1
|
Sedative–Hypnotic Activity of the Water Extracts of Coptidis Rhizoma in Rodents. Clocks Sleep 2022; 4:145-159. [PMID: 35323168 PMCID: PMC8947684 DOI: 10.3390/clockssleep4010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
Many medicinal plants have been used in Asia for treating a variety of mental diseases, including insomnia and depression. However, their sedative–hypnotic effects and mechanisms have not been clarified yet. Accordingly, the objective of this study was to investigate the sedative–hypnotic effects of water extracts of five medicinal plants: Coptidis Rhizoma, Lycii Fructus, Angelicae sinensis Radix, Bupleuri Radix, and Polygonum multiflorum Thunberg. The binding abilities of five medicinal plant extracts to the GABAA–BZD and 5-HT2C receptors were compared. Their abilities to activate arylalkylamine N-acetyltransferase (AANAT), a melatonin synthesis enzyme, in pineal cells were also determined. Following in vitro tests, the sedative and hypnotic activities of extracts with the highest activities were determined in an animal sleep model. In the binding assay, the water extracts of Coptidis Rhizoma (WCR) showed high binding affinity to the GABAA–BZD and 5-HT2C receptors in a dose-dependent manner. Additionally, WCR increased the AANAT activity up to five times compared with the baseline level. Further animal sleep model experiments showed that WCR potentiated pentobarbital-induced sleep by prolonging the sleep time. It also decreased the sleep onset time in mice. In addition, WCR reduced wake time and increased non-rapid eye movement (NREM) sleep without EEG power density (percentages of δ, θ, and α waves) during NREM sleep in rats. WCR could effectively induce NREM sleep without altering the architectural physiologic profile of sleep. This is the first report of the sedative–hypnotic effect of Coptidis Rhizoma possibly by regulating GABAA and 5-HT2C receptors and by activating AANAT activity.
Collapse
|
2
|
Lumsden SC, Clarkson AN, Cakmak YO. Neuromodulation of the Pineal Gland via Electrical Stimulation of Its Sympathetic Innervation Pathway. Front Neurosci 2020; 14:264. [PMID: 32300290 PMCID: PMC7145358 DOI: 10.3389/fnins.2020.00264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Stimulation of the pineal gland via its sympathetic innervation pathway results in the production of N-acetylserotonin and melatonin. Melatonin has many therapeutic roles and is heavily implicated in the regulation of the sleep-wake cycle. In addition, N-acetylserotonin has recently been reported to promote neurogenesis in the brain. Upregulation of these indoleamines is possible via neuromodulation of the pineal gland. This is achieved by electrical stimulation of structures or fibres in the pineal gland sympathetic innervation pathway. Many studies have performed such pineal neuromodulation using both invasive and non-invasive methods. However, the effects of various experimental variables and stimulation paradigms has not yet been reviewed and evaluated. This review summarises these studies and presents the optimal experimental protocols and stimulation parameters necessary for maximal upregulation of melatonin metabolic output.
Collapse
Affiliation(s)
- Susannah C. Lumsden
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, Dunedin, New Zealand
| | - Andrew N. Clarkson
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Brain Research New Zealand, Dunedin, New Zealand
- Medical Technologies Centre of Research Excellence, Auckland, New Zealand
| | - Yusuf Ozgur Cakmak
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, Dunedin, New Zealand
- Medical Technologies Centre of Research Excellence, Auckland, New Zealand
- Centre for Health Systems and Technology, Dunedin, New Zealand
| |
Collapse
|
3
|
Lee BH, Bussi IL, de la Iglesia HO, Hague C, Koh DS, Hille B. Two indoleamines are secreted from rat pineal gland at night and act on melatonin receptors but are not night hormones. J Pineal Res 2020; 68:e12622. [PMID: 31715643 PMCID: PMC7007382 DOI: 10.1111/jpi.12622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 11/28/2022]
Abstract
INTRODUCTION At night, the pineal gland produces the indoleamines, melatonin, N-acetylserotonin (NAS), and N-acetyltryptamine (NAT). Melatonin is accepted as a hormone of night. Could NAS and NAT serve that role too? METHODS Concentration-response measurements with overexpressed human melatonin receptors MT1 and MT2 ; mass spectrometry analysis of norepinephrine-stimulated secretions from isolated rat pineal glands; analysis of 24-hour periodic samples of rat blood. RESULTS We show that NAT and NAS do activate melatonin receptors MT1 and MT2 , although with lower potency than melatonin, and that in vitro, melatonin and NAS are secreted from stimulated, isolated pineal glands in roughly equimolar amounts, but secretion of NAT was much less. All three were found at roughly equal concentrations in blood during the night. However, during the day, serum melatonin fell to very low values creating a high-amplitude circadian rhythm that was absent after pinealectomy, whereas NAS and NAT showed only small or no circadian variation. CONCLUSION Blood levels of NAS and NAT were insufficient to activate peripheral melatonin receptors, and they were invariant, so they could not serve as circulating hormones of night. However, they could instead act in paracrine circadian fashion near the pineal gland or via other higher-affinity receptors.
Collapse
Affiliation(s)
- Bo Hyun Lee
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195-7290 USA
| | - Ivana L. Bussi
- Department of Biology, University of Washington School, Seattle, WA 98195-1800 USA
| | | | - Chris Hague
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195-7290 USA
| | - Duk-Su Koh
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195-7290 USA
- Co-corresponding authors: Bertil Hille; , Phone: 206-543-6661, Duk-Su Koh; , Phone: 206-407-6690
| | - Bertil Hille
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195-7290 USA
- Co-corresponding authors: Bertil Hille; , Phone: 206-543-6661, Duk-Su Koh; , Phone: 206-407-6690
| |
Collapse
|
4
|
Gupta S, Haldar C. Photoperiodic modulation of local melatonin synthesis and its role in regulation of thymic homeostasis in Funambulus pennanti. Gen Comp Endocrinol 2016; 239:40-49. [PMID: 26699203 DOI: 10.1016/j.ygcen.2015.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 12/08/2015] [Accepted: 12/13/2015] [Indexed: 10/22/2022]
Abstract
The effect of photo-neuroendocrine system on the thymic (immune) functions is mediated by gonadal steroid and the pineal hormone melatonin. The present study explored the effect of photoperiod on the thymic melatonergic system and its role in protection of thymic T-cells from the testosterone induced seasonal oxidative stress and apoptosis. Exposure to long day-length (LD) was noted to decrease local (thymic) melatonin content and induce oxidative stress and apoptosis in the thymus. Increased peripheral level of testosterone upregulated the androgen receptor expression and, consequently reduced proliferation response of the thymocytes. Short day conditions (SD) however, reversed the effect of LD on the thymic physiology. Low level of testosterone was concomitant with diminished nitro-oxidative stress and decreased expression of redox sensitive factors (NF-κB, p53 and Bax/Bcl-2 ratio) in the thymus. SD retarded activation of caspase-3 resulting in procaspase-3 accumulation. Further, in vitro treatment of thymocytes with AR antagonist flutamide impaired the sensitivity of thymocytes to androgen and reversed the deleterious effects of testosterone on the proliferative and apoptotic responses of thymocytes. Therefore, it can be suggested that thymus derived melatonin protects thymic T-cells from testosterone induced seasonal oxidative stress, apoptosis and also acts as a potent paracrine factor for maintenance of redox status to ensure thymocyte survival.
Collapse
Affiliation(s)
- Sameer Gupta
- Pineal Research Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221 005, India.
| | - Chandana Haldar
- Pineal Research Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221 005, India.
| |
Collapse
|
5
|
Kim HS, Paik MJ, Lee YH, Lee YS, Choi HD, Pack JK, Kim N, Ahn YH. Eight hours of nocturnal 915 MHz radiofrequency identification (RFID) exposure reduces urinary levels of melatonin and its metabolite via pineal arylalkylamine N-acetyltransferase activity in male rats. Int J Radiat Biol 2016; 91:898-907. [PMID: 26189731 DOI: 10.3109/09553002.2015.1075075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE We investigated the effects of whole-body exposure to the 915 MHz radiofrequency identification (RFID) on melatonin biosynthesis and the activity of rat pineal arylalkylamine N-acetyltransferase (AANAT). MATERIALS AND METHODS Rats were exposed to RFID (whole-body specific absorption rate, 4 W/kg) for 8 h/day, 5 days/week, for weeks during the nighttime. Total volume of urine excreted during a 24-h period was collected after RFID exposure. Urinary melatonin and 6-hydroxymelatonin sulfate (6-OHMS) was measured by gas chromatography-mass spectrometry (GC-MS) and enzyme-linked immunosorbent assay (ELISA), respectively. AANAT enzyme activity was measured using liquid biphasic dif-13 fusion assay. Protein levels and mRNA expression of AANAT was 14 measured by Western blot and reverse transcription polymerase 15 chain reaction (RT-PCR) analysis, respectively. RESULTS Eight hours of nocturnal RFID exposure caused a significant reduction in both urinary melatonin (p = 0. 003) and 6-OHMS (p = 0. 026). Activity, protein levels, and mRNA expression of AANAT were suppressed by exposure to RFID (p < 0. 05). CONCLUSIONS Our results suggest that nocturnal RFID exposure can cause reductions in the levels of both urinary melatonin and 6-OHMS, possibly due to decreased melatonin biosynthesis via suppression of Aanat gene transcription in the rat pineal gland.
Collapse
Affiliation(s)
- Hye Sun Kim
- a Department of Neurosurgery , Ajou University School of Medicine , Suwon
| | - Man-Jeong Paik
- b College of Pharmacy , Sunchon National University , Sunchon
| | - Yu Hee Lee
- a Department of Neurosurgery , Ajou University School of Medicine , Suwon ;,c Neuroscience Graduate Program, Department of Biomedical Sciences , Graduate School of Ajou University , Suwon
| | - Yun-Sil Lee
- d Division of Life Science and Pharmaceuticals, College of Pharmacy , Ewha Woman's University , Seoul
| | - Hyung Do Choi
- e Radio Technology Research Department , Electronics and Telecommunications Research Institute , Daejeon
| | - Jeong-Ki Pack
- f Department of Radio Sciences and Engineering, College of Engineering , Chungnam National University , Daejeon
| | - Nam Kim
- g School of Electrical and Computer Engineering , Chungbuk National University , Cheongju , Republic of Korea
| | - Young Hwan Ahn
- a Department of Neurosurgery , Ajou University School of Medicine , Suwon ;,c Neuroscience Graduate Program, Department of Biomedical Sciences , Graduate School of Ajou University , Suwon
| |
Collapse
|
6
|
Lee HR, Kim TD, Kim HJ, Jung Y, Lee D, Lee KH, Kim DY, Woo KC, Kim KT. Heterogeneous ribonucleoprotein R regulates arylalkylamine N-acetyltransferase synthesis via internal ribosomal entry site-mediated translation in a circadian manner. J Pineal Res 2015; 59:518-29. [PMID: 26444903 DOI: 10.1111/jpi.12284] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/02/2015] [Indexed: 01/07/2023]
Abstract
Rhythmic arylalkylamine N-acetyltransferase (AANAT) synthesis is a prominent circadian-controlled response that occurs in most mammals. AANAT is the core enzyme in melatonin production; because melatonin participates in many physiological processes, the regulation of AANAT is an important research topic. In this study, we focused on the role of heterogeneous ribonucleoprotein R (hnRNP R) in the translation of AANAT. A novel RNA-binding protein hnRNP R widely interacted with the 5' untranslated region (UTR) of AANAT mRNA and contributed to translation through an internal ribosomal entry site (IRES). Fine-tuning of AANAT protein synthesis occurred in response to knockdown and overexpression of hnRNP R. Nocturnal elevation of AANAT protein was dependent on the rhythmic changes of hnRNP R, whose levels are elevated in the pineal gland during nighttime. Increases in hnRNP R additionally improved AANAT production in rat pinealocytes under norepinephrine (NE) treatment. These results suggest that cap-independent translation of AANAT mRNA plays a role in the rhythmic synthesis of melatonin through the recruitment of translational machinery to hnRNP R-bound AANAT mRNA.
Collapse
Affiliation(s)
- Hwa-Rim Lee
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
| | - Tae-Don Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Department of Functional Genomics, University of Science and Technology (UST), Daejeon, Korea
| | - Hyo-Jin Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
| | - Youngseob Jung
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
| | - Dohyun Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
| | - Kyung-Ha Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Do-Yeon Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Kyung-Chul Woo
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
- Newlife Cosmetics R&D Center for Skin Science, Gyeongsansi, Gyeongbuk, Korea
| | - Kyong-Tai Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
| |
Collapse
|
7
|
Melatonin membrane receptor (MT1R) expression and nitro-oxidative stress in testis of golden hamster, Mesocricetus auratus: An age-dependent study. Exp Gerontol 2015; 69:211-20. [DOI: 10.1016/j.exger.2015.06.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 05/09/2015] [Accepted: 06/29/2015] [Indexed: 02/02/2023]
|
8
|
Photoperiodic regulation of nuclear melatonin receptor RORα in lymphoid organs of a tropical rodent Funambulus pennanti: Role in seasonal oxidative stress. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 142:141-53. [DOI: 10.1016/j.jphotobiol.2014.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/16/2014] [Accepted: 11/03/2014] [Indexed: 11/21/2022]
|
9
|
Mukherjee A, Haldar C. Photoperiodic regulation of melatonin membrane receptor (MT1R) expression and steroidogenesis in testis of adult golden hamster, Mesocricetus auratus. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 140:374-80. [DOI: 10.1016/j.jphotobiol.2014.08.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 12/15/2022]
|
10
|
Goswami S, Haldar C. Melatonin improves ultraviolet
B
‐induced oxidative damage and inflammatory conditions in cutaneous tissue of a diurnal
I
ndian palm squirrel
F
unambulus pennanti. Br J Dermatol 2014; 171:1147-55. [DOI: 10.1111/bjd.13117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2014] [Indexed: 12/24/2022]
Affiliation(s)
- S. Goswami
- Pineal Research Laboratory Department of Zoology Banaras Hindu University Varanasi 221005 India
| | - C. Haldar
- Pineal Research Laboratory Department of Zoology Banaras Hindu University Varanasi 221005 India
| |
Collapse
|
11
|
Goswami S, Haldar C. UVB irradiation severely induces systemic tissue injury by augmenting oxidative load in a tropical rodent: efficacy of melatonin as an antioxidant. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 141:84-92. [PMID: 25463654 DOI: 10.1016/j.jphotobiol.2014.08.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/23/2014] [Accepted: 08/25/2014] [Indexed: 11/17/2022]
Abstract
Tropical animals are regularly exposed to solar UV radiation. The generation and accumulation of free radicals as a result of UVB incidence causes tissue damage. In the present study we report that the irradiation of Funambulus pennanti by 1.5 J/cm(2) of UVB caused significant oxidative damage to the spleen. The systemic immunity suffered collateral damage as depicted by results of total leukocyte count (TLC) while an increase in the thiobarbituric acid reactive substances (TBARS) and decline in the activities of enzymes superoxide dismutase (SOD), Glutathione peroxidase (GSH-Px) and Catalase (CAT) denoted oxidative tissue damage. Melatonin the indole-amine with known antioxidative properties when administered subcutaneously (s.c 100 μg/100 gm body weight), before the UVB irradiation recovered the damages caused by UVB radiation in the spleen. The action of melatonin was direct and might have involved its membrane receptor (MT1) as well as nuclear receptor (RORα) indicating the fact that the mode of action of melatonin in ameliorating UVB radiation induced free radical load may be receptor mediated. Our study hence reports for the first time that UVB radiation incurred oxidative damage to the spleen and suppressed the normal tissue functions. This UVB mitigated oxidative stress was recovered by the free radical scavenging and anti-apoptotic functions of melatonin when administered prior to UVB irradiation.
Collapse
Affiliation(s)
- Soumik Goswami
- Pineal Research Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India.
| | - Chandana Haldar
- Pineal Research Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
12
|
MT1 receptor expression and AA-NAT activity in lymphatic tissue following melatonin administration in male golden hamster. Int Immunopharmacol 2014; 22:258-65. [DOI: 10.1016/j.intimp.2014.06.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/17/2014] [Accepted: 06/27/2014] [Indexed: 02/02/2023]
|
13
|
Ghosh S, Singh AK, Haldar C. Seasonal modulation of immunity by melatonin and gonadal steroids in a short day breeder goat Capra hircus. Theriogenology 2014; 82:1121-30. [PMID: 25175759 DOI: 10.1016/j.theriogenology.2014.07.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/18/2014] [Accepted: 07/23/2014] [Indexed: 12/30/2022]
Abstract
Role of melatonin in regulation of immunity and reproduction has never been studied in detail in goats. The aim of the present study was to explore hormonal regulation of immunity in goats with special reference to melatonin. Plasma of male and female goats (n = 18 per sex per season) was processed for hormonal (estrogen, testostrone, and melatonin) and cytokine (interleukin [IL-2], IL-6, and tumor necrosis factor α) measurements during three seasons, i.e., summer, monsoon, and winter. To assess cell-mediated immune response, percent stimulation ratio of thymocytes was recorded during three seasons. To support and establish the modulation by hormones, Western blot analysis for expressions of melatonin receptors (MT1, MT2), androgen receptor, and estrogen receptor α and estimations of marker enzymes, arylalkylamine N-acetyltransferase for melatonin and 3β-hydroxysteroid dehydrogenase activities for steroidogenesis were performed in thymus. All the hormones and cytokines were estimated by commercial kits. Biochemical, immunologic, and Western blot analyses were done by standardized protocols. We noted a significant increase in estrogen and testosterone levels (P < 0.05) in circulation during monsoon along with melatonin (P < 0.05) presenting a parallel relationship. Expressions of melatonin receptors (MT1 and MT2) in thymus of both the sexes were significantly high (P < 0.01) during winter. Estrogen receptor α expression in female thymus was significantly high during monsoon (P < 0.05). However, androgen receptor showed almost static expression pattern in male thymus during three seasons. Further, both arylalkylamineN-acetyltransferase and 3β-hydroxysteroid dehydrogenase enzyme activities were significantly high (P < 0.05; P < 0.01, respectively) during monsoon. These results suggest that there may be a functional parallelism between gonadal steroids and melatonin as melatonin is progonadotrophic in goats. Cell-mediated immune parameters (percent stimulation ratio of thymocytes) and circulatory levels of cytokines (IL-2, IL-6, and tumor necrosis factor α) were significantly high (P < 0.01) during monsoon. In vitro supplementation of gonadal steroids to T-cell culture suppressed immunity but cosupplementation with melatonin restored it. Further, we may also suggest that reproductive and immune seasonality are maintained by variations in circulatory hormones and local synthesis of melatonin and gonadal steroids. These functional interactions between melatonin and gonadal steroid might be of great importance in regulating the goat immunity by developing some hormonal microcircuit (gonadal steroid and melatonin) in lymphatic organs.
Collapse
Affiliation(s)
- Somenath Ghosh
- Pineal Research Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Amaresh K Singh
- Pineal Research Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Chandana Haldar
- Pineal Research Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
14
|
Piesiewicz A, Kedzierska U, Adamska I, Usarek M, Zeman M, Skwarlo-Sonta K, Majewski PM. Pineal arylalkylamine N-acetyltransferase (Aanat) gene expression as a target of inflammatory mediators in the chicken. Gen Comp Endocrinol 2012; 179:143-51. [PMID: 22935823 DOI: 10.1016/j.ygcen.2012.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 08/02/2012] [Accepted: 08/10/2012] [Indexed: 01/06/2023]
Abstract
Previously, we demonstrated that experimental peritonitis in chickens was attenuated by treatment with exogenous melatonin, while the developing inflammation decreased pineal AANAT activity. This suggested the existence of a bidirectional relationship between the activated immune system and pineal gland function. The aim of the present study was to identify the step(s) in the chicken pineal melatonin biosynthetic pathway that are affected by inflammation. Peritonitis was evoked by i.p. injection of thioglycollate solution, either 2h after the start, or 2h before the end of the light period, and the animals were sacrificed 4h later. The effect of inflammation on the expression of genes encoding enzymes participating in melatonin biosynthesis in the pineal gland, i.e. tryptophan hydroxylase 1 (Tph1), dopa decarboxylase (Ddc), arylalkylamine N-acetyltransferase (Aanat) and acetylserotonin O-methyltransferase (Asmt), was evaluated by qPCR. The pineal and serum melatonin concentration as well as the content of its precursors in the pineal gland were measured, along with the activity of the relevant biosynthetic enzymes. Developing peritonitis caused an increase in the pineal levels of the Tph1 mRNA during the night and the Asmt mRNA during the day, while nocturnal Aanat transcription was reduced. Both the pineal and serum melatonin level and the pineal content of N-acetylserotonin (NAS) were decreased during the night in birds with peritonitis. The amount and activity of pineal AANAT were significantly reduced, while the activity of HIOMT was increased under these experimental conditions. These results indicate that the observed decrease in MEL biosynthesis in chickens with developing inflammation is a result of transcriptional downregulation of the Aanat gene, followed by reduced synthesis and activity of the encoded enzyme.
Collapse
Affiliation(s)
- Aneta Piesiewicz
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | | | | | | | | | | |
Collapse
|
15
|
Piesiewicz A, Kedzierska U, Podobas E, Adamska I, Zuzewicz K, Majewski P. Season-dependent Postembryonic Maturation of the Diurnal Rhythm of Melatonin Biosynthesis in the Chicken Pineal Gland. Chronobiol Int 2012; 29:1227-38. [DOI: 10.3109/07420528.2012.719964] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Tosini G, Ye K, Iuvone PM. N-acetylserotonin: neuroprotection, neurogenesis, and the sleepy brain. Neuroscientist 2012; 18:645-53. [PMID: 22585341 DOI: 10.1177/1073858412446634] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
N-Acetylserotonin (NAS) is a naturally occurring chemical intermediate in biosynthesis of melatonin. Previous studies have shown that NAS has different brain distribution patterns from those of serotonin and melatonin, suggesting that NAS might have functions other than as a precursor or metabolite of melatonin. Indeed, several studies have now shown that NAS may play an important role in mood regulation and may have antidepressant activity. Additional studies have shown that NAS stimulates proliferation of neuroprogenitor cells and prevents some of the negative effects of sleep deprivation. It is believed that the antidepressant and neurotrophic actions of NAS are due at least in part to the capability on this molecule to activate the TrkB receptor in a brain-derived neurotrophic factor-independent manner. Emerging evidence also indicates that NAS and its derivatives have neuroprotective properties and protect retinal photoreceptor cells from light-induced degeneration. In this review, the authors discuss the literature about this exciting and underappreciated molecule.
Collapse
|
17
|
Chaste P, Clement N, Botros HG, Guillaume JL, Konyukh M, Pagan C, Scheid I, Nygren G, Anckarsäter H, Rastam M, Ståhlberg O, Gillberg IC, Melke J, Delorme R, Leblond C, Toro R, Huguet G, Fauchereau F, Durand C, Boudarene L, Serrano E, Lemière N, Launay JM, Leboyer M, Jockers R, Gillberg C, Bourgeron T. Genetic variations of the melatonin pathway in patients with attention-deficit and hyperactivity disorders. J Pineal Res 2011; 51:394-9. [PMID: 21615493 DOI: 10.1111/j.1600-079x.2011.00902.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Melatonin is a powerful antioxidant and a synchronizer of many physiological processes. Alteration in melatonin signaling has been reported in a broad range of diseases, but little is known about the genetic variability of this pathway in humans. Here, we sequenced all the genes of the melatonin pathway -AA-NAT, ASMT, MTNR1A, MTNR1B and GPR50 - in 321 individuals from Sweden including 101 patients with attention-deficit/hyperactivity disorder (ADHD) and 220 controls from the general population. We could find several damaging mutations in patients with ADHD, but no significant enrichment compared with the general population. Among these variations, we found a splice site mutation in ASMT (IVS5+2T>C) and one stop mutation in MTNR1A (Y170X) - detected exclusively in patients with ADHD - for which biochemical analyses indicated that they abolish the activity of ASMT and MTNR1A. These genetic and functional results represent the first comprehensive ascertainment of melatonin signaling deficiency in ADHD.
Collapse
Affiliation(s)
- Pauline Chaste
- Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Woo KC, Kim TD, Lee KH, Kim DY, Kim S, Lee HR, Kang HJ, Chung SJ, Senju S, Nishimura Y, Kim KT. Modulation of exosome-mediated mRNA turnover by interaction of GTP-binding protein 1 (GTPBP1) with its target mRNAs. FASEB J 2011; 25:2757-69. [PMID: 21515746 DOI: 10.1096/fj.10-178715] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Eukaryotic mRNA turnover is among most critical mechanisms that affect mRNA abundance and are regulated by mRNA-binding proteins and the cytoplasmic exosome. A functional protein, guanosine-triphosphate-binding protein 1 (GTPBP1), which associates with both the exosome and target mRNAs, was identified. The overexpression of GTPBP1 accelerated the target mRNA decay, whereas the reduction of the GTPBP1 expression with RNA interference stabilized the target mRNA. GTPBP1 has a putative guanosine-triphosphate (GTP)-binding domain, which is found in members of the G-protein family and Ski7p, a well-known core factor of the exosome-mediated mRNA turnover pathway in yeast. Analyses of protein interactions and mRNA decay demonstrated that GTPBP1 modulates mRNA degradation via GTP-binding-dependent target loading. Moreover, GTPBP1-knockout models displayed multiple mRNA decay defects, including elevated nocturnal levels of Aanat mRNA in pineal glands, and retarded degradation of TNF-α mRNA in lipopolysaccharide-treated splenocytes. The results of this study suggest that GTPBP1 is a regulator and adaptor of the exosome-mediated mRNA turnover pathway.
Collapse
Affiliation(s)
- Kyung-Chul Woo
- Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Park OK, Yoo KY, Lee CH, Choi JH, Hwang IK, Park JH, Kwon YG, Kim YM, Won MH. Arylalkylamine N-acetyltransferase (AANAT) is expressed in astrocytes and melatonin treatment maintains AANAT in the gerbil hippocampus induced by transient cerebral ischemia. J Neurol Sci 2010; 294:7-17. [DOI: 10.1016/j.jns.2010.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 04/12/2010] [Accepted: 04/20/2010] [Indexed: 11/30/2022]
|
20
|
Circadian amplitude of cryptochrome 1 is modulated by mRNA stability regulation via cytoplasmic hnRNP D oscillation. Mol Cell Biol 2010; 30:197-205. [PMID: 19858287 DOI: 10.1128/mcb.01154-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mammalian circadian rhythm is observed not only at the suprachiasmatic nucleus, a master pacemaker, but also throughout the peripheral tissues. Its conserved molecular basis has been thought to consist of intracellular transcriptional feedback loops of key clock genes. However, little is known about posttranscriptional regulation of these genes. In the present study, we investigated the role of the 3'-untranslated region (3'UTR) of the mouse cryptochrome 1 (mcry1) gene at the posttranscriptional level. Mature mcry1 mRNA has a 610-nucleotide 3'UTR and mediates its own degradation. The middle part of the 3'UTR contains a destabilizing cis-acting element. The deletion of this element led to a dramatic increase in mRNA stability, and heterogeneous nuclear ribonucleoprotein D (hnRNP D) was identified as an RNA binding protein responsible for this effect. Cytoplasmic hnRNP D levels displayed a pattern that was reciprocal to the mcry1 oscillation. Knockdown of hnRNP D stabilized mcry1 mRNA and resulted in enhancement of the oscillation amplitude and a slight delay of the phase. Our results suggest that hnRNP D plays a role as a fine regulator contributing to the mcry1 mRNA turnover rate and the modulation of circadian rhythm.
Collapse
|
21
|
Photoperiod-related changes in hormonal and immune status of male Siberian hamsters, Phodopus sungorus. Comp Biochem Physiol A Mol Integr Physiol 2009; 152:299-303. [DOI: 10.1016/j.cbpa.2008.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 10/16/2008] [Accepted: 10/17/2008] [Indexed: 11/22/2022]
|
22
|
Woo KC, Kim TD, Lee KH, Kim DY, Kim W, Lee KY, Kim KT. Mouse period 2 mRNA circadian oscillation is modulated by PTB-mediated rhythmic mRNA degradation. Nucleic Acids Res 2008; 37:26-37. [PMID: 19010962 PMCID: PMC2615616 DOI: 10.1093/nar/gkn893] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Circadian mRNA oscillations are the main feature of core clock genes. Among them, period 2 is a key component in negative-feedback regulation, showing robust diurnal oscillations. Moreover, period 2 has been found to have a physiological role in the cell cycle or the tumor suppression. The present study reports that 3′-untranslated region (UTR)-dependent mRNA decay is involved in the regulation of circadian oscillation of period 2 mRNA. Within the mper2 3′UTR, both the CU-rich region and polypyrimidine tract-binding protein (PTB) are more responsible for mRNA stability and degradation kinetics than are other factors. Depletion of PTB with RNAi results in mper2 mRNA stabilization. During the circadian oscillations of mper2, cytoplasmic PTB showed a reciprocal expression profile compared with mper2 mRNA and its peak amplitude was increased when PTB was depleted. This report on the regulation of mper2 proposes that post-transcriptional mRNA decay mediated by PTB is a fine-tuned regulatory mechanism that includes dampening-down effects during circadian mRNA oscillations.
Collapse
Affiliation(s)
- Kyung-Chul Woo
- Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, South Korea
| | | | | | | | | | | | | |
Collapse
|
23
|
Olszańska B, Bozenna O, Majewski P, Paweł M, Lewczuk B, Bogdan L, Stepińska U, Urszula S. Melatonin and its synthesizing enzymes (arylalkylamine N-acetyltransferase-like and hydroxyindole-O-methyltransferase) in avian eggs and early embryos. J Pineal Res 2007; 42:310-8. [PMID: 17349030 DOI: 10.1111/j.1600-079x.2007.00421.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The presence of melatonin and the enzymes (transcripts and activities) involved in its synthesis, i.e. arylalkylamine N-acetyltransferase (AA-NAT) and hydroxyindole-O-methyltransferase (HIOMT), was investigated in the eggs and early embryos of Japanese quail at Hamburger-Hamilton stages 1-10. Melatonin was present in the egg yolk (approximately 70 pg/g) and albumen (approximately 20 pg/g). The average content of melatonin was approximately 416 pg/egg. AA-NAT and HIOMT transcripts were present in the oocytes, blastoderms, and ovarian follicles. AA-NAT-like and HIOMT activities were detected in quail egg yolk. The activity of AA-NAT in yolk was comparable with that found in the pineal gland when calculated per milligram of yolk or pineal gland, but was significantly lower when re-calculated per milligram of protein in the yolk or pineal gland. AA-NAT-like activity was also identified in the ovarian follicles. Low HIOMT activity was detected in yolk, but not in the ovarian follicle. Both enzymes were essentially absent from early embryos although some residual activities, probably of yolk origin, were present in the stage 1 embryo. Melatonin and all the constituents needed for its synthesis (serotonin, AA-NAT and HIOMT activities) are contained within the avian yolk and could be used by the embryo from the very beginning of its development. The role of extrapineal melatonin in early avian development may be in protecting the embryo from the action of free radicals formed during intensive embryonic metabolism and/or it may participate (together with serotonin) in a 'diffuse neuroendocrine system' acting at early developmental stages, before differentiation of the nervous system.
Collapse
Affiliation(s)
- Bozenna Olszańska
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec n/Warsaw, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Han S, Kim TD, Ha DC, Kim KT. Rhythmic expression of adenylyl cyclase VI contributes to the differential regulation of serotonin N-acetyltransferase by bradykinin in rat pineal glands. J Biol Chem 2005; 280:38228-34. [PMID: 16166080 DOI: 10.1074/jbc.m508130200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The rhythmic nocturnal production of melatonin in pineal glands is controlled by the periodic release of norepinephrine from the superior cervical ganglion. Norepinephrine binds to the beta-adrenergic receptor and stimulates an increase in intracellular cAMP levels, leading to the transcriptional activation of serotonin N-acetyltransferase, which in turn promotes melatonin production. In the present study, we report that bradykinin inhibits basal- and forskolin-stimulated adenylyl cyclase activity, norepinephrine-induced cAMP generation, and N-acetyltransferase expression in a calcium-dependent manner. These effects were blocked by pretreatment with U73122 (a selective phospholipase C inhibitor), and 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (a Ca(2+) chelator), but not pertussis toxin. The calcium ionophore, ionomycin, inhibited isoproterenol-mediated cAMP generation, similar to bradykinin. Interestingly, the inhibitory effect of bradykinin was evident only during the daytime. At midday, bradykinin inhibited the cAMP level by approximately 50% but markedly stimulated cAMP production (by approximately 50%) at night. Northern blotting and immunoblotting data disclosed circadian expression of calcium-inhibitable adenylyl cyclase type 6. Expression of adenylyl cyclase type 6 was maximal at Zeitgeber Time (ZT) 01 and very low at ZT 13. Our results suggest that bradykinin-induced calcium inhibits melatonin synthesis through the mediation of adenylyl cyclase type 6 expression.
Collapse
Affiliation(s)
- Sung Han
- System Bio-Dynamics NCRC, Division of Molecular and Life Science, Pohang University of Science and Technology, San 31, Hyoja Dong, Pohang 790-784, Republic of Korea
| | | | | | | |
Collapse
|
25
|
Majewski P, Adamska I, Pawlak J, Barańska A, Skwarło-Sońta K. Seasonality of pineal gland activity and immune functions in chickens. J Pineal Res 2005; 39:66-72. [PMID: 15978059 DOI: 10.1111/j.1600-079x.2005.00214.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The immunomodulatory action of melatonin in different animal species is already well known, although the mechanism(s) by which the indoleamine influences the immune system have yet to be fully elucidated. Previously, we have shown both anti-inflammatory and opioid-mediated influence of exogenous melatonin on thioglycollate-induced peritonitis in young chickens. In the present study, the kinetics of peritonitis and splenocyte proliferation were compared in chickens reared in both seasons under the same L:D 12:12 conditions. These two aspects of the immune response were correlated with the diurnal rhythm of pineal gland function, measured by the activity of N-acetyltransferase (NAT), a key enzyme in melatonin biosynthesis. The results revealed seasonal changes in the circadian rhythm of pineal NAT activity occurring in parallel to the natural local geophysical seasons. These changes appeared to influence the development of peritonitis and splenocyte responsiveness to mitogenic stimulation in vitro. Moreover, the existence of bidirectional communication between the pineal gland and the activated immune system was supported by the decreased activity of pineal NAT in chickens with peritonitis compared with control birds.
Collapse
Affiliation(s)
- Paweł Majewski
- Department of Vertebrate Physiology, Faculty of Biology, Warsaw University, Warsaw, Poland.
| | | | | | | | | |
Collapse
|
26
|
Kim TD, Kim JS, Kim JH, Myung J, Chae HD, Woo KC, Jang SK, Koh DS, Kim KT. Rhythmic serotonin N-acetyltransferase mRNA degradation is essential for the maintenance of its circadian oscillation. Mol Cell Biol 2005; 25:3232-46. [PMID: 15798208 PMCID: PMC1069600 DOI: 10.1128/mcb.25.8.3232-3246.2005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Serotonin N-acetyltransferase (arylalkylamine N-acetyltransferase [AANAT]) is the key enzyme in melatonin synthesis regulated by circadian rhythm. To date, our understanding of the oscillatory mechanism of melatonin has been limited to autoregulatory transcriptional and posttranslational regulations of AANAT mRNA. In this study, we identify three proteins from pineal glands that associate with cis-acting elements within species-specific AANAT 3' untranslated regions to mediate mRNA degradation. These proteins include heterogeneous nuclear ribonucleoprotein R (hnRNP R), hnRNP Q, and hnRNP L. Their RNA-destabilizing function was determined by RNA interference and overexpression approaches. Expression patterns of these factors in pineal glands display robust circadian rhythm. The enhanced levels detected after midnight correlate with an abrupt decline in AANAT mRNA level. A mathematical model for the AANAT mRNA profile and its experimental evidence with rat pinealocytes indicates that rhythmic AANAT mRNA degradation mediated by hnRNP R, hnRNP Q, and hnRNP L is a key process in the regulation of its circadian oscillation.
Collapse
Affiliation(s)
- Tae-Don Kim
- National Research Laboratory, Department of Life Science, Pohang University of Science and Technology, San 31 Hyoja-Dong, Pohang, Kyung-Buk 790-784, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Uz T, Qu T, Sugaya K, Manev H. Neuronal expression of arylalkylamine N-acetyltransferase (AANAT) mRNA in the rat brain. Neurosci Res 2002; 42:309-16. [PMID: 11985883 DOI: 10.1016/s0168-0102(02)00011-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The role of arylalkylamine N-acetyltransferase (AANAT) in neuronal functioning has been suggested based on biochemical assays; only scarce evidence indicates neuronal expression of the mRNA encoding for this enzyme that catalyzes the conversion of serotonin into N-acetylserotonin. Using a quantitative reverse transcriptase polymerase chain reaction (RT-PCR) assay with internal standards, and an in-situ RT-PCR hybridization assay we found evidence for the expression of AANAT in the rat brain. In the localization studies, the most prominent AANAT mRNA signal was found in the granule neurons of the hippocampus, the olfactory bulb, and the cerebellum, and in the gray matter of the spinal cord. Diurnal differences in AANAT mRNA content were observed in the pineal gland but not in the hippocampus; the content of AANAT mRNA was lower both in the pineal gland and the hippocampus of old (24 months) compared with young (2 months) rats. These data are consistent with the hypothesis that AANAT may play a physiological role in mammalian central nervous system neurons. Further studies are warranted into the possible functional significance of neuronal expression of AANAT mRNA.
Collapse
Affiliation(s)
- Tolga Uz
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, 1601 West Taylor Street, MC 912, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|