1
|
Bosse KE, Charlton JL, Susick LL, Newman B, Eagle AL, Mathews TA, Perrine SA, Conti AC. Deficits in behavioral sensitization and dopaminergic responses to methamphetamine in adenylyl cyclase 1/8-deficient mice. J Neurochem 2015; 135:1218-31. [PMID: 26146906 PMCID: PMC5049486 DOI: 10.1111/jnc.13235] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/18/2015] [Accepted: 06/30/2015] [Indexed: 01/22/2023]
Abstract
The cAMP/protein kinase A pathway regulates methamphetamine (METH)-induced neuroplasticity underlying behavioral sensitization. We hypothesize that adenylyl cyclases (AC) 1/8 mediate these neuroplastic events and associated striatal dopamine regulation. Locomotor responses to METH (1 and 5 mg/kg) and striatal dopamine function were evaluated in mice lacking AC 1/8 (DKO) and wild-type (WT) mice. Only 5 mg/kg METH induced an acute locomotor response in DKO mice, which was significantly attenuated versus WT controls. DKO mice showed a marked attenuation in the development and expression of METH-induced behavioral sensitization across doses relative to WT controls. While basal and acute METH (5 mg/kg)-evoked accumbal dialysate dopamine levels were similar between genotypes, saline-treated DKO mice showed elevated tissue content of dopamine and homovanillic acid in the dorsal striatum (DS), reflecting dysregulated dopamine homeostasis and/or metabolism. Significant reductions in DS dopamine levels were observed in METH-sensitized DKO mice compared to saline-treated controls, an effect not observed in WT mice. Notably, saline-treated DKO mice had significantly increased phosphorylated Dopamine- and cAMP-regulated phosphoprotein levels, which were not further augmented following METH sensitization, as observed in WT mice. These data indicate that AC 1/8 are critical to mechanisms subserving drug-induced behavioral sensitization and mediate nigrostriatal pathway METH sensitivity. Calcium/calmodulin-stimulated adenylyl cyclase (AC) isoforms 1 and 8 were studied for their involvement in the adaptive neurobehavioral responses to methamphetamine. AC 1/8 double knockout (DKO) mice showed heightened basal locomotor activity and dorsal striatal dopamine responsivity. Conversely, methamphetamine-induced locomotor activity was attenuated in DKO mice, accompanied by reductions in dopamine and HVA content and impaired DARPP-32 activation. These findings indicate AC 1/8 signaling regulates the sensitivity of the nigrostriatal pathway subserving stimulant and neuroadaptive sensitizing effects of methamphetamine. 3-MT, 3-methoxytyramine; Ca(2+), calcium; CaM, calmodulin; cdk5; cyclin-dependent kinase 5; DA, dopamine; DARPP-32, dopamine- and cAMP-regulated phosphoprotein; D1R, dopamine D1 receptor; HVA, homovanillic acid; PKA, protein kinase A.
Collapse
Affiliation(s)
- Kelly E Bosse
- Research & Development, John D. Dingell VA Medical Center, Detroit, Michigan, USA.,Department of Neurosurgery, Wayne State University, Detroit, Michigan, USA
| | - Jennifer L Charlton
- Research & Development, John D. Dingell VA Medical Center, Detroit, Michigan, USA.,Department of Neurosurgery, Wayne State University, Detroit, Michigan, USA
| | - Laura L Susick
- Research & Development, John D. Dingell VA Medical Center, Detroit, Michigan, USA.,Department of Neurosurgery, Wayne State University, Detroit, Michigan, USA
| | - Brooke Newman
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Andrew L Eagle
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA
| | - Tiffany A Mathews
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Shane A Perrine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA
| | - Alana C Conti
- Research & Development, John D. Dingell VA Medical Center, Detroit, Michigan, USA.,Department of Neurosurgery, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
2
|
Marazziti D, Baroni S, Palego L, Betti L, Giannaccini G, Castagna M, Naccarato AG, Luccachini A, Catena-Dell'Osso M, Dell'Osso L. Clozapine effects on adenylyl cyclase activity and serotonin type 1A receptors in human brain post-mortem. J Psychopharmacol 2014; 28:320-8. [PMID: 24429224 DOI: 10.1177/0269881113515065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although the pharmacological profile of the atypical antipsychotic clozapine has been extensively studied in animal models, little information is available on its effects in the human brain. In particular, much interest is focused on the understanding of clozapine activity on serotonin (5-HT) neurotransmission, particularly on 5-HT receptor of type 1A (5-HT(1A)) that seems to play a pivotal role in the control of the 5-HT system. The present work, therefore, aimed at evaluating the effects of clozapine and its major metabolite, norclozapine, on the modulation of adenylyl cyclase (AC) velocity via 5-HT(1A) receptors in human post-mortem brain regions, in particular the prefrontal cortex, hippocampus and raphe nuclei. Concomitantly, the ability of the two compounds to displace the specific binding of the 5-HT(1A) receptor agonist [³H]-8-hydroxy-(2-di-N-propylamino) tetralin ([³H]-8-OH-DPAT) was evaluated in the same brain areas. The results showed that both clozapine and norclozapine, although with a 20-fold lower affinity, displaced [³H]8-OH-DPAT binding in all of the brain regions analysed, suggesting their interaction with 5-HT(1A) receptors. At the same time, clozapine and, to a lesser extent, norclozapine were found to inhibit the forskolin (FK)-stimulated AC system, while decreasing cyclic adenosine monophosphate (cAMP) concentrations in the hippocampus only. The receptor characterisation of the clozapine effect on AC observed in the hippocampus by the use of antagonists showed a mixed profile, involving not only the 5-HT(1A) receptor but also a muscarinic (M) receptor subtype, most likely the M₄ one. These findings, while considering all the limitations due to the use of post-mortem tissues, are strongly suggestive of a region-dependent pharmacological action of clozapine in the human brain that may explain its peculiar clinical effects and open up research towards novel targets for future antipsychotic drugs.
Collapse
Affiliation(s)
- Donatella Marazziti
- 1Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Verma V, Hasbi A, O'Dowd BF, George SR. Dopamine D1-D2 receptor Heteromer-mediated calcium release is desensitized by D1 receptor occupancy with or without signal activation: dual functional regulation by G protein-coupled receptor kinase 2. J Biol Chem 2010; 285:35092-103. [PMID: 20807772 DOI: 10.1074/jbc.m109.088625] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We identified that activation of the G(q)-linked dopamine D1-D2 receptor hetero-oligomer generates a PLC-dependent intracellular calcium signal. Confocal FRET between endogenous dopamine D1 and D2 receptors in striatal neurons confirmed a physical interaction between them. Pretreatment with SKF 83959, which selectively activates the D1-D2 receptor heteromer, or SKF 83822, which only activates the D1 receptor homo-oligomer, led to rapid desensitization of the D1-D2 receptor heteromer-mediated calcium signal in both heterologous cells and striatal neurons. This desensitization response was mediated through selective occupancy of the D1 receptor binding pocket. Although SKF 83822 was unable to activate the D1-D2 receptor heteromer, it still permitted desensitization of the calcium signal. This suggested that occupancy of the D1 receptor binding pocket by SKF 83822 resulted in conformational changes sufficient for desensitization without heteromer activation. Bioluminescence resonance energy transfer and co-immunoprecipitation studies indicated an agonist-induced physical association between the D1-D2 receptor heteromeric complex and GRK2. Increased expression of GRK2 led to a decrease in the calcium signal with or without prior exposure to either SKF 83959 or SKF 83822. GRK2 knockdown by siRNA led to an increase in the signal after pretreatment with either agonist. Expression of the catalytically inactive and RGS (regulator of G protein signaling)-mutated GRK2 constructs each led to a partial recovery of the GRK2-attenuated calcium signal. These results indicated that desensitization of the dopamine D1-D2 receptor heteromer-mediated signal can occur by agonist occupancy even without activation and is dually regulated by both the catalytic and RGS domains of GRK2.
Collapse
Affiliation(s)
- Vaneeta Verma
- Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | |
Collapse
|
4
|
Undieh AS. Pharmacology of signaling induced by dopamine D(1)-like receptor activation. Pharmacol Ther 2010; 128:37-60. [PMID: 20547182 DOI: 10.1016/j.pharmthera.2010.05.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 05/19/2010] [Indexed: 12/30/2022]
Abstract
Dopamine D(1)-like receptors consisting of D(1) and D(5) subtypes are intimately implicated in dopaminergic regulation of fundamental neurophysiologic processes such as mood, motivation, cognitive function, and motor activity. Upon stimulation, D(1)-like receptors initiate signal transduction cascades that are mediated through adenylyl cyclase or phosphoinositide metabolism, with subsequent enhancement of multiple downstream kinase cascades. The latter actions propagate and further amplify the receptor signals, thus predisposing D(1)-like receptors to multifaceted interactions with various other mediators and receptor systems. The adenylyl cyclase response to dopamine or selective D(1)-like receptor agonists is reliably associated with the D(1) subtype, while emerging evidence indicates that the phosphoinositide responses in native brain tissues may be preferentially mediated through stimulation of the D(5) receptor. Besides classic coupling of each receptor subtype to specific G proteins, additional biophysical models are advanced in attempts to account for differential subcellular distribution, heteromolecular oligomerization, and activity-dependent selectivity of the receptors. It is expected that significant advances in understanding of dopamine neurobiology will emerge from current and anticipated studies directed at uncovering the molecular mechanisms of D(5) coupling to phosphoinositide signaling, the structural features that might enhance pharmacological selectivity for D(5) versus D(1) subtypes, the mechanism by which dopamine may modulate phosphoinositide synthesis, the contributions of the various responsive signal mediators to D(1) or D(5) interactions with D(2)-like receptors, and the spectrum of dopaminergic functions that may be attributed to each receptor subtype and signaling pathway.
Collapse
Affiliation(s)
- Ashiwel S Undieh
- Laboratory of Integrative Neuropharmacology, Department of Pharmaceutical Sciences, Thomas Jefferson University School of Pharmacy, 130 South 9th Street, Suite 1510, Philadelphia, PA 19107, USA.
| |
Collapse
|
5
|
Abstract
Cocaine sensitization is produced by repeated exposure to the drug and is thought to reflect neuroadaptations that contribute to addiction. Here, we identify the Ca(2+)/calmodulin-stimulated adenylyl cyclases, type 1 (AC1) and type 8 (AC8), as novel regulators of this behavioral plasticity. We show that, whereas AC1 and AC8 single knock-out mice (AC1(-/-) and AC8(-/-)) exhibit Ca(2+)-stimulated adenylyl cyclase activity in striatal membrane fractions, AC1/8 double-knock-out (DKO) mice do not. Furthermore, DKO mice are acutely supersensitive to low doses of cocaine and fail to display locomotor sensitization after chronic cocaine treatment. Because of the known role for the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase signaling pathway in cocaine-induced behavioral plasticity and its coupling to calcium-stimulated cAMP signaling in the hippocampus, we measured phosphorylated ERK (pERK) levels in the striatum. Under basal conditions, pERK is upregulated in choline acetyltransferase-positive interneurons in DKO mice relative to wild-type (WT) controls. After acute cocaine treatment, pERK signaling is significantly suppressed in medium spiny neurons (MSNs) of DKO mice relative to WT mice. In addition to the lack of striatal ERK activation by acute cocaine, signaling machinery downstream of ERK is uncoupled in DKO mice. We demonstrate that AC1 and AC8 are necessary for the phosphorylation of mitogen and stress-activated kinase-1 (pMSK1) at Ser376 and Thr581 and cAMP response element-binding protein (pCREB) at Ser133 after acute cocaine treatment. Our results demonstrate that the Ca(2+)-stimulated adenylyl cyclases regulate long-lasting cocaine-induced behavioral plasticity via activation of the ERK/MSK1/CREB signaling pathway in striatonigral MSNs.
Collapse
|
6
|
|
7
|
Tong J, Fitzmaurice PS, Ang LC, Furukawa Y, Guttman M, Kish SJ. Brain dopamine-stimulated adenylyl cyclase activity in Parkinson's disease, multiple system atrophy, and progressive supranuclear palsy. Ann Neurol 2004; 55:125-9. [PMID: 14705122 DOI: 10.1002/ana.10814] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The dopamine D(1) receptor is considered to participate in levodopa's antiparkinsonian action and levodopa-induced dyskinesias. We examined the functional status of the D(1) receptor in brain of patients with Parkinson's disease (PD), multiple system atrophy (MSA), and progressive supranuclear palsy (PSP). Dopamine-stimulated adenylyl cyclase activity was significantly increased in putamen (+43%) and frontal cortex (+52%) in PD, normal in PSP, but decreased by 47% in putamen in MSA. The supersensitive dopamine D(1) receptors in both striatum and cerebral cortex in PD might compensate for dopamine deficiency, but could also contribute to long-term complications of levodopa therapy.
Collapse
Affiliation(s)
- Junchao Tong
- Human Neurochemical Pathology Laboratory, Center for Addiction and Mental Health, Toronto, Canada.
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
The use of human brain tissue obtained at autopsy for neurochemical, pharmacological and physiological analyses is reviewed. RNA and protein samples have been found suitable for expression profiling by techniques that include RT-PCR, cDNA microarrays, western blotting, immunohistochemistry and proteomics. The rapid development of molecular biological techniques has increased the impetus for this work to be applied to studies of brain disease. It has been shown that most nucleic acids and proteins are reasonably stable post-mortem. However, their abundance and integrity can exhibit marked intra- and intercase variability, making comparisons between case-groups difficult. Variability can reveal important functional and biochemical information. The correct interpretation of neurochemical data must take into account such factors as age, gender, ethnicity, medicative history, immediate ante-mortem status, agonal state and post-mortem and post-autopsy intervals. Here we consider issues associated with the sampling of DNA, RNA and proteins using human autopsy brain tissue in relation to various ante- and post-mortem factors. We conclude that valid and practical measures of a variety of parameters may be made in human brain tissue, provided that specific factors are controlled.
Collapse
Affiliation(s)
- Matthew R Hynd
- Department of Biochemistry, University of Queensland, Brisbane, Australia
| | | | | | | |
Collapse
|