol 2012; 14:50-9. [PMID: 22090312 DOI: 10.1007/s11940-011-0155-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
OPINION STATEMENT The treatment of migraine was advanced dramatically with the introduction of triptans in the early 1990s. Despite the substantial improvement in the quality of life that triptans have brought to many migraineurs, a substantial cohort of patients remain highly disabled by attacks and need new therapeutic approaches, which ideally should be quick-acting, have no vasoconstrictor activity, and have a longer duration of action and be better tolerated than current therapies. The calcitonin gene-related peptide (CGRP) receptor antagonists (gepants)-olcegepant (BIBN 4096 BS), telcagepant (MK-0974), MK3207, and BI 44370 TA-are effective in treating acute migraine. They have no vasoconstrictive properties, fewer adverse effects, and may act longer than triptans. Their development has been complicated by liver toxicity issues when used as preventives. Results from studies with BI 44370 TA do not support broad concern about a class effect, and further studies are ongoing in this respect. Many experimental studies and clinical trials suggest that nitric oxide may have a role in the pathophysiology of migraine. Therefore, the inhibition of nitric oxide synthase (NOS) for the acute or prophylactic treatment of migraine offered a feasible approach; as inducible NOS (iNOS) is involved in several pain states, such as inflammatory pain, it appeared to be an attractive target. However, despite high selectivity and potency, the iNOS inhibitor GW274150 was not effective for acute treatment or prophylaxis of migraine, suggesting that iNOS is very unlikely to be a promising target.
Collapse
|
32
|
Neuropeptide effects in the trigeminal system: pathophysiology and clinical relevance in migraine. Keio J Med 2012; 60:82-9. [PMID: 21979827 DOI: 10.2302/kjm.60.82] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The neuropeptides substance P, calcitonin gene-related peptide (CGRP) and vasoactive intestinal polypeptide (VIP) have been considered as important mediators in migraine and other primary headaches. CGRP and VIP have been found at increased concentrations in jugular venous plasma during attacks of migraine or cluster headache, and CGRP receptor antagonists have recently been shown to be effective in migraine therapy. Substance P and CGRP are produced from a subset of trigeminal afferents, whereas VIP derives from parasympathetic efferents. Release of these neuropeptides in the meninges can cause arterial vasodilatation, mast cell degranulation and plasma extravasation in animal experiments, but only CGRP seems to be relevant in migraine. Animal models have confirmed the important role of CGRP in meningeal nociception. The activity of spinal trigeminal neurons is a sensitive integrative measure of trigeminal activity and is partly under the control of CGRP, most likely via central mechanisms. CGRP released from central terminals of trigeminal afferents in the spinal trigeminal nucleus seems to facilitate nociceptive transmission via presynaptic mechanisms. The central effect of CGRP is substantiated by suppression of nociceptive c-fos activation and neuronal activity in the spinal trigeminal nucleus following CGRP receptor inhibition. These proposed functions are supported by the localization of CGRP receptor components in the rat cranial dura mater, trigeminal ganglion and spinal trigeminal nucleus. The currently available data indicate multiple sites of CGRP action in trigeminal nociception and the pathogenesis of migraine; however, central CGRP receptors are likely to be the essential targets in the treatment of migraine using CGRP receptor antagonists.
Collapse
|
33
|
Kokkoris S, Andrews P, Webb DJ. Role of calcitonin gene-related peptide in cerebral vasospasm, and as a therapeutic approach to subarachnoid hemorrhage. Front Endocrinol (Lausanne) 2012; 3:135. [PMID: 23162536 PMCID: PMC3498620 DOI: 10.3389/fendo.2012.00135] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/24/2012] [Indexed: 12/22/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is one of the most potent microvascular vasodilators identified to date. Vascular relaxation and vasodilation is mediated via activation of the CGRP receptor. This atypical receptor is made up of a G protein-coupled receptor called calcitonin receptor-like receptor (CLR), a single transmembrane protein called receptor activity-modifying protein (RAMP), and an additional protein that is required for Ga(s) coupling, known as receptor component protein (RCP). Several mechanisms involved in CGRP-mediated relaxation have been identified. These include nitric oxide (NO)-dependent endothelium-dependent mechanisms or cAMP-mediated endothelium-independent pathways; the latter being more common. Subarachnoid hemorrhage (SAH) is associated with cerebral vasoconstriction that occurs several days after the hemorrhage and is often fatal. The vasospasm occurs in 30-40% of patients and is the major cause of death from this condition. The vasoconstriction is associated with a decrease in CGRP levels in nerves and an increase in CGRP levels in draining blood, suggesting that CGRP is released from nerves to oppose the vasoconstriction. This evidence has led to the concept that exogenous CGRP may be beneficial in a condition that has proven hard to treat. The present article reviews: (a) the pathophysiology of delayed ischemic neurologic deficit after SAH (b) the basics of the CGRP receptor structure, signal transduction, and vasodilatation mechanisms and (c) the studies that have been conducted so far using CGRP in both animals and humans with SAH.
Collapse
Affiliation(s)
| | - Peter Andrews
- Centre for Clinical Brain Sciences, University of EdinburghEdinburgh, UK
- *Correspondence: Peter Andrews, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK. e-mail:
| | - David J. Webb
- Clinical Pharmacology Unit, British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of EdinburghEdinburgh, UK
| |
Collapse
|
34
|
|
35
|
Ter Laan M, van Dijk JMC, Staal MJ, Elting JWJ. Electrical modulation of the sympathetic nervous system in order to augment cerebral blood flow: a protocol for an experimental study. BMJ Open 2011; 1:e000120. [PMID: 22021767 PMCID: PMC3191412 DOI: 10.1136/bmjopen-2011-000120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Introduction Cerebral blood flow (CBF) is regulated by several mechanisms. Neurogenic control has been a matter of debate, even though several publications reported the effects of changes in sympathetic tone on CBF. Transcutaneous electrical nerve stimulation and spinal-cord stimulation have been shown to influence peripheral and cerebral blood flow through a sympathetic pathway. The authors hypothesise that certain pathological conditions result in a relative increase in the neurogenic regulation of CBF and that this regulation can be modulated electrically. Methods and analysis Patients with cerebral vasospasm after subarachnoid haemorrhage will be included. The experimental set-up measures several parameters that are involved in cerebral blood flow regulation in patients with cerebral vasospasm after subarachnoid haemorrhage. Measurements are taken at baseline and with stimulation in several frequencies. An ad hoc statistical analysis is used to evaluate different settings of the electrical stimulation. Autoregulation is evaluated with transfer function analysis and autoregulatory index calculations. Ethics and dissemination Ethical registration was granted by Medical Review Ethics Committee Groningen (ID METc 2010.123). All participants provide written informed consent on participation. Upon finishing a pilot study to investigate feasibility and effect, either future prospective (randomised) studies will be designed, or other modalities of electrical stimulation will be explored using the same set-up. Trial Registration Dutch Trial Registry: NTR2358.
Collapse
Affiliation(s)
- Mark Ter Laan
- Department of Neurosurgery, University Medical Center Groningen, Groningen, The Netherlands
| | - J Marc C van Dijk
- Department of Neurosurgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Michiel J Staal
- Department of Neurosurgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan-Willem J Elting
- Department of Neurophysiology and Neurology, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
36
|
Eftekhari S, Edvinsson L. Possible sites of action of the new calcitonin gene-related peptide receptor antagonists. Ther Adv Neurol Disord 2011; 3:369-78. [PMID: 21179597 DOI: 10.1177/1756285610388343] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Migraine is considered a neurovascular disease affecting more than 10% of the general population. Currently available drugs for the acute treatment of migraine are vasoconstrictors, which have limitations in their therapeutic use. The calcitonin gene-related peptide (CGRP) has a key role in migraine, where levels of CGRP are increased during acute migraine attacks. CGRP is expressed throughout the central and peripheral nervous system, consistent with control of vasodilatation and transmission of nociceptive information. In migraine, CGRP is released from the trigeminal system. At peripheral synapses CGRP results in vasodilatation via receptors on the smooth muscle cells. At central synapses, CGRP acts postjunctionally on second-order neurons to transmit pain centrally via the brainstem and midbrain to higher cortical pain regions. The recently developed CGRP-receptor antagonists have demonstrated clinical efficacy in the treatment of acute migraine attacks. A remaining question is their site of action. The CGRP-receptor components (calcitonin receptor-like receptor, receptor activity modifying protein 1 and receptor component protein) are found to colocalize in the smooth muscle cells of intracranial arteries and in large-sized neurons in the trigeminal ganglion. The CGRP receptor has also been localized within parts of the brain and the brainstem. The aim of this paper is to review recent localization studies of CGRP and its receptor components within the nervous system and to discuss whether these sites could be possible targets for the CGRP-receptor antagonists.
Collapse
Affiliation(s)
- Sajedeh Eftekhari
- Department of Clinical Sciences, Division of Experimental Vascular Research, BMC A13, Sölvegatan 17, SE-22184 Lund, Sweden
| | | |
Collapse
|
37
|
A case of cerebellar infarction presenting as thunderclap headache. Neurol Sci 2011; 33:321-3. [DOI: 10.1007/s10072-011-0673-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 06/15/2011] [Indexed: 10/18/2022]
|
38
|
Smillie SJ, Brain SD. Calcitonin gene-related peptide (CGRP) and its role in hypertension. Neuropeptides 2011; 45:93-104. [PMID: 21269690 DOI: 10.1016/j.npep.2010.12.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/01/2010] [Accepted: 12/03/2010] [Indexed: 01/19/2023]
Abstract
Hypertension is still presently the number one "silent killer" in the Western World, and a major risk factor for the development of secondary diseases contributing to cardiovascular disease (CVD). However, despite a broad range of therapies, the mechanisms involved in the onset of hypertension remains unclear, therefore there is a real need to investigate the mechanisms involved. Calcitonin gene-related peptide (CGRP) is the most potent microvascular vasodilator known to date. Widely expressed in the nervous system, this peptide is considered to play a positive role in wound healing and protects against ischaemic and other traumas. However, whilst the protective mechanisms are not well understood, evidence indicates that these mechanisms become important in vascular-related stress. This review provides evidence that CGRP is both a potent vasodilator and hypotensive agent. However studies to date suggest that CGRP does not contribute to the physiological regulation of blood pressure. By comparing results from a range of human and animal studies, findings broadly suggest an association between CGRP and the pathophysiology of hypertension in terms of protective mechanisms, with possibly the RAMP1 component of the CGRP receptor playing a key role in the brain stem, in addition to peripheral receptors. The studies of agents that release CGRP agonists are at an early stage, with analogues for human use currently under development. However, at this stage, further research is required to establish the mechanisms by which CGRP is protective in the onset of hypertension, if novel and therapeutic modes of treatment are to be developed.
Collapse
Affiliation(s)
- Sarah-Jane Smillie
- BHF Centre of Cardiovascular Excellence and Centre for Integrative Biomedicine, Cardiovascular Division, Franklin-Wilkins Building, Waterloo Campus, King's College London, London SE19NH, UK
| | | |
Collapse
|
39
|
Ferrante E, Tassorelli C, Rossi P, Lisotto C, Nappi G. Focus on the management of thunderclap headache: from nosography to treatment. J Headache Pain 2011; 12:251-8. [PMID: 21331755 PMCID: PMC3072477 DOI: 10.1007/s10194-011-0302-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 01/18/2011] [Indexed: 11/24/2022] Open
Abstract
Thunderclap headache (TCH) is an excruciating headache characterized by a very sudden onset. Recognition and accurate diagnosis of TCH are important in order to rule out the various, serious underlying brain disorders that, in a high percentage of cases, are the real cause of the headache. Primary TCH, which may recur intermittently and generally has a spontaneous, benign evolution, can thus be diagnosed only when all other potential underlying causes have been excluded through accurate diagnostic work up. In this review, we focus on the management of TCH, paying particular attention to the diagnostic work up and treatment of the condition.
Collapse
Affiliation(s)
- E Ferrante
- Headache Centre, Neurosciences Department, Niguarda Ca' Granda Hospital, Milan, Italy
| | | | | | | | | |
Collapse
|
40
|
Edvinsson L, Ekman R, Goadsby PJ. Measurement of vasoactive neuropeptides in biological materials: problems and pitfalls from 30 years of experience and novel future approaches. Cephalalgia 2011; 30:761-6. [PMID: 20925142 DOI: 10.1177/0333102409351807] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Lars Edvinsson
- Department of Internal Medicine, University Hospital, 221 85 Lund, Sweden.
| | | | | |
Collapse
|
41
|
Boni LJ, Ploug KB, Olesen I, Jansen-Olesen I, Gupta S. The in vivo Effect of VIP, PACAP-38 and PACAP-27 and mRNA Expression of Their Receptors in Rat Middle Meningeal Artery. Cephalalgia 2009; 29:837-47. [DOI: 10.1111/j.1468-2982.2008.01807.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The parasympathetic nervous system is probably involved in migraine pathogenesis. Its activation releases a mixture of signalling molecules including vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP), which subsequently stimulate VPAC1, VPAC2 and PAC1 receptors. The objective of the present study was to investigate the in vivo effect of VIP, PACAP-27, PACAP-38, the selective VPAC1 agonist ([Lys15, Arg16, Leu27]-VIP(1–7)-GRF(8–27)) and a PAC1 agonist, maxadilan on rat middle meningeal artery (MMA) diameter using the closed cranial window model. Selective antagonists were used for further characterization of the responses. Reverse transcriptase-polymerase chain reaction experiments were also conducted to determine expression of mRNA of PACAP receptors in the MMA. The results showed that VIP, PACAP-38, PACAP-27 and the VPAC1 specific agonist evoked significant dilations with the rank order of potency; VIP = PACAP-38 > PACAP-27 = [Lys15, Arg16, Leu27]-VIP(1–7)-GRF(8–27). Significant inhibition of dilation was only observed for the VPAC1 antagonist PG97–269 on PACAP-38-induced dilation of MMA. The VPAC2 antagonist PG99–465 and PAC1 antagonist PACAP(6–38) did not significantly block VIP- or PACAP-induced dilation. Expression of mRNA of all three receptors was detected in the MMA. In conclusion, the VPAC1 receptor seems to be predominant in mediating MMA dilation. A selective VPAC1 antagonist may be a candidate molecule in the treatment of migraine headache.
Collapse
Affiliation(s)
- LJ Boni
- Department of Neurology, Glostrup Research Institute, Glostrup Hospital, Faculty of Health Sciences, University of Copenhagen, Glostrup, Denmark
| | - KB Ploug
- Department of Neurology, Glostrup Research Institute, Glostrup Hospital, Faculty of Health Sciences, University of Copenhagen, Glostrup, Denmark
| | - I Olesen
- Department of Neurology, Glostrup Research Institute, Glostrup Hospital, Faculty of Health Sciences, University of Copenhagen, Glostrup, Denmark
| | - I Jansen-Olesen
- Department of Neurology, Glostrup Research Institute, Glostrup Hospital, Faculty of Health Sciences, University of Copenhagen, Glostrup, Denmark
| | - S Gupta
- Department of Neurology, Glostrup Research Institute, Glostrup Hospital, Faculty of Health Sciences, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
42
|
Schytz HW, Wienecke T, Olesen J, Ashina M. Carbachol induces headache, but not migraine-like attacks, in patients with migraine without aura. Cephalalgia 2009; 30:337-45. [DOI: 10.1111/j.1468-2982.2009.01929.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Carbachol induces headache in healthy subjects, but the migraine eliciting effect of carbachol has not previously been studied. We hypothesized that the cholinomimetic agonist carbachol would induce headache and migraine-like attacks in migraineurs. Carbachol (3 µg/kg) or placebo was randomly infused into 18 patients with migraine without aura in a double-blind crossover study. Headache was scored on a verbal rating scale from 0 to 10. Velocity in the middle cerebral artery (VMCA) and diameter of the superficial temporal artery (STA) were recorded. Fifteen patients experienced headache after carbachol compared with eight after placebo ( P = 0.039). There was no difference in incidence of migraine-like attacks after carbachol ( n = 8) compared with placebo ( n = 6) ( P = 0.687). Carbachol caused a decrease in VMCA ( P = 0.044), but no change in STA ( P = 0.089) compared with placebo. The study demonstrated that carbachol provocation is not a good model for experimental migraine.
Collapse
Affiliation(s)
- HW Schytz
- Danish Headache Center and Department of Neurology, Glostrup Hospital, Faculty of Health Sciences, University of Copenhagen, Glostrup, Denmark
| | - T Wienecke
- Danish Headache Center and Department of Neurology, Glostrup Hospital, Faculty of Health Sciences, University of Copenhagen, Glostrup, Denmark
| | - J Olesen
- Danish Headache Center and Department of Neurology, Glostrup Hospital, Faculty of Health Sciences, University of Copenhagen, Glostrup, Denmark
| | - M Ashina
- Danish Headache Center and Department of Neurology, Glostrup Hospital, Faculty of Health Sciences, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
43
|
Schytz HW, Wienecke T, Oturai PS, Olesen J, Ashina M. The cholinomimetic agent carbachol induces headache in healthy subjects. Cephalalgia 2009; 29:258-68. [PMID: 19143771 DOI: 10.1111/j.1468-2982.2008.01715.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The parasympathetic nervous system is likely to be involved in migraine pathogenesis. We hypothesized that the cholinomimetic agonist carbachol would induce headache and vasodilation of cephalic and radial arteries. Carbachol (3 microg/kg) or placebo was randomly infused into 12 healthy subjects in a double-blind crossover study. Headache was scored on a verbal rating scale from 0-10. Velocity in the middle cerebral artery (V(MCA)) and diameter of the superficial temporal artery (STA) and radial artery (RA) were recorded. Nine participants developed headache after carbachol compared with three after placebo. The area under the curve for headache was increased after carbachol compared with placebo both during infusion (0-30 min) (P = 0.042) and in the postinfusion period (30-90 min) (P = 0.027). Carbachol infusion caused a drop in V(MCA) (P = 0.003) and an increase in STA diameter (P = 0.006), but no increase in the RA diameter (P = 0.200). In conclusion, the study demonstrated that carbachol caused headache and dilation of cephalic arteries in healthy subjects.
Collapse
Affiliation(s)
- H W Schytz
- Danish Headache Centre, Glostrup Hospital, University of Copenhagen, Glostrup, Denmark.
| | | | | | | | | |
Collapse
|
44
|
Abstract
Salient aspects of the anatomy and function of the blood-barrier barrier (BBB) are reviewed in relation to migraine pathophysiology and treatment. The main function of the BBB is to limit the access of circulating substances to the neuropile. Smaller lipophilic substances have some access to the central nervous system by diffusion, whereas other substances can cross the BBB by carrier-mediated influx transport, receptor-mediated transcytosis and absorptive-mediated transcytosis. Studies of drugs relevant to migraine pathophysiology and treatment have been examined with the pressurized arteriography method. The drugs, given both luminally and abluminally, provide important notions regarding antimigraine site of action, probably abluminal to the BBB. The problems with the BBB in animal models designed to study the pathophysiology, acute treatment models and preventive treatments are discussed with special emphasize on the triptans and calcitonin gene-related peptide (CGRP). The human experimental headache model, especially the use of glycerol trinitrate (the nitric oxide model), and experiences with CGRP administrations utilize the systemic administration of the agonists with effects on other vascular beds also. We discuss how this can be related to genuine migraine attacks. Our view is that there exists no clear proof of breakdown or leakage of the BBB during migraine attacks, and that antimigraine drugs need to pass the BBB for efficacy.
Collapse
Affiliation(s)
- L Edvinsson
- Department of Internal Medicine, University Hospital, Lund, Sweden.
| | | |
Collapse
|
45
|
Michaloudi H, Batzios C, Chiotelli M, Papadopoulos GC. Developmental changes of mast cell populations in the cerebral meninges of the rat. J Anat 2007; 211:556-66. [PMID: 17822416 PMCID: PMC2375828 DOI: 10.1111/j.1469-7580.2007.00795.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
It is known that both the dura and the pia mater attract and support the differentiation of mast cells. The present study shows that unevenly distributed mast cells in the cerebral meninges of the rat can be found in perivascular sites and vessel ramification points, but can also be unrelated to the meningeal vasculature. It also documents changes in the number, localization and staining preferences of the mast cells in the two meninges of the developing and mature rat brain. Quantitative examination of all types of histochemically differentiated meningeal mast cells reveals no major (although some exist) differences between right and left side subpopulations, but strongly suggests a different origin and fate of the dural and the pial mast cells. The number of dural mast cells, already high from postnatal day 0, although declining from postnatal day 21 onwards, remains conspicuous up to postnatal day 180. In contrast, pial mast cells are comparatively very few in the first day of the postnatal life, and despite a transient significant increase in the following two weeks, they reach almost zero levels from postnatal day 21.
Collapse
Affiliation(s)
- Helen Michaloudi
- Laboratory of Anatomy and Histology, Veterinary School, Aristotle University of Thessaloniki, Greece.
| | | | | | | |
Collapse
|
46
|
Matharu MS, Schwedt TJ, Dodick DW. Thunderclap headache: An approach to a neurologic emergency. Curr Neurol Neurosci Rep 2007; 7:101-9. [PMID: 17324359 DOI: 10.1007/s11910-007-0004-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Thunderclap headache (TCH) refers to an excruciating headache of instantaneous onset. Recognition and accurate diagnosis of this headache are important because it can be caused by various serious underlying brain disorders such as subarachnoid hemorrhage, intracranial hematoma, cerebral venous sinus thrombosis, cervical artery dissection, ischemic stroke, pituitary apoplexy, acute arterial hypertension, spontaneous intracranial hypotension, third ventricle colloid cyst, and intracranial infections. Patients with TCH who have evidence of reversible, segmental, cerebral vasoconstriction of circle of Willis arteries and normal or near-normal cerebrospinal fluid evaluation are considered to have reversible cerebral vasoconstriction syndrome. Primary TCH is diagnosed when no underlying etiology is identified. In this review, we discuss the differential diagnosis of TCH, outline the characteristics and diagnostic criteria for primary TCH, offer a pathophysiologic hypothesis for primary TCH, and detail the diagnostic evaluation of the patient presenting with TCH.
Collapse
Affiliation(s)
- Manjit S Matharu
- Headache Group, Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| | | | | |
Collapse
|
47
|
Juhl L, Edvinsson L, Olesen J, Jansen-Olesen I. Effect of two novel CGRP-binding compounds in a closed cranial window rat model. Eur J Pharmacol 2007; 567:117-24. [PMID: 17477918 DOI: 10.1016/j.ejphar.2007.04.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 03/28/2007] [Accepted: 04/01/2007] [Indexed: 11/19/2022]
Abstract
We investigated the in vivo effects of two novel calcitonin gene-related peptide (CGRP) binding molecules in the genuine closed cranial window model in the rat. The RNA-Spiegelmer (NOX-C89) and the monoclonal CGRP antibody are CGRP scavengers and might be used as an alternative to CGRP-receptor antagonists in the treatment of migraine. Rats were anaesthetized and a closed cranial window established. Changes in dural and pial artery diameter and mean arterial blood pressure were measured simultaneously. Infusion of the RNA-Spiegelmer or the CGRP antibody alone had no effect on the arteries or the mean arterial blood pressure. We then used a bolus of 0.3 microg/kg CGRP (n=6) or electrical stimulation (25 V, 5 Hz, 1 ms pulse width and of 10 s of duration) (n=6) to induce dilatation of dural and pial arteries (mediated via CGRP-receptors). Pre-treatment with the RNA-Spiegelmer inhibited CGRP-induced vasodilatation of the dural artery (from 38+/-17% to 7+/-3%) and the pial artery (from 14+/-1% to 3+/-2%) (P<0.05). The RNA-Spiegelmer, however, did not significantly inhibit dilatation induced by electrical stimulation (P>0.05). The CGRP antibody caused a significant reduction of the dural artery diameter caused by intravenous CGRP-infusion (from 23+/-5% to 12+/-3%) (P<0.05), but did not inhibit dilatation caused by electrical stimulation (P>0.05). In conclusion, the CGRP scavengers effectively inhibited the effect of circulating CGRP but do not modify the effect of electrical stimulation and the consequent liberation of CGRP from perivascular sensory nerve fibres.
Collapse
Affiliation(s)
- Louise Juhl
- Department of Neurology, Glostrup Research Institute, Glostrup Hospital, University of Copenhagen, DK-2600, Glostrup, Denmark.
| | | | | | | |
Collapse
|
48
|
Mehrotra S, Gupta S, Garrelds IM, Villalón CM, Saxena PR, Bogers AJJC, Maassenvandenbrink A. Effects of current and prospective antimigraine drugs on the porcine isolated meningeal artery. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2006; 374:163-75. [PMID: 17103145 DOI: 10.1007/s00210-006-0108-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Accepted: 09/05/2006] [Indexed: 10/23/2022]
Abstract
Vasoconstriction to agonists at serotonin (5-hydroxytryptamine; 5-HT) receptors and alpha-adrenoceptors, as well as vasodilatation induced by alpha-CGRP, have been well described in the porcine carotid circulation in vivo. The present study sets out to investigate the effects of current and prospective antimigraine drugs on porcine meningeal artery segments in vitro. Sumatriptan, ergotamine, dihydroergotamine, isometheptene and clonidine failed to contract the meningeal artery, but 5-HT, noradrenaline and phenylephrine induced concentration-dependent contractions. The contractions to 5-HT were competitively antagonized by the 5-HT(2A) receptor antagonist ketanserin, whilst those to noradrenaline were antagonized by alpha(1)-(prazosin), alpha(2)-(rauwolscine and yohimbine) and alpha(2C/2B)-(OPC-28326) adrenoceptor antagonists. Whilst dobutamine and salbutamol were ineffective, alpha-CGRP produced concentration-dependent relaxations that were antagonized by the CGRP(1) receptor antagonist olcegepant. In agreement with their lack of contractile effect, sumatriptan and ergotamine failed to influence forskolin-stimulated cyclic AMP accumulation in the porcine meningeal artery; in contrast, both compounds decreased forskolin-stimulated cyclic AMP accumulation in the human isolated saphenous vein, where they induced contractions. Finally, using RT-PCR, we could demonstrate the presence of mRNAs encoding for several 5-HT receptors (5-HT(1B), 5-HT(1D), 5-HT(1F), 5-HT(2A) and 5-HT(7)) and adrenoceptors (alpha(1A), alpha(1B), alpha(1D), alpha(2A), alpha(2B), alpha(2C), beta(1) and beta(2)), as well as that for the calcitonin receptor like receptor, a component of the CGRP(1) receptor. These results suggest that: (i) the porcine meningeal artery may not be involved in the vasoconstriction of the carotid vascular bed elicited by antimigraine drugs in anaesthetized pigs, and (ii) the mismatch between the presence of receptor mRNA and the lack of response to sumatriptan, dobutamine and salbutamol implies that mRNAs for the 5-HT(1B) receptor and beta(1)- and beta(2)-adrenoceptors are probably unstable, or that their density is too low for being translated as receptor protein in sufficient quantities.
Collapse
Affiliation(s)
- Suneet Mehrotra
- Department of Pharmacology, Cardiovascular Research Institute COEUR, Erasmus MC, University Medical Center Rotterdam, P.O. Box 1738, 3000 DR, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Thunderclap headache (TCH) is head pain that begins suddenly and is severe at onset. TCH might be the first sign of subarachnoid haemorrhage, unruptured intracranial aneurysm, cerebral venous sinus thrombosis, cervical artery dissection, acute hypertensive crisis, spontaneous intracranial hypotension, ischaemic stroke, retroclival haematoma, pituitary apoplexy, third ventricle colloid cyst, and intracranial infection. Primary thunderclap headache is diagnosed when no underlying cause is discovered. Patients with TCH who have evidence of reversible, segmental, cerebral vasoconstriction of circle of Willis arteries and normal or near-normal results on cerebrospinal fluid assessment are thought to have reversible cerebral vasoconstriction syndrome. Herein, we discuss the differential diagnosis of TCH, diagnostic criteria for the primary disorder, and proper assessment of patients. We also offer pathophysiological considerations for primary TCH.
Collapse
Affiliation(s)
- Todd J Schwedt
- Department of Neurology, Mayo Clinic College of Medicine, Scottsdale, AZ 85259, USA
| | | | | |
Collapse
|
50
|
Frank CL, Czirok SJ, Vincze C, Rácz G, Szél A, Vígh B. Autonomic nerves terminating on microvessels in the pineal organs of various submammalian vertebrates. ACTA BIOLOGICA HUNGARICA 2005; 56:35-41. [PMID: 15813212 DOI: 10.1556/abiol.56.2005.1-2.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In earlier works we have found that in the mammalian pineal organ, a part of autonomic nerves--generally thought to mediate light information from the retina--form vasomotor endings on smooth muscle cells of vessels. We supposed that they serve the vascular support for circadian and circannual periodic changes in the metabolic activity of the pineal tissue. In the present work, we investigated whether peripheral nerves present in the photoreceptive pineal organs of submammalians form similar terminals on microvessels. In the cyclostome, fish, amphibian, reptile and bird species investigated, autonomic nerves accompany vessels entering the arachnoidal capsule and interfollicular meningeal septa of the pineal organ. The autonomic nerves do not enter the pineal tissue proper but remain in the perivasal meningeal septa isolated by basal lamina. They are composed of unmyelinated and myelinated fibers and form terminals around arterioles, veins and capillaries. The terminals contain synaptic and granular vesicles. Comparing various vertebrates, more perivasal terminals were found in reptiles and birds than in the cyclostome, fish and amphibian pineal organs. Earlier, autonomic nerves of the pineal organs were predominantly investigated in connection with the innervation of pineal tissue. The perivasal terminals found in various submammalians show that a part of the pineal autonomic fibers are vasomotoric in nature, but the vasosensor function of some fibers cannot be excluded. We suppose that the vasomotor regulation of the pineal microvessels in the photosensory submamalian pineal--like in mammals--may serve the vascular support for circadian and circannual periodic changes in the metabolic activity of the pineal tissue. The higher number of perivasal terminals in reptiles and birds may correspond to the higher metabolic activity of the tissues in more differentiated species.
Collapse
Affiliation(s)
- C L Frank
- Department of Human Morphology and Developmental Biology, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|