1
|
Ding X, Sha D, Sun K, Fan Y. Biomechanical insights into the development and optimization of small-diameter vascular grafts. Acta Biomater 2025:S1742-7061(25)00270-3. [PMID: 40239752 DOI: 10.1016/j.actbio.2025.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/22/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
Small-diameter vascular grafts (SDVGs; inner diameter ≤6 mm) offer transformative potential for treating cardiovascular diseases, yet their clinical application remains limited due to high rates of complications such as acute thrombosis and intimal hyperplasia (IH), which compromise long-term patency. While advancements in biological and material science have driven progress, the critical role of biomechanical factors-such as hemodynamic forces and mechanical mismatch-in graft failure is often overlooked. This review presents insights from recent clinical trials of SDVG products and summarizes biomechanical contributors to failure, including disturbed flow patterns, mechanical mismatch, and insufficient mechanical strength. We outline essential mechanical performance criteria (e.g., compliance, burst pressure) and evaluation methodologies to assess SDVG performance. Furthermore, we present optimization strategies based on biomechanical principles: (1) graft morphological design optimization to improve hemodynamic stability, (2) structural, material, and fabrication innovations to achieve compliance matching with native arteries, and (3) biomimetic approaches to mimic vascular tissue and promote endothelialization. By systematically addressing these biomechanical challenges, next-generation SDVGs may achieve superior patency, accelerating their clinical translation. This review highlights the necessity of considering biomechanical compatibility in SDVG development, thereby providing initial insights for the clinical translation of SDVG. STATEMENT OF SIGNIFICANCE: Small-diameter vascular grafts (SDVGs) offer transformative potential for cardiovascular disease treatment but face clinical limitations. While significant progress has been made in biological and material innovations, the critical role of biomechanical factors in graft failure has often been underestimated. This review highlights the importance of biomechanical compatibility in SDVG design and performance, emphasizing the need to address disturbed flow patterns, mechanical mismatch, and inadequate mechanical strength. By proposing optimization strategies based on biomechanical principles, such as graft morphological design, compliance matching, and biomimetic approaches, this work provides a roadmap for developing next-generation SDVGs with improved patency. These advancements have the potential to overcome current limitations, accelerate clinical translation, ultimately benefiting patients worldwide.
Collapse
Affiliation(s)
- Xili Ding
- Medical Engineering & Engineering Medicine Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China; Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100191, China; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), Key Laboratory of Innovation and Transformation of Advanced Medical Devices of Ministry of Industry and Information Technology, Beihang University, Beijing, 100083, China
| | - Dongyu Sha
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Kaixin Sun
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100191, China; National Superior College for Engineers, Beihang University, Beijing, 100191, China
| | - Yubo Fan
- Medical Engineering & Engineering Medicine Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China; Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100191, China; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), Key Laboratory of Innovation and Transformation of Advanced Medical Devices of Ministry of Industry and Information Technology, Beihang University, Beijing, 100083, China.
| |
Collapse
|
2
|
Sun H, Cheng Z, Guo X, Gu H, Tang D, Wang L. Comparison of Biomechanical and Microstructural Properties of Aortic Graft Materials in Aortic Repair Surgeries. J Funct Biomater 2024; 15:248. [PMID: 39330224 PMCID: PMC11433388 DOI: 10.3390/jfb15090248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Mechanical mismatch between native aortas and aortic grafts can induce graft failure. This study aims to compare the mechanical and microstructural properties of different graft materials used in aortic repair surgeries with those of normal and dissected human ascending aortas. Five types of materials including normal aorta (n = 10), dissected aorta (n = 6), human pericardium (n = 8), bovine pericardium (n = 8) and Dacron graft (n = 5) were collected to perform uniaxial tensile testing to determine their material stiffness, and ultimate strength/stretch. The elastin and collagen contents in four tissue groups except for Dacron were quantified by histological examinations, while the material ultrastructure of five material groups was visualized by scanning electron microscope. Statistical results showed that three graft materials including Dacron, human pericardium and bovine pericardium had significantly higher ultimate strength and stiffness than both normal and dissected aortas. Human and bovine pericardia had significantly lower ultimate stretch than native aortas. Histological examinations revealed that normal and diseased aortic tissues had a significantly higher content of elastic fiber than two pericardial tissues, but less collagen fiber content. All four tissue groups exhibited lamellar fiber ultrastructure, with aortic tissues possessing thinner lamella. Dacron was composed of densely coalesced polyethylene terephthalate fibers in thick bundles. Aortic graft materials with denser fiber ultrastructure and/or higher content of collagen fiber than native aortic tissues, exhibited higher ultimate strength and stiffness. This information provides a basis to understand the mechanical failure of aortic grafts, and inspire the design of biomimetic aortic grafts.
Collapse
Affiliation(s)
- Haoliang Sun
- Department of Cardiovascular Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China;
| | - Zirui Cheng
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China; (Z.C.); (H.G.); (D.T.)
| | - Xiaoya Guo
- School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
| | - Hongcheng Gu
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China; (Z.C.); (H.G.); (D.T.)
| | - Dalin Tang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China; (Z.C.); (H.G.); (D.T.)
- Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Liang Wang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China; (Z.C.); (H.G.); (D.T.)
| |
Collapse
|
3
|
Donmazov S, Piskin S, Gölcez T, Kul D, Arnaz A, Pekkan K. Mechanical characterization and torsional buckling of pediatric cardiovascular materials. Biomech Model Mechanobiol 2024; 23:845-860. [PMID: 38361084 PMCID: PMC11101351 DOI: 10.1007/s10237-023-01809-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/22/2023] [Indexed: 02/17/2024]
Abstract
In complex cardiovascular surgical reconstructions, conduit materials that avoid possible large-scale structural deformations should be considered. A fundamental mode of mechanical complication is torsional buckling which occurs at the anastomosis site due to the mechanical instability, leading surgical conduit/patch surface deformation. The objective of this study is to investigate the torsional buckling behavior of commonly used materials and to develop a practical method for estimating the critical buckling rotation angle under physiological intramural vessel pressures. For this task, mechanical tests of four clinically approved materials, expanded polytetrafluoroethylene (ePTFE), Dacron, porcine and bovine pericardia, commonly used in pediatric cardiovascular surgeries, are conducted (n = 6). Torsional buckling initiation tests with n = 4 for the baseline case (L = 7.5 cm) and n = 3 for the validation of ePTFE (L = 15 cm) and Dacron (L = 15 cm and L = 25 cm) for each are also conducted at low venous pressures. A practical predictive formulation for the buckling potential is proposed using experimental observations and available theory. The relationship between the critical buckling rotation angle and the lumen pressure is determined by balancing the circumferential component of the compressive principal stress with the shear stress generated by the modified critical buckling torque, where the modified critical buckling torque depends linearly on the lumen pressure. While the proposed technique successfully predicted the critical rotation angle values lying within two standard deviations of the mean in the baseline case for all four materials at all lumen pressures, it could reliably predict the critical buckling rotation angles for ePTFE and Dacron samples of length 15 cm with maximum relative errors of 31% and 38%, respectively, in the validation phase. However, the validation of the performance of the technique demonstrated lower accuracy for Dacron samples of length 25 cm at higher pressure levels of 12 mmHg and 15 mmHg. Applicable to all surgical materials, this formulation enables surgeons to assess the torsional buckling potential of vascular conduits noninvasively. Bovine pericardium has been found to exhibit the highest stability, while Dacron (the lowest) and porcine pericardium have been identified as the least stable with the (unitless) torsional buckling resistance constants, 43,800, 12,300 and 14,000, respectively. There was no significant difference between ePTFE and Dacron, and between porcine and bovine pericardia. However, both porcine and bovine pericardia were found to be statistically different from ePTFE and Dacron individually (p < 0.0001). ePTFE exhibited highly nonlinear behavior across the entire strain range [0, 0.1] (or 10% elongation). The significant differences among the surgical materials reported here require special care in conduit construction and anastomosis design.
Collapse
Affiliation(s)
- Samir Donmazov
- Department of Mathematics, University of Kentucky, Kentucky, 40506, USA
| | - Senol Piskin
- Department of Mechanical Engineering, Istinye University, Istanbul, 34010, Turkey
| | - Tansu Gölcez
- Department of Bio-Medical Science and Engineering, Koc University, Istanbul, Turkey
| | - Demet Kul
- Department of Cellular and Molecular Medicine, Koc University, Istanbul, Turkey
| | - Ahmet Arnaz
- Department of Cardiovascular Surgery, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Kerem Pekkan
- Department of Mechanical Engineering, Koc University, Sariyer, Istanbul, Turkey.
| |
Collapse
|
4
|
Ding H, Hou X, Gao Z, Guo Y, Liao B, Wan J. Challenges and Strategies for Endothelializing Decellularized Small-Diameter Tissue-Engineered Vessel Grafts. Adv Healthc Mater 2024; 13:e2304432. [PMID: 38462702 DOI: 10.1002/adhm.202304432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/26/2024] [Indexed: 03/12/2024]
Abstract
Vascular diseases are the leading cause of ischemic necrosis in tissues and organs, necessitating using vascular grafts to restore blood supply. Currently, small vessels for coronary artery bypass grafts are unavailable in clinical settings. Decellularized small-diameter tissue-engineered vessel grafts (SD-TEVGs) hold significant potential. However, they face challenges, as simple implantation of decellularized SD-TEVGs in animals leads to thrombosis and calcification due to incomplete endothelialization. Consequently, research and development focus has shifted toward enhancing the endothelialization process of decellularized SD-TEVGs. This paper reviews preclinical studies involving decellularized SD-TEVGs, highlighting different strategies and their advantages and disadvantages for achieving rapid endothelialization of these vascular grafts. Methods are analyzed to improve the process while addressing potential shortcomings. This paper aims to contribute to the future commercial viability of decellularized SD-TEVGs.
Collapse
Affiliation(s)
- Heng Ding
- Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of cardiovascular remodeling and dysfunction, Luzhou, Sichuan, 646000, China
- Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Xiaojie Hou
- Department of Cardiovascular Surgery and Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhen Gao
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100069, China
| | - Yingqiang Guo
- Department of Cardiovascular Surgery and Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Bin Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of cardiovascular remodeling and dysfunction, Luzhou, Sichuan, 646000, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Juyi Wan
- Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of cardiovascular remodeling and dysfunction, Luzhou, Sichuan, 646000, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| |
Collapse
|
5
|
Schoenborn S, Pirola S, Woodruff MA, Allenby MC. Fluid-Structure Interaction Within Models of Patient-Specific Arteries: Computational Simulations and Experimental Validations. IEEE Rev Biomed Eng 2024; 17:280-296. [PMID: 36260570 DOI: 10.1109/rbme.2022.3215678] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality worldwide and its incidence is rising due to an aging population. The development and progression of CVD is directly linked to adverse vascular hemodynamics and biomechanics, whose in-vivo measurement remains challenging but can be simulated numerically and experimentally. The ability to evaluate these parameters in patient-specific CVD cases is crucial to better predict future disease progression, risk of adverse events, and treatment efficacy. While significant progress has been made toward patient-specific hemodynamic simulations, blood vessels are often assumed to be rigid, which does not consider the compliant mechanical properties of vessels whose malfunction is implicated in disease. In an effort to simulate the biomechanics of flexible vessels, fluid-structure interaction (FSI) simulations have emerged as promising tools for the characterization of hemodynamics within patient-specific cardiovascular anatomies. Since FSI simulations combine the blood's fluid domain with the arterial structural domain, they pose novel challenges for their experimental validation. This paper reviews the scientific work related to FSI simulations for patient-specific arterial geometries and the current standard of FSI model validation including the use of compliant arterial phantoms, which offer novel potential for the experimental validation of FSI results.
Collapse
|
6
|
Sun H, Li B, Zhang L, Zhang Y, Liu J, Huang S, Xi X, Liu Y. Numerical study of hemodynamic changes in the Circle of Willis after stenosis of the internal carotid artery. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 243:107881. [PMID: 37950924 DOI: 10.1016/j.cmpb.2023.107881] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 11/13/2023]
Abstract
BACKGROUND AND OBJECTIVES In clinical practice a large number of patients with ischemic stroke have internal carotid artery (ICA) stenosis accompanied by Circle of Willis (CoW) stenosis. In the presence of carotid artery stenosis, CoW atherosclerosis may cause cerebral blood flow decompensation and may promote the development of ischemic stroke. The reason for the concomitant stenosis at both sites is unknown. This study investigated the hemodynamic effects of ICA stenosis on the CoW. METHODS We developed a three-dimensional/zero-dimensional (3D/0D) closed-loop geometric multiscale model of the cerebral artery to quantify the hemodynamic indicators, including time-averaged wall shear stress (TAWSS) and oscillatory shear index (OSI). Mild (<50 %), moderate (50-69 %) and severe (>69 %) ICA stenoses were established based on 3D models of cerebral arteries in two volunteers. Geometric multiscale computing models were numerically evaluated to obtain local hemodynamic changes in the CoW in order to assess the risk of stenosis in the CoW. RESULTS Model calculations showed that for all 3D models the A1 segment of the anterior cerebral artery (ACA) or the posterior communicating artery (PCA) within the CoW exhibited a hemodynamic environment with high OSI (>0.2) and low TAWSS (<1 Pa) when the ICA had a moderate stenosis. While in the case of mild and severe stenosis in ICA, there is no such phenomenon. The proportion of the surface area possessing high OSI and low TAWSS in the A1 segment of the ACA or in the PCA was mostly greater than 60 %, which might potentially cause the formation and development of atherosclerosis in CoW and finally lead to CoW stenosis. CONCLUSIONS Therefore, although moderate carotid artery stenosis may not cause ischemic stroke, it may cause hemodynamic changes in the CoW, which in turn may promote CoW stenosis and cause CoW decompensation. In clinical treatment attention should be paid not only to stenosis of the carotid arteries but also to changes in the hemodynamic environment within the CoW, in order to prevent the adverse effects of CoW stenosis.
Collapse
Affiliation(s)
- Hao Sun
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing, China
| | - Bao Li
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing, China.
| | - Liyuan Zhang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing, China
| | - Yanping Zhang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing, China
| | - Jincheng Liu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing, China
| | - Suqin Huang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing, China
| | - Xiaolu Xi
- Wuhan United Imaging Healthcare Surgical Technology Co., Ltd. Hubei 100124, China
| | - Youjun Liu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing, China
| |
Collapse
|
7
|
Rohringer S, Grasl C, Ehrmann K, Hager P, Hahn C, Specht SJ, Walter I, Schneider KH, Zopf LM, Baudis S, Liska R, Schima H, Podesser BK, Bergmeister H. Biodegradable, Self-Reinforcing Vascular Grafts for In Situ Tissue Engineering Approaches. Adv Healthc Mater 2023; 12:e2300520. [PMID: 37173073 PMCID: PMC11468867 DOI: 10.1002/adhm.202300520] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/21/2023] [Indexed: 05/15/2023]
Abstract
Clinically available small-diameter synthetic vascular grafts (SDVGs) have unsatisfactory patency rates due to impaired graft healing. Therefore, autologous implants are still the gold standard for small vessel replacement. Bioresorbable SDVGs may be an alternative, but many polymers have inadequate biomechanical properties that lead to graft failure. To overcome these limitations, a new biodegradable SDVG is developed to ensure safe use until adequate new tissue is formed. SDVGs are electrospun using a polymer blend composed of thermoplastic polyurethane (TPU) and a new self-reinforcing TP(U-urea) (TPUU). Biocompatibility is tested in vitro by cell seeding and hemocompatibility tests. In vivo performance is evaluated in rats over a period for up to six months. Autologous rat aortic implants serve as a control group. Scanning electron microscopy, micro-computed tomography (µCT), histology, and gene expression analyses are applied. TPU/TPUU grafts show significant improvement of biomechanical properties after water incubation and exhibit excellent cyto- and hemocompatibility. All grafts remain patent, and biomechanical properties are sufficient despite wall thinning. No inflammation, aneurysms, intimal hyperplasia, or thrombus formation are observed. Evaluation of graft healing shows similar gene expression profiles of TPU/TPUU and autologous conduits. These new biodegradable, self-reinforcing SDVGs may be promising candidates for clinical use in the future.
Collapse
Affiliation(s)
- Sabrina Rohringer
- Center for Biomedical Research and Translational SurgeryMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
- Austrian Cluster for Tissue RegenerationDonaueschingenstraße 13Vienna1200Austria
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Gürtel 18‐20Vienna1090Austria
| | - Christian Grasl
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Gürtel 18‐20Vienna1090Austria
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
| | - Katharina Ehrmann
- Center for Biomedical Research and Translational SurgeryMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
- Austrian Cluster for Tissue RegenerationDonaueschingenstraße 13Vienna1200Austria
- Institute of Applied Synthetic ChemistryTechnical University of ViennaGetreidemarkt 9/163Vienna1060Austria
| | - Pia Hager
- Center for Biomedical Research and Translational SurgeryMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Gürtel 18‐20Vienna1090Austria
| | - Clemens Hahn
- Center for Biomedical Research and Translational SurgeryMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Gürtel 18‐20Vienna1090Austria
| | - Sophie J. Specht
- Center for Biomedical Research and Translational SurgeryMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Gürtel 18‐20Vienna1090Austria
| | - Ingrid Walter
- Department of PathobiologyUniversity of Veterinary MedicineVeterinaerplatz 1Vienna1210Austria
| | - Karl H. Schneider
- Center for Biomedical Research and Translational SurgeryMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
- Austrian Cluster for Tissue RegenerationDonaueschingenstraße 13Vienna1200Austria
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Gürtel 18‐20Vienna1090Austria
| | - Lydia M. Zopf
- Austrian Cluster for Tissue RegenerationDonaueschingenstraße 13Vienna1200Austria
- Ludwig Boltzmann Institute for TraumatologyDonaueschingenstraße 13Vienna1200Austria
| | - Stefan Baudis
- Austrian Cluster for Tissue RegenerationDonaueschingenstraße 13Vienna1200Austria
- Institute of Applied Synthetic ChemistryTechnical University of ViennaGetreidemarkt 9/163Vienna1060Austria
| | - Robert Liska
- Austrian Cluster for Tissue RegenerationDonaueschingenstraße 13Vienna1200Austria
- Institute of Applied Synthetic ChemistryTechnical University of ViennaGetreidemarkt 9/163Vienna1060Austria
| | - Heinrich Schima
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Gürtel 18‐20Vienna1090Austria
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
| | - Bruno K. Podesser
- Center for Biomedical Research and Translational SurgeryMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
- Austrian Cluster for Tissue RegenerationDonaueschingenstraße 13Vienna1200Austria
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Gürtel 18‐20Vienna1090Austria
| | - Helga Bergmeister
- Center for Biomedical Research and Translational SurgeryMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
- Austrian Cluster for Tissue RegenerationDonaueschingenstraße 13Vienna1200Austria
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Gürtel 18‐20Vienna1090Austria
| |
Collapse
|
8
|
Thomae B, Maroun A, Devlin P, Drullinsky D, Markl M, Malaisrie SC. Four-Dimensional Flow Magnetic Resonance Imaging Evaluation of Post-Ross David Procedure With Valve Repair. ANNALS OF THORACIC SURGERY SHORT REPORTS 2023; 1:392-394. [PMID: 39790976 PMCID: PMC11708607 DOI: 10.1016/j.atssr.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 01/12/2025]
Abstract
Valve-sparing aortic root replacements have acceptable reintervention rates in patients with failed pulmonary autografts after a Ross procedure. In our 50-year-old patient with post-Ross valve-sparing aortic root replacement, we report preoperative and postoperative 4-dimensional flow magnetic resonance imaging capturing changes in peak systolic velocity, 3-dimensional systolic flow profiles, and aortic wall shear stress that may predict a decreased risk of aortic dilation, a common complication in repeated Ross procedures.
Collapse
Affiliation(s)
- Benjamin Thomae
- Division of Cardiac Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Anthony Maroun
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Paul Devlin
- Division of Cardiac Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - David Drullinsky
- Division of Cardiac Surgery, Department of Surgery, London Health Sciences Centre, Western University, London, Ontario, Canada
| | - Michael Markl
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - S. Chris Malaisrie
- Division of Cardiac Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
9
|
Kostelnik CJ, Gale MK, Crouse KJ, Shazly T, Eberth JF. Acute Mechanical Consequences of Vessel-Specific Coronary Bypass Combinations. Cardiovasc Eng Technol 2023; 14:404-418. [PMID: 36828977 DOI: 10.1007/s13239-023-00661-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/06/2023] [Indexed: 02/26/2023]
Abstract
PURPOSE Premature coronary artery bypass graft (CABG) failure has been linked to geometric, mechanical, and compositional discrepancies between host and graft tissues. Acute hemodynamic disturbances and the introduction of wall stress gradients trigger a myriad of mechanobiological processes at the anastomosis that can be associated with restenosis and graft failure. Although the origins of coronary artery disease dictate the anastomotic target, an opportunity exists for graft-vessel optimization through rationale graft selection. METHODS Here we explored the four distinct regions of the left (L) and right (R) ITA (1 = proximal, 2 = submuscular, 3 = middle, 4 = distal), and four common target vessels in the coronary circulation including the proximal and distal left anterior descending (PLAD & DLAD), right coronary (RCA), and left circumflex (LCX) arteries. Benchtop biaxial mechanical data was used to acquire constitutive model parameters of these tissues and enable vessel-specific computational models to elucidate the mechanical consequences of 32 unique graft-target combinations. RESULTS Simulations revealed the maximum principal wall stresses for the PLAD, RCA, and LCX occurred when anastomosed with LITA1, and the maximum flow-induced shear stress occurred with LITA4. The DLAD, on the other hand, reached stress maximums when anastomosed to LITA4. Using a normalized objective function of simulation output variables, we found LITA2 to be the best graft choice for both LADs, RITA3 for the RCA, and LITA3 for the LCX. CONCLUSION Although mechanical compatibility is just one of many factors determining bypass graft outcomes, our data suggests improvements can be made to the grafting process through vessel-specific regional optimization.
Collapse
Affiliation(s)
- Colton J Kostelnik
- Biomedical Engineering Program, University of South Carolina, Columbia, SC, USA
| | - Mary K Gale
- Biomedical Engineering Department, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kiersten J Crouse
- Mechanical Engineering Department, University of South Carolina, Columbia, SC, USA
| | - Tarek Shazly
- Biomedical Engineering Program, University of South Carolina, Columbia, SC, USA
- Mechanical Engineering Department, University of South Carolina, Columbia, SC, USA
| | - John F Eberth
- Biomedical Engineering Program, University of South Carolina, Columbia, SC, USA.
- Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Yao Y, Pohan G, Cutiongco MFA, Jeong Y, Kunihiro J, Zaw AM, David D, Shangguan H, Yu ACH, Yim EKF. In vivo evaluation of compliance mismatch on intimal hyperplasia formation in small diameter vascular grafts. Biomater Sci 2023; 11:3297-3307. [PMID: 36943136 PMCID: PMC10160004 DOI: 10.1039/d3bm00167a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Small diameter synthetic vascular grafts have high failure rate due to the thrombosis and intimal hyperplasia formation. Compliance mismatch between the synthetic graft and native artery has been speculated to be one of the main causes of intimal hyperplasia. However, changing the compliance of synthetic materials without altering material chemistry remains a challenge. Here, we used poly(vinyl alcohol) (PVA) hydrogel as a graft material due to its biocompatibility and tunable mechanical properties to investigate the role of graft compliance in the development of intimal hyperplasia and in vivo patency. Two groups of PVA small diameter grafts with low compliance and high compliance were fabricated by dip casting method and implanted in a rabbit carotid artery end-to-side anastomosis model for 4 weeks. We demonstrated that the grafts with compliance that more closely matched with rabbit carotid artery had lower anastomotic intimal hyperplasia formation and higher graft patency compared to low compliance grafts. Overall, this study suggested that reducing the compliance mismatch between the native artery and vascular grafts is beneficial for reducing intimal hyperplasia formation.
Collapse
Affiliation(s)
- Yuan Yao
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1.
| | - Grace Pohan
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1.
| | - Marie F A Cutiongco
- Mechanobiology Institute, National University of Singapore, 9 Engineering Drive 1, Singapore 117575
- Division of Cell Matrix Biology and Regenerative Medicine, The University of Manchester, Oxford Road, Manchester, UK M13 9PL
| | - YeJin Jeong
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1.
| | - Joshua Kunihiro
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1.
| | - Aung Moe Zaw
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1.
| | - Dency David
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1.
| | - Hanyue Shangguan
- Schlegel Research Institute for Aging, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
- Center for Biotechnology and Bioengineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
| | - Alfred C H Yu
- Schlegel Research Institute for Aging, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
- Center for Biotechnology and Bioengineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1.
- Mechanobiology Institute, National University of Singapore, 9 Engineering Drive 1, Singapore 117575
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
- Center for Biotechnology and Bioengineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1
| |
Collapse
|
11
|
Ban E, Humphrey JD. New Computational Approach to Shunt Design in Congenital Heart Palliation. J Biomech 2023; 152:111568. [PMID: 37099931 DOI: 10.1016/j.jbiomech.2023.111568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/06/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
Shunts are commonly used to redirect blood to pulmonary arteries in procedures that palliate congenital cardiovascular defects. Previous clinical studies and hemodynamic simulations reveal a critical role of shunt diameter in balancing flow to pulmonary versus systemic vessels, but the biomechanical process of creating the requisite anastomosis between the shunt and host vessel has received little attention. Here, we report a new Lagrange multiplier-based finite element approach that represents the shunt and host vessels as individual structures and predicts the anastomosis geometry and attachment force that result when the shunt is sutured at an incision in the host, followed by pressurization. Simulations suggest that anastomosis orifice opening increases markedly with increasing length of the host incision and moderately with increasing blood pressure. The host artery is further predicted to conform to common stiff synthetic shunts, whereas more compliant umbilical vessel shunts should conform to the host, with orifice area transitioning between these two extremes via a Hill-type function of shunt stiffness. Moreover, a direct relationship is expected between attachment forces and shunt stiffness. This new computational approach promises to aid in surgical planning for diverse vascular shunts by predicting in vivo pressurized geometries.
Collapse
Affiliation(s)
- E Ban
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - J D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
12
|
Zhang F, Tao H, Gluck JM, Wang L, Daneshmand MA, King MW. A textile-reinforced composite vascular graft that modulates macrophage polarization and enhances endothelial cell migration, adhesion and proliferation in vitro. SOFT MATTER 2023; 19:1624-1641. [PMID: 36752696 DOI: 10.1039/d2sm01190e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
At the present time, there is no successful off-the-shelf small-caliber vascular graft (<6 mm) for the repair or bypass of the coronary or carotid arteries. In this study, we engineer a textile-reinforced hydrogel vascular graft. The textile fibers are circularly knitted into a flexible yet robust conduit to serve as the backbone of the composite vascular graft and provide the primary mechanical support. It is embedded in the hydrogel matrix which seals the open structure of the knitted reinforcement and mediates cellular response toward a faster reendothelialization. The mechanical properties of the composite vascular graft, including bursting strength, suture retention strength and radial compliance, significantly surpass the requirement for the vascular graft application and can be adjusted by altering the structure of the textile reinforcement. The addition of hydrogel matrix, on the other hand, improves the survival, adhesion and proliferation of endothelial cells in vitro. The composite vascular graft also enhances macrophage activation and upregulates M1 and M2 related gene expression, which further improves the endothelial cell migration that might favor the reendothelialization of the vascular graft. Taken together, the textile-reinforced hydrogel shows it potential to be a promising scaffold material to fabricate a tissue engineered vascular graft.
Collapse
Affiliation(s)
- Fan Zhang
- Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA.
| | - Hui Tao
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Jessica M Gluck
- Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA.
| | - Lu Wang
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Mani A Daneshmand
- Department of Surgery, School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Martin W King
- Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA.
- College of Textiles, Donghua University, Shanghai, 201620, China
| |
Collapse
|
13
|
Kato A, Go T, Otsuki Y, Yokota N, Soo CS, Misaki N, Yajima T, Yokomise H. Perpendicular implantation of porcine trachea extracellular matrix for enhanced xenogeneic scaffold surface epithelialization in a canine model. Front Surg 2023; 9:1089403. [PMID: 36713663 PMCID: PMC9877415 DOI: 10.3389/fsurg.2022.1089403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/26/2022] [Indexed: 01/13/2023] Open
Abstract
Objective The availability of clinically applied medical materials in thoracic surgery remains insufficient, especially materials for treating tracheal defects. Herein, the potential of porcine extracellular matrix (P-ECM) as a new airway reconstruction material was explored by xenotransplanting it into a canine trachea. Methods P-ECM was first transplanted into the buttocks of Narc Beagle dogs (n = 3) and its overall immuno-induced effects were evaluated. Subsequently, nine dogs underwent surgery to create a tracheal defect that was 1 × 2 cm. In group A, the P-ECM was implanted parallel to the tracheal axis (n = 3), whereas in group B the P-ECM was implanted perpendicular to the tracheal axis (n = 6). The grafts were periodically observed by bronchoscopy and evaluated postoperatively at 1 and 3 months through macroscopic and microscopic examinations. Immunosuppressants were not administered. Statistical evaluation was performed for Bronchoscopic stenosis rate, graft epithelialization rate, shrinkage rate and ECM live-implantation rate. Results No sign of P-ECM rejection was observed after its implantation in the buttocks. Bronchoscopic findings showed no improvement concerning stenosis in group A until 3 months after surgery; epithelialization of the graft site was not evident, and the ECM site appeared scarred and faded. In contrast, stenosis gradually improved in group B, with continuous epithelium within the host tissues and P-ECM. Histologically, the graft site contracted longitudinally and no epithelialization was observed in group A, whereas full epithelialization was observed on the P-ECM in group B. No sign of cartilage regeneration was confirmed in both groups. No statistically significant differences were found in bronchoscopic stenosis rate, shrinkage rate and ECM live-implantation rate, but graft epithelialization rate showed a statistically significant difference (G-A; sporadic (25%) 3, vs. G-B; full covered (100%) 3; p = 0.047). Conclusions P-ECM can support full re-epithelialization without chondrocyte regeneration, with perpendicular implantation facilitating epithelialization of the ECM. Our results showed that our decellularized tracheal matrix holds clinical potential as a biological xenogeneic material for airway defect repair.
Collapse
|
14
|
Arima T, Otsuka S, Mitsuoka H, Nakano T, Naito M, Ishibashi H. Site-specific mechanical properties of the human great saphenous vein: Cadaveric comparisons among the thigh, knee, and lower leg harvest sites. Phlebology 2022; 37:445-451. [DOI: 10.1177/02683555221088103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background This study aimed to determine site-specific mechanical properties of the great saphenous vein (GSV) harvested from various sites in the same cadaver. Methods GSV samples were harvested from three sites: the thigh, knee, and lower leg. The thickness and diameter of the samples were measured, and the tensile test was performed to measure stiffness and Young’s modulus. Results The stiffness of the GSV harvested from knees in the longitudinal direction was lower than those from other sites, whereas the stiffness of the GSV harvested from the lower leg in the circumferential direction was lower than that from the thigh. Conclusions The GSV has site-specific mechanical properties. Thus, in addition to morphological evaluations such as echo and computed tomography in preoperative graft surgical evaluations, knowledge of the mechanical properties at each site can improve the patency rate and prevent aneurysmal expansion.
Collapse
Affiliation(s)
- Takahiro Arima
- Department of Vascular Surgery, Aichi Medical University, Aichi, Japan
| | - Shun Otsuka
- Department of Anatomy, Aichi Medical University, Aichi, Japan
| | - Hiroki Mitsuoka
- Department of Vascular Surgery, Aichi Medical University, Aichi, Japan
| | - Takashi Nakano
- Department of Anatomy, Aichi Medical University, Aichi, Japan
| | - Munekazu Naito
- Department of Anatomy, Aichi Medical University, Aichi, Japan
| | | |
Collapse
|
15
|
Fukunishi T, Lui C, Ong CS, Dunn T, Xu S, Smoot C, Smalley R, Harris J, Gabriele P, Santhanam L, Lu S, Hibino N. Extruded poly (glycerol sebacate) and polyglycolic acid vascular graft forms a neoartery. J Tissue Eng Regen Med 2022; 16:346-354. [PMID: 35084808 DOI: 10.1002/term.3282] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/17/2021] [Accepted: 01/01/2022] [Indexed: 11/09/2022]
Abstract
In the ongoing search for the optimal biomaterial for tissue engineered vascular grafts (TEVGs), poly (glycerol sebacate) (PGS) has emerged as a new potential candidate. We have utilized a novel method to create unique, pore-free, extruded PGS grafts with and without a supportive exterior layer of polyglycolic acid (PGA). The 1 mm diameter by 5 mm length TEVGs were implanted in a rat model of infrarenal abdominal aorta interposition grafting. Three months after implantation, TEVGs comprised of extruded PGS with an external PGA braid demonstrated a patency rate of 9/10 (90%) with no signs of dilatation, dehiscence, or rupture. The PGS/PGA graft was remodeled into a neoartery with complete endothelialization of the neoartery lumen and formation of smooth muscle actinin multilayers as demonstrated via immunohistochemistry. Formation and maturation of extracellular matrix material were also observed, with amounts of elastin and collagen comparable to native rat aorta. No significant host inflammatory response was observed. These findings suggest the combination of an extruded PGS tube with an external reinforcing PGA braid is a promising material for small diameter TEVGs.
Collapse
Affiliation(s)
- Takuma Fukunishi
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Cecillia Lui
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Chin Siang Ong
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Tyler Dunn
- Section of Cardiac Surgery, University of Chicago, Chicago, Illinois, USA
| | - Shanxiu Xu
- Section of Cardiac Surgery, University of Chicago, Chicago, Illinois, USA
| | | | - Ryan Smalley
- The Secant Group, LLC, Telford, Pennsylvania, USA
| | | | | | - Lakshmi Santhanam
- Department of Anesthesiology, Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Steven Lu
- The Secant Group, LLC, Telford, Pennsylvania, USA
| | - Narutoshi Hibino
- Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Maryland, USA.,Section of Cardiac Surgery, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
16
|
Dokuchaeva AA, Timchenko TP, Karpova EV, Vladimirov SV, Soynov IA, Zhuravleva IY. Effects of Electrospinning Parameter Adjustment on the Mechanical Behavior of Poly-ε-caprolactone Vascular Scaffolds. Polymers (Basel) 2022; 14:polym14020349. [PMID: 35054754 PMCID: PMC8780554 DOI: 10.3390/polym14020349] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 11/16/2022] Open
Abstract
Electrospinning is a perspective method widely suggested for use in bioengineering applications, but the variability in currently available data and equipment necessitates additional research to ascertain the desirable methodology. In this study, we aimed to describe the effects of electrospinning technique alterations on the structural and mechanical properties of (1,7)-polyoxepan-2-one (poly-ε-caprolactone, PCL) scaffolds, such as circumferential and longitudinal stress/strain curves, in comparison with corresponding properties of fresh rat aorta samples. Scaffolds manufactured under different electrospinning modes were analyzed and evaluated using scanning electronic microscopy as well as uniaxial longitudinal and circumferential tensile tests. Fiber diameter was shown to be the most crucial characteristic of the scaffold, correlating with its mechanical properties.
Collapse
Affiliation(s)
- Anna A. Dokuchaeva
- Institute of Experimental Biology and Medicine, E. Meshalkin National Medical Research Center of the RF Ministry of Health, 15 Rechkunovskaya St., Novosibirsk 630055, Russia; (T.P.T.); (S.V.V.); (I.A.S.); (I.Y.Z.)
- Correspondence: ; Tel.: +7-383-347-60-47
| | - Tatyana P. Timchenko
- Institute of Experimental Biology and Medicine, E. Meshalkin National Medical Research Center of the RF Ministry of Health, 15 Rechkunovskaya St., Novosibirsk 630055, Russia; (T.P.T.); (S.V.V.); (I.A.S.); (I.Y.Z.)
| | - Elena V. Karpova
- Center of Spectral Investigations, Group of Optical Spectrometry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Lavrentiev Avenue, Novosibirsk 630090, Russia;
| | - Sergei V. Vladimirov
- Institute of Experimental Biology and Medicine, E. Meshalkin National Medical Research Center of the RF Ministry of Health, 15 Rechkunovskaya St., Novosibirsk 630055, Russia; (T.P.T.); (S.V.V.); (I.A.S.); (I.Y.Z.)
| | - Ilya A. Soynov
- Institute of Experimental Biology and Medicine, E. Meshalkin National Medical Research Center of the RF Ministry of Health, 15 Rechkunovskaya St., Novosibirsk 630055, Russia; (T.P.T.); (S.V.V.); (I.A.S.); (I.Y.Z.)
| | - Irina Y. Zhuravleva
- Institute of Experimental Biology and Medicine, E. Meshalkin National Medical Research Center of the RF Ministry of Health, 15 Rechkunovskaya St., Novosibirsk 630055, Russia; (T.P.T.); (S.V.V.); (I.A.S.); (I.Y.Z.)
| |
Collapse
|
17
|
Bioengineering silk into blood vessels. Biochem Soc Trans 2021; 49:2271-2286. [PMID: 34495327 DOI: 10.1042/bst20210359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022]
Abstract
The rising incidence of cardiovascular disease has increased the demand for small diameter (<6 mm) synthetic vascular grafts for use in bypass surgery. Clinically available synthetic grafts (polyethylene terephthalate and expanded polytetrafluorethylene) are incredibly strong, but also highly hydrophobic and inelastic, leading to high rates of failure when used for small diameter bypass. The poor clinical outcomes of commercial synthetic grafts in this setting have driven significant research in search of new materials that retain favourable mechanical properties but offer improved biocompatibility. Over the last several decades, silk fibroin derived from Bombyx mori silkworms has emerged as a promising biomaterial for use in vascular applications. Progress has been driven by advances in silk manufacturing practices which have allowed unprecedented control over silk strength, architecture, and the ensuing biological response. Silk can now be manufactured to mimic the mechanical properties of native arteries, rapidly recover the native endothelial cell layer lining vessels, and direct positive vascular remodelling through the regulation of local inflammatory responses. This review summarises the advances in silk purification, processing and functionalisation which have allowed the production of robust vascular grafts with promise for future clinical application.
Collapse
|
18
|
Lee J, Jang EH, Kim JH, Park S, Kang Y, Park S, Lee K, Kim JH, Youn YN, Ryu W. Highly flexible and porous silk fibroin microneedle wraps for perivascular drug delivery. J Control Release 2021; 340:125-135. [PMID: 34688718 DOI: 10.1016/j.jconrel.2021.10.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 12/29/2022]
Abstract
Various perivascular drug delivery techniques have been demonstrated for localized post-treatment of intimal hyperplasia: a vascular inflammatory response caused by endothelial damages. Although most perivascular devices have focused on controlling the delivery duration of anti-proliferation drug, the confined and unidirectional delivery of the drug to the target tissue has become increasingly important. In addition, careful attention should also be paid to the luminal stability and the adequate exchange of vascular protein or cell between the blood vessel and extravascular tissue to avoid any side effect from the long-term application of any perivascular device. Here, a highly flexible and porous silk fibroin microneedle wrap (Silk MN wrap) is proposed to directly inject antiproliferative drug to the anastomosis sites while ensuring sufficient vascular exchanges. Drug-embedded silk MNs were transfer-molded on a highly flexible and porous silk wrap. The enhanced cell compatibility, molecular permeability, and flexibility of silk MN wrap guaranteed the structural integrity of blood vessels. Silk wrap successfully supported the silk MNs and induced multiple MN penetration to the target tissue. Over 28 days, silk MN wrap significantly inhibited intimal hyperplasia with a 62.1% reduction in neointimal formation.
Collapse
Affiliation(s)
- JiYong Lee
- School of Mechanical Engineering, YONSEI University, Seoul 03722, South Korea
| | - Eui Hwa Jang
- Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, YONSEI University College of Medicine, Seoul 03722, South Korea
| | - Jae Ho Kim
- School of Mechanical Engineering, YONSEI University, Seoul 03722, South Korea
| | - SeungHyun Park
- School of Mechanical Engineering, YONSEI University, Seoul 03722, South Korea
| | - Yosup Kang
- School of Mechanical Engineering, YONSEI University, Seoul 03722, South Korea
| | - Sanghyun Park
- School of Mechanical Engineering, YONSEI University, Seoul 03722, South Korea
| | - KangJu Lee
- Department of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, South Korea; Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90005, USA
| | - Jung-Hwan Kim
- Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, YONSEI University College of Medicine, Seoul 03722, South Korea
| | - Young-Nam Youn
- Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, YONSEI University College of Medicine, Seoul 03722, South Korea.
| | - WonHyoung Ryu
- School of Mechanical Engineering, YONSEI University, Seoul 03722, South Korea.
| |
Collapse
|
19
|
Vascular Graft Implantation Using a Bilateral End-to-Side Aortoiliac Preclinical Model. Methods Mol Biol 2021. [PMID: 34591310 DOI: 10.1007/978-1-0716-1708-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Arterial bypass grafts are a standard preclinical model for evaluating physiology and pathophysiology at graft-material interfaces. Implantations of vascular grafts are commonly done as end-to-end grafts in small animal models. Here we detail bilateral end-to-side aortoiliac graft implantation, which requires open surgery and the creation of vascular anastomoses between the graft material and the infrarenal aorta and iliac artery in a nonhuman primate model. In this model, the aortoiliac graft configuration is created using two 4 mm inner diameter vascular grafts (e.g., ePTFE). After exposure and control of the infrarenal aorta and bilateral common iliac arteries and heparinization, the proximal aortic-graft anastomosis is sewn on the lateral wall of the aorta, and subsequently the distal graft-common iliac anastomosis is sewn on the anterior wall of the common iliac artery with one tube graft. Another tube graft is sewn on the contralateral side in the same manner.
Collapse
|
20
|
Tissue-Engineered Vascular Graft with Co-Culture of Smooth Muscle Cells and Human Endothelial Vein Cells on an Electrospun Poly(lactic-co-glycolic acid) Microtube Array Membrane. MEMBRANES 2021; 11:membranes11100732. [PMID: 34677499 PMCID: PMC8539722 DOI: 10.3390/membranes11100732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/21/2022]
Abstract
Coronary artery disease is one of the major diseases that plagues today’s modern society. Conventional treatments utilize synthetic vascular grafts such as Dacron® and Teflon® in bypass graft surgery. Despite the wide adaptation, these synthetic grafts are often plagued with weaknesses such as low hemocompatibility, thrombosis, intimal hyperplasia, and risks of graft infection. More importantly, these synthetic grafts are not available at diameters of less than 6 mm. In view of these challenges, we strived to develop and adapt the electrospun Poly Lactic-co-Glycolic Acid (PLGA) Microtube Array Membrane (MTAM) vascular graft for applications smaller than 6 mm in diameter. Homogenously porous PLGA MTAMs were successfully electrospun at 5.5–8.5 kV under ambient conditions. Mechanically, the PLGA MTAMs registered a maximum tensile strength of 5.57 ± 0.85 MPa and Young’s modulus value of 1.134 ± 0.01 MPa; while MTT assay revealed that seven-day Smooth Muscle Cells (SMCs) and Human Umbilical Vein Endothelial Cells (HUVECs) registered a 6 times and 2.4 times higher cell viability when cultured in a co-culture setting in medium containing α-1 haptaglobulin. When rolled into a vascular graft, the PLGA MTAMs registered an overall degradation of 82% after 60 days of cell co-culture. After eight weeks of culturing, immunohistochemistry staining revealed the formation of a monolayer of HUVECs with tight junctions on the surface of the PLGA MTAM, and as for the SMCs housed within the lumens of the PLGA MTAMs, a monolayer with high degree of orientation was observed. The PLGA MTAM registered a burst pressure of 1092.2 ± 175.3 mmHg, which was sufficient for applications such as small diameter blood vessels. Potentially, the PLGA MTAM could be used as a suitable substrate for vascular engineering.
Collapse
|
21
|
Tanaka T, Tanaka R, Ogawa Y, Takagi Y, Sata M, Asakura T. Evaluation of small-diameter silk vascular grafts implanted in dogs. JTCVS OPEN 2021; 6:148-156. [PMID: 36003556 PMCID: PMC9390453 DOI: 10.1016/j.xjon.2021.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 11/25/2022]
Abstract
Objectives Methods Results Conclusions
Collapse
|
22
|
Boire TC, Himmel LE, Yu F, Guth CM, Dollinger BR, Werfel TA, Balikov DA, Duvall CL. Effect of pore size and spacing on neovascularization of a biodegradble shape memory polymer perivascular wrap. J Biomed Mater Res A 2021; 109:272-288. [PMID: 32490564 PMCID: PMC8270373 DOI: 10.1002/jbm.a.37021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/11/2020] [Accepted: 04/19/2020] [Indexed: 12/13/2022]
Abstract
Neointimal hyperplasia (NH) is a main source of failures in arteriovenous fistulas and vascular grafts. Several studies have demonstrated the promise of perivascular wraps to reduce NH via promotion of adventitial neovascularization and providing mechanical support. Limited clinical success thus far may be due to inappropriate material selection (e.g., nondegradable, too stiff) and geometric design (e.g., pore size and spacing, diameter). The influence of pore size and spacing on implant neovascularization is investigated here for a new biodegradable, thermoresponsive shape memory polymer (SMP) perivascular wrap. Following an initial pilot, 21 mice were each implanted with six scaffolds: four candidate SMP macroporous designs (a-d), a nonporous SMP control (e), and microporous GORETEX (f). Mice were sacrificed after 4 (N = 5), 14 (N = 8), and 28 (N = 8) days. There was a statistically significant increase in neovascularization score between all macroporous groups compared to nonporous SMP (p < .023) and microporous GORETEX (p < .007) controls at Day 28. Wider-spaced, smaller-sized pore designs (223 μm-spaced, 640 μm-diameter Design c) induced the most robust angiogenic response, with greater microvessel number (p < .0114) and area (p < .0055) than nonporous SMPs and GORETEX at Day 28. This design also produced significantly greater microvessel density than nonporous SMPs (p = 0.0028) and a smaller-spaced, larger-sized pore (155 μm-spaced, 1,180 μm-sized Design b) design (p = .0013). Strong neovascularization is expected to reduce NH, motivating further investigation of this SMP wrap with controlled pore spacing and size in more advanced arteriovenous models.
Collapse
Affiliation(s)
- Timothy C Boire
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Lauren E Himmel
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Fang Yu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Christy M Guth
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Bryan R Dollinger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Thomas A Werfel
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Biomedical Engineering Program, University of Mississippi, Oxford, Mississippi, USA
| | - Daniel A Balikov
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
23
|
Saito J, Kaneko M, Ishikawa Y, Yokoyama U. Challenges and Possibilities of Cell-Based Tissue-Engineered Vascular Grafts. CYBORG AND BIONIC SYSTEMS 2021; 2021:1532103. [PMID: 36285145 PMCID: PMC9494692 DOI: 10.34133/2021/1532103] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/19/2021] [Indexed: 10/06/2023] Open
Abstract
There is urgent demand for biologically compatible vascular grafts for both adult and pediatric patients. The utility of conventional nonbiodegradable materials is limited because of their thrombogenicity and inability to grow, while autologous vascular grafts involve considerable disadvantages, including the invasive procedures required to obtain these healthy vessels from patients and insufficient availability in patients with systemic atherosclerosis. All of these issues could be overcome by tissue-engineered vascular grafts (TEVGs). A large body of evidence has recently emerged in support of TEVG technologies, introducing diverse cell sources (e.g., somatic cells and stem cells) and novel fabrication methods (e.g., scaffold-guided and self-assembled approaches). Before TEVG can be applied in a clinical setting, however, several aspects of the technology must be improved, such as the feasibility of obtaining cells, their biocompatibility and mechanical properties, and the time needed for fabrication, while the safety of supplemented materials, the patency and nonthrombogenicity of TEVGs, their growth potential, and the long-term influence of implanted TEVGs in the body must be assessed. Although recent advances in TEVG fabrication have yielded promising results, more research is needed to achieve the most feasible methods for generating optimal TEVGs. This article reviews multiple aspects of TEVG fabrication, including mechanical requirements, extracellular matrix components, cell sources, and tissue engineering approaches. The potential of periodic hydrostatic pressurization in the production of scaffold-free TEVGs with optimal elasticity and stiffness is also discussed. In the future, the integration of multiple technologies is expected to enable improved TEVG performance.
Collapse
Affiliation(s)
- Junichi Saito
- Department of Physiology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Makoto Kaneko
- Faculty of Science and Technology, Meijo University, Nagoya, Aichi, Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Utako Yokoyama
- Department of Physiology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Kanagawa, Japan
| |
Collapse
|
24
|
Tanaka T, Abe Y, Cheng CJ, Tanaka R, Naito A, Asakura T. Development of Small-Diameter Elastin-Silk Fibroin Vascular Grafts. Front Bioeng Biotechnol 2021; 8:622220. [PMID: 33585421 PMCID: PMC7874157 DOI: 10.3389/fbioe.2020.622220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/15/2020] [Indexed: 11/13/2022] Open
Abstract
Globally, increasing mortality from cardiovascular disease has become a problem in recent years. Vascular replacement has been used as a treatment for these diseases, but with blood vessels <6 mm in diameter, existing vascular grafts made of synthetic polymers can be occluded by thrombus formation or intimal hyperplasia. Therefore, the development of new artificial vascular grafts is desirable. In this study, we developed an elastin (EL)-silk fibroin (SF) double-raschel knitted vascular graft 1.5 mm in diameter. Water-soluble EL was prepared from insoluble EL by hydrolysis with oxalic acid. Compared to SF, EL was less likely to adhere to platelets, while vascular endothelial cells were three times more likely to adhere. SF artificial blood vessels densely packed with porous EL were fabricated, and these prevented the leakage of blood from the graft during implantation, while the migration of cells after implantation was promoted. Several kinds of 13C solid-state NMR spectra were observed with the EL-SF grafts in dry and hydrated states. It was noted that the EL molecules in the graft had very high mobility in the hydrated state. The EL-SF grafts were implanted into the abdominal aorta of rats to evaluate their patency and remodeling ability. No adverse reactions, such as bleeding at the time of implantation or disconnection of the sutured ends, were observed in the implanted grafts, and all were patent at the time of extraction. In addition, vascular endothelial cells were present on the graft's luminal surface 2 weeks after implantation. Therefore, we conclude that EL-SF artificial vascular grafts may be useful where small-diameter grafts are required.
Collapse
Affiliation(s)
- Takashi Tanaka
- Department of Veterinary Surgery, Tokyo University of Agriculture & Technology, Fuchu, Japan
| | - Yasuyuki Abe
- Department of Biotechnology, Tokyo University of Agriculture & Technology, Koganei, Japan
| | - Chieh-Jen Cheng
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Ryo Tanaka
- Department of Veterinary Surgery, Tokyo University of Agriculture & Technology, Fuchu, Japan
| | - Akira Naito
- Department of Biotechnology, Tokyo University of Agriculture & Technology, Koganei, Japan
| | - Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture & Technology, Koganei, Japan
| |
Collapse
|
25
|
Obiweluozor FO, Emechebe GA, Kim DW, Cho HJ, Park CH, Kim CS, Jeong IS. Considerations in the Development of Small-Diameter Vascular Graft as an Alternative for Bypass and Reconstructive Surgeries: A Review. Cardiovasc Eng Technol 2020; 11:495-521. [PMID: 32812139 DOI: 10.1007/s13239-020-00482-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Current design strategies for small diameter vascular grafts (< 6 mm internal diameter; ID) are focused on mimicking native vascular tissue because the commercially available grafts still fail at small diameters, notably due to development of intimal hyperplasia and thrombosis. To overcome these challenges, various design approaches, material selection, and surface modification strategies have been employed to improve the patency of small-diameter grafts. REVIEW The purpose of this review is to outline various considerations in the development of small-diameter vascular grafts, including material choice, surface modifications to enhance biocompatibility/endothelialization, and mechanical properties of the graft, that are currently being implanted. Additionally, we have taken into account the general vascular physiology, tissue engineering approaches, and collective achievements of the authors in this area. We reviewed both commercially available synthetic grafts (e-PTFE and PET), elastic polymers such as polyurethane and biodegradable and bioresorbable materials. We included naturally occurring materials by focusing on their potential application in the development of future vascular alternatives. CONCLUSION Until now, there are few comprehensive reviews regarding considerations in the design of small-diameter vascular grafts in the literature. Here-in, we have discussed in-depth the various strategies employed to generate engineered vascular graft due to their high demand for vascular surgeries. While some TEVG design strategies have shown greater potential in contrast to autologous or synthetic ePTFE conduits, many are still hindered by high production cost which prevents their widespread adoption. Nonetheless, as tissue engineers continue to develop on their strategies and procedures for improved TEVGs, soon, a reliable engineered graft will be available in the market. Hence, we anticipate a viable TEVG with resorbable property, fabricated via electrospinning approach to hold a greater potential that can overcome the challenges observed in both autologous and allogenic grafts. This is because they can be mechanically tuned, incorporated/surface-functionalized with bioactive molecules and mass-manufactured in a reproducible manner. It is also found that most of the success in engineered vascular graft approaching commercialization is for large vessels rather than small-diameter grafts used as cardiovascular bypass grafts. Consequently, the field of vascular engineering is still available for future innovators that can take up the challenge to create a functional arterial substitute.
Collapse
Affiliation(s)
- Francis O Obiweluozor
- Department of Cardiac and Thoracic Surgery, Chonnam National University Hospital and Medical School, 42 Jebong-Ro Dong-gu, Gwangju, 501-757, Republic of Korea.
| | - Gladys A Emechebe
- Department of Bionanosystem Engineering Graduate School, Chonbuk National University, Jeonju City, Republic of Korea
| | - Do-Wan Kim
- Department of Cardiac and Thoracic Surgery, Chonnam National University Hospital and Medical School, 42 Jebong-Ro Dong-gu, Gwangju, 501-757, Republic of Korea
| | - Hwa-Jin Cho
- Department of Cardiac and Thoracic Surgery, Chonnam National University Hospital and Medical School, 42 Jebong-Ro Dong-gu, Gwangju, 501-757, Republic of Korea
| | - Chan Hee Park
- Department of Bionanosystem Engineering Graduate School, Chonbuk National University, Jeonju City, Republic of Korea
- Department of Mechanical Engineering Graduate School, Chonbuk National University, Jeonju City, Republic of Korea
| | - Cheol Sang Kim
- Department of Bionanosystem Engineering Graduate School, Chonbuk National University, Jeonju City, Republic of Korea
- Department of Mechanical Engineering Graduate School, Chonbuk National University, Jeonju City, Republic of Korea
| | - In Seok Jeong
- Department of Cardiac and Thoracic Surgery, Chonnam National University Hospital and Medical School, 42 Jebong-Ro Dong-gu, Gwangju, 501-757, Republic of Korea.
| |
Collapse
|
26
|
Jeong Y, Yao Y, Yim EKF. Current understanding of intimal hyperplasia and effect of compliance in synthetic small diameter vascular grafts. Biomater Sci 2020; 8:4383-4395. [PMID: 32643723 PMCID: PMC7452756 DOI: 10.1039/d0bm00226g] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite much effort, synthetic small diameter vascular grafts still face limited success due to vascular wall thickening known as intimal hyperplasia (IH). Compliance mismatch between graft and native vessels has been proposed to be one of a key mechanical factors of synthetic vascular grafts that could contribute to the formation of IH. While many methods have been developed to determine compliance both in vivo and in vitro, the effects of compliance mismatch still remain uncertain. This review aims to explain the biomechanical factors that are responsible for the formation and development of IH and their relationship with compliance mismatch. Furthermore, this review will address the current methods used to measure compliance both in vitro and in vivo. Lastly, current limitations in understanding the connection between the compliance of vascular grafts and the role it plays in the development and progression of IH will be discussed.
Collapse
Affiliation(s)
- YeJin Jeong
- Department of Chemical engineering, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada.
| | | | | |
Collapse
|
27
|
Lucereau B, Koffhi F, Lejay A, Georg Y, Durand B, Thaveau F, Heim F, Chakfe N. Compliance of Textile Vascular Prostheses Is a Fleeting Reality. Eur J Vasc Endovasc Surg 2020; 60:773-779. [PMID: 32792290 DOI: 10.1016/j.ejvs.2020.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/21/2020] [Accepted: 07/03/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Compliance is considered to be a major property influencing the long term performances of synthetic vascular substitutes that could play a role in anastomotic false aneurysm and intimal hyperplasia stenosis onset. Over the last decades, manufacturers have tried to develop substitutes that mechanically mimic arterial properties and avoid a compliance mismatch at the anastomoses in particular. However, data are missing about how initial compliance properties could change with time. The goal of this study was to evaluate how the compliance of vascular grafts evolves under cyclic loading conditions in vitro. METHODS The compliance of three different models of commercially available textile polyethylene terephthalate (PET) grafts was evaluated. Tests were performed with and without their original coating. Compliance was assessed with a specific device dedicated to measure the deformations undergone by a graft under cyclic pressure loading conditions, using image analysis software. In each experiment, image analysis was performed under 60 and 140 mmHg pressure loading conditions at loading start (H0) and after three, six, and 24 h (H3, H6, H24) loading time. Average radial, longitudinal, and volumetric compliance was calculated from the obtained images. RESULTS Twenty-four samples were tested. Results demonstrate that all values decreased significantly within only a few hours. On average, the loss of compliance after 3 h of cyclic loading ranged on average from 35% for longitudinal compliance to 39% for radial compliance and 37% (p < .050) for volume compliance. After 24 h, the loss of radial, longitudinal and volume compliance was respectively 63 ± 3%, 60.5 ± 2% and 61 ± 7%. CONCLUSION In this in vitro model, PET graft compliance has already decreased significantly within 3 h. The rapid loss of compliance identified in this experimental study helps explain the mismatch mentioned in clinical observations.
Collapse
Affiliation(s)
- Benoit Lucereau
- GEPROVAS, Groupe Européen de Recherche sur les Prothèses appliquées à la Chirurgie Vasculaire, Strasbourg, France; Department of Vascular Surgery and Kidney Transplantation, University Hospital of Strasbourg, Strasbourg, France
| | - Foued Koffhi
- Laboratoire de Physique et Mécanique Textiles (LPMT), Université de Haute-Alsace, Mulhouse, France; Laboratoire de Génie Textile (LGTex), Ksar-Hellal, Tunisia
| | - Anne Lejay
- GEPROVAS, Groupe Européen de Recherche sur les Prothèses appliquées à la Chirurgie Vasculaire, Strasbourg, France; Department of Vascular Surgery and Kidney Transplantation, University Hospital of Strasbourg, Strasbourg, France
| | - Yannick Georg
- GEPROVAS, Groupe Européen de Recherche sur les Prothèses appliquées à la Chirurgie Vasculaire, Strasbourg, France; Department of Vascular Surgery and Kidney Transplantation, University Hospital of Strasbourg, Strasbourg, France
| | - Bernard Durand
- GEPROVAS, Groupe Européen de Recherche sur les Prothèses appliquées à la Chirurgie Vasculaire, Strasbourg, France; Laboratoire de Physique et Mécanique Textiles (LPMT), Université de Haute-Alsace, Mulhouse, France
| | - Fabien Thaveau
- GEPROVAS, Groupe Européen de Recherche sur les Prothèses appliquées à la Chirurgie Vasculaire, Strasbourg, France; Department of Vascular Surgery and Kidney Transplantation, University Hospital of Strasbourg, Strasbourg, France
| | - Frédéric Heim
- GEPROVAS, Groupe Européen de Recherche sur les Prothèses appliquées à la Chirurgie Vasculaire, Strasbourg, France; Laboratoire de Physique et Mécanique Textiles (LPMT), Université de Haute-Alsace, Mulhouse, France
| | - Nabil Chakfe
- GEPROVAS, Groupe Européen de Recherche sur les Prothèses appliquées à la Chirurgie Vasculaire, Strasbourg, France; Department of Vascular Surgery and Kidney Transplantation, University Hospital of Strasbourg, Strasbourg, France.
| |
Collapse
|
28
|
Tan J, Bai J, Yan Z. An Aligned Patterned Biomimetic Elastic Membrane Has a Potential as Vascular Tissue Engineering Material. Front Bioeng Biotechnol 2020; 8:704. [PMID: 32695769 PMCID: PMC7338373 DOI: 10.3389/fbioe.2020.00704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/04/2020] [Indexed: 11/24/2022] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide, with an annual mortality incidence predicted to rise to 23.3 million worldwide by 2030. Synthetic vascular grafts as an alternative to autologous vessels have shown satisfactory long-term results for replacement of large- and medium-diameter arteries, but have poor patency rates when applied to small-diameter vessels. Nanoparticles with low toxicity, contrasting agent properties, tailorable characteristics, targeted/stimuli- response delivery potential, and precise control over behavior (via external stimuli such as magnetic fields) have made possible their use for improving engineered tissues. Poly (styrene-block-butadiene-block-styrene) (SBS) is a kind of widely used thermoplastic elastomer with good mechanical properties and biocompatibility. Here, we synthesized anthracene-grafted SBS (SBS-An) by the method for the fabrication of a biomimetic elastic membrane with a switchable Janus structure, and formed the patterns on the surface of SBS-An under ultraviolet (UV) light irradiation. By irradiating the SBS-An film at different times (0, 10, 20, 30, 60, and 120 s), we obtained six well-ordered surface-patterned biomimetic elastic film with SBS-An at different heights in the thickness direction and the same distances of intervals (named sample-0, 10, 20, 30, 60, and 120 s). The structural effects of the SBS-An films on the adhesion and proliferation of human umbilical vein endothelial cells (HUVECs) were studied, and the possible mechanism was explored. When the HUVECs were cultured on the SBS-An films at different heights in the thickness direction, the sample-30 s with approximately 4 μm height significantly promoted adhesion of the HUVECs at the early stage and proliferation during the culture period compared with the samples of the lower (0, 10, and 20 s) and higher (60 and 120 s) heights. Consistent with this, the sample 30 s showed a higher stimulatory effect on the proliferation- and angiogenesis-related genes. These results suggest that SBS-An with appropriate height could efficiently control bioactivities of the biomimetic elastic membrane and might have great potential in vascular tissue engineering application.
Collapse
Affiliation(s)
- Juanjuan Tan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composite Materials and Shanghai Key Lab of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, China
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital South Campus, Shanghai, China
| | - Jing Bai
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composite Materials and Shanghai Key Lab of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiqiang Yan
- Central Laboratory, Southern Medical University affiliated Fengxian Hospital, Shanghai, China
| |
Collapse
|
29
|
Fang S, Riber SS, Hussein K, Ahlmann AH, Harvald EB, Khan F, Beck HC, Weile LKK, Sørensen JA, Sheikh SP, Riber LP, Andersen DC. Decellularized human umbilical artery: Biocompatibility and in vivo functionality in sheep carotid bypass model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110955. [PMID: 32409090 DOI: 10.1016/j.msec.2020.110955] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 12/13/2019] [Accepted: 04/08/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Shu Fang
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløws Vej 25, 5000 Odense C, Denmark; The Danish Regenerative Center (danishcrm.com), Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense C, Denmark; Institute of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 19, 5000 Odense C, Denmark
| | - Sara Schødt Riber
- Institute of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 19, 5000 Odense C, Denmark; Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense C, Denmark
| | - Kamal Hussein
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløws Vej 25, 5000 Odense C, Denmark; The Danish Regenerative Center (danishcrm.com), Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense C, Denmark; Department of Animal Surgery, Faculty of Veterinary Medicine, Assiut University, 71526 Assiut, Egypt
| | - Alexander Høgsted Ahlmann
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløws Vej 25, 5000 Odense C, Denmark; Institute of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 19, 5000 Odense C, Denmark
| | - Eva Bang Harvald
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløws Vej 25, 5000 Odense C, Denmark; The Danish Regenerative Center (danishcrm.com), Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense C, Denmark; Institute of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 19, 5000 Odense C, Denmark
| | - Fazal Khan
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløws Vej 25, 5000 Odense C, Denmark; The Danish Regenerative Center (danishcrm.com), Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense C, Denmark; Institute of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 19, 5000 Odense C, Denmark
| | - Hans Christian Beck
- Institute of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 19, 5000 Odense C, Denmark; Centre for Clinical Proteomics, Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense C, Denmark
| | - Louise Katrine Kjær Weile
- Institute of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 19, 5000 Odense C, Denmark; Department of Gynaecology and Obstetrics, Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense C, Denmark
| | - Jens Ahm Sørensen
- Institute of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 19, 5000 Odense C, Denmark; Department of Plastic Surgery, Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense C, Denmark
| | - Søren Paludan Sheikh
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløws Vej 25, 5000 Odense C, Denmark; The Danish Regenerative Center (danishcrm.com), Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense C, Denmark; Institute of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 19, 5000 Odense C, Denmark
| | - Lars Peter Riber
- Institute of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 19, 5000 Odense C, Denmark; Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense C, Denmark
| | - Ditte Caroline Andersen
- Laboratory of Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, J. B. Winsløws Vej 25, 5000 Odense C, Denmark; The Danish Regenerative Center (danishcrm.com), Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense C, Denmark; Institute of Clinical Research, University of Southern Denmark, J. B. Winsløws Vej 19, 5000 Odense C, Denmark.
| |
Collapse
|
30
|
Martinelli O, Malaj A, Faccenna F, Ruberto F, Alunno A, Totaro M, Irace L. Open Conversion for Recurrent Endograft Occlusion after Endovascular Treatment of Blunt Traumatic Aortic Injury: A Peculiar Case Report. Ann Vasc Surg 2020; 67:568.e1-568.e8. [PMID: 32234576 DOI: 10.1016/j.avsg.2020.03.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 03/14/2020] [Accepted: 03/15/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND We report a rare case of delayed, symptomatic thoracic endograft thrombosis after the initial thoracic endovascular aortic repair (TEVAR) for blunt thoracic aortic injury which was successfully retreated with a redo TEVAR, followed by open conversion due to recurrent partial occlusion of the distal edge of the endografts. METHODS Two years ago, a 22-year-old man had undergone an emergency TEVAR for blunt thoracic aortic injury. A Zenith Cook 22 × 100 mm (Cook Incorporated, Bloomington, IN) endograft was used. Six months later, he underwent an emergency endovascular relining of the endograft using the same type of device. The multiorgan perfusion was completely restored except for the spinal cord injury. After 8 months, a recurrent partial occlusion of the distal edge of the second graft was documented. The thoracic aorta was replaced with a 22-mm silver-coated graft (Maquet Spain, SLU). RESULTS Histology examination showed a neointimal formation and thickening and fibrosis of the inner 1/3 of the media with loss of smooth muscle cells and increase of the elastic fibers. CONCLUSIONS The need for secondary interventions or open conversion because of potential complications after TEVAR for traumatic aortic injury is an additional consideration when weighing the risks and benefits of endovascular repair and subsequent surveillance strategies.
Collapse
Affiliation(s)
| | - Alban Malaj
- American Hospital, Laprake, Tirana, Albania.
| | - Federico Faccenna
- Department of Vascular Surgery, "Sapienza" University of Rome, Rome, Italy
| | - Franco Ruberto
- Department of Anaesthesiology, Critical Care Medicine and Pain Therapy, "Sapienza" University of Rome, Rome, Italy
| | - Alessia Alunno
- Department of Vascular Surgery, "Sapienza" University of Rome, Rome, Italy
| | - Marco Totaro
- Department of the Heart and Great Vessels, "Sapienza" University of Rome, Rome, Italy
| | - Luigi Irace
- Department of Vascular Surgery, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
31
|
Akbari S, Mohebbi-Kalhori D, Samimi A. Effect of corrugated structure on the collapsing of the small-diameter vascular scaffolds. J Biomater Appl 2020; 34:1355-1367. [DOI: 10.1177/0885328220910021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Saeed Akbari
- Department of Chemical Engineering, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Islamic Republic of Iran
| | - Davod Mohebbi-Kalhori
- Department of Chemical Engineering, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Islamic Republic of Iran
| | - Abdolreza Samimi
- Department of Chemical Engineering, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Islamic Republic of Iran
| |
Collapse
|
32
|
Ramezanpour M, Rikhtegar Nezami F, Ramezanpour N, Kabinejadian F, Maerefat M, Holzapfel GA, Bull JL. Role of Vessel Microstructure in the Longevity of End-to-Side Grafts. J Biomech Eng 2020; 142:021008. [PMID: 31141598 DOI: 10.1115/1.4043873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Indexed: 11/08/2022]
Abstract
Compliance mismatch between the graft and the host artery of an end-to-side (ETS) arterial bypass graft anastomosis increases the intramural stress in the ETS graft-artery junction, and thus may compromise its long-term patency. The present study takes into account the effects of collagen fibers to demonstrate how their orientations alter the stresses. The stresses in an ETS bypass graft anastomosis, as a man-made bifurcation, are compared to those of its natural counterpart with different fiber orientations. Both of the ETS bypass graft anastomosis and its natural counterpart have identical geometric and material models and only their collagen fiber orientations are different. The results indicate that the fiber orientation mismatch between the graft and the host artery may increase the stresses at both the heel and toe regions of the ETS anastomosis (the maximum principal stress at the heel and toe regions increased by 72% and 12%, respectively). Our observations, thus, propose that the mismatch between the collagen fiber orientations of the graft and the host artery, independent of the effect of the suture line, may induce aberrant stresses to the anastomosis of the bypass graft.
Collapse
Affiliation(s)
- Mehdi Ramezanpour
- Department of Mechanical Engineering, Tarbiat Modares University, Tehran 14155-4838, Iran
| | - Farhad Rikhtegar Nezami
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Nahid Ramezanpour
- Medical Biotechnology Research Center, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht 41446-66949, Iran
| | - Foad Kabinejadian
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118
| | - Mehdi Maerefat
- Department of Mechanical Engineering, Tarbiat Modares University, Tehran 14155-4838, Iran
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz 8010, Austria; Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Joseph L Bull
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118
| |
Collapse
|
33
|
Lopera Higuita M, Griffiths LG. Small Diameter Xenogeneic Extracellular Matrix Scaffolds for Vascular Applications. TISSUE ENGINEERING PART B-REVIEWS 2019; 26:26-45. [PMID: 31663438 DOI: 10.1089/ten.teb.2019.0229] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Currently, despite the success of percutaneous coronary intervention (PCI), coronary artery bypass graft (CABG) remains among the most commonly performed cardiac surgical procedures in the United States. Unfortunately, the use of autologous grafts in CABG presents a major clinical challenge as complications due to autologous vessel harvest and limited vessel availability pose a significant setback in the success rate of CABG surgeries. Acellular extracellular matrix (ECM) scaffolds derived from xenogeneic vascular tissues have the potential to overcome these challenges, as they offer unlimited availability and sufficient length to serve as "off-the-shelf" CABGs. Unfortunately, regardless of numerous efforts to produce a fully functional small diameter xenogeneic ECM scaffold, the combination of factors required to overcome all failure mechanisms in a single graft remains elusive. This article covers the major failure mechanisms of current xenogeneic small diameter vessel ECM scaffolds, and reviews the recent advances in the field to overcome these failure mechanisms and ultimately develop a small diameter ECM xenogeneic scaffold for CABG. Impact Statement Currently, the use of autologous vessel in coronary artery bypass graft (CABG) is common practice. However, the use of autologous tissue poses significant complications due to tissue harvest and limited availability. Developing an alternative vessel for use in CABG can potentially increase the success rate of CABG surgery by eliminating complications related to the use of autologous vessel. However, this development has been hindered by an array of failure mechanisms that currently have not been overcome. This article describes the currently identified failure mechanisms of small diameter vascular xenogeneic extracellular matrix scaffolds and reviews current research targeted to overcoming these failure mechanisms toward ensuring long-term graft patency.
Collapse
Affiliation(s)
| | - Leigh G Griffiths
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
34
|
Fernández-Colino A, Wolf F, Rütten S, Schmitz-Rode T, Rodríguez-Cabello JC, Jockenhoevel S, Mela P. Small Caliber Compliant Vascular Grafts Based on Elastin-Like Recombinamers for in situ Tissue Engineering. Front Bioeng Biotechnol 2019; 7:340. [PMID: 31803735 PMCID: PMC6877483 DOI: 10.3389/fbioe.2019.00340] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 10/30/2019] [Indexed: 01/04/2023] Open
Abstract
Vascular disease is a leading cause of death worldwide, but surgical options are restricted by the limited availability of autologous vessels, and the suboptimal performance of prosthetic vascular grafts. This is especially evident for coronary artery by-pass grafts, whose small caliber is associated with a high occlusion propensity. Despite the potential of tissue-engineered grafts, compliance mismatch, dilatation, thrombus formation, and the lack of functional elastin are still major limitations leading to graft failure. This calls for advanced materials and fabrication schemes to achieve improved control on the grafts' properties and performance. Here, bioinspired materials and technical textile components are combined to create biohybrid cell-free implants for endogenous tissue regeneration. Clickable elastin-like recombinamers are processed to form an open macroporous 3D architecture to favor cell ingrowth, while being endowed with the non-thrombogenicity and the elastic behavior of the native elastin. The textile components (i.e., warp-knitted and electrospun meshes) are designed to confer suture retention, long-term structural stability, burst strength, and compliance. Notably, by controlling the electrospun layer's thickness, the compliance can be modulated over a wide range of values encompassing those of native vessels. The grafts support cell ingrowth, extracellular matrix deposition and endothelium development in vitro. Overall, the fabrication strategy results in promising off-the-shelf hemocompatible vascular implants for in situ tissue engineering by addressing the known limitations of bioartificial vessel substitutes.
Collapse
Affiliation(s)
- Alicia Fernández-Colino
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Frederic Wolf
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Stephan Rütten
- Electron Microscopy Facility, Uniklinik RWTH Aachen, Aachen, Germany
| | - Thomas Schmitz-Rode
- AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | | | - Stefan Jockenhoevel
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany.,AMIBM-Aachen-Maastricht-Institute for Biobased Materials, Maastricht University, Geleen, Netherlands
| | - Petra Mela
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany.,Medical Materials and Implants, Department of Mechanical Engineering and Munich School of BioEngineering, Technical University of Munich, Garching, Germany
| |
Collapse
|
35
|
Mathieu PS, Fitzpatrick E, Di Luca M, Cahill PA, Lally C. Resident multipotent vascular stem cells exhibit amplitude dependent strain avoidance similar to that of vascular smooth muscle cells. Biochem Biophys Res Commun 2019; 521:762-768. [PMID: 31706573 DOI: 10.1016/j.bbrc.2019.10.185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 10/28/2019] [Indexed: 01/10/2023]
Abstract
Atherosclerosis is one of the leading causes of mortality worldwide, and presents as a narrowing or occlusion of the arterial lumen. Interventions to re-open the arterial lumen can result in re-occlusion through intimal hyperplasia. Historically only de-differentiated vascular smooth muscle cells were thought to contribute to intimal hyperplasia. However recent significant evidence suggests that resident medial multipotent vascular stem cells (MVSC) may also play a role. We therefore investigated the strain response of MVSC since these resident cells are also subjected to strain within their native environment. Accordingly, we applied uniaxial 1 Hz cyclic uniaxial tensile strain at three amplitudes around a mean strain of 5%, (4-6%, 2-8% and 0-10%) to either rat MVSC or rat VSMC before their strain response was evaluated. While both cell types strain avoid, the strain avoidant response was greater for MVSC after 24 h, while VSMC strain avoid to a greater degree after 72 h. Additionally, both cell types increase strain avoidance as strain amplitude is increased. Moreover, MVSC and VSMC both demonstrate a strain-induced decrease in cell number, an effect more pronounced for MVSC. These experiments demonstrate for the first time the mechano-sensitivity of MVSC that may influence intimal thickening, and emphasizes the importance of strain amplitude in controlling the response of vascular cells in tissue engineering applications.
Collapse
Affiliation(s)
- Pattie S Mathieu
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical & Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Emma Fitzpatrick
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical & Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Mariana Di Luca
- School of Biotechnology, Vascular Biology & Therapeutics Group, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Paul A Cahill
- School of Biotechnology, Vascular Biology & Therapeutics Group, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Caitríona Lally
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical & Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
36
|
Yuan H, Chen C, Liu Y, Lu T, Wu Z. Strategies in cell‐free tissue‐engineered vascular grafts. J Biomed Mater Res A 2019; 108:426-445. [PMID: 31657523 DOI: 10.1002/jbm.a.36825] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Haoyong Yuan
- Department of Cardiovascular surgery The Second Xiangya Hospital of Central South University Changsha Hunan China
| | - Chunyang Chen
- Department of Cardiovascular surgery The Second Xiangya Hospital of Central South University Changsha Hunan China
| | - Yuhong Liu
- Department of Cardiovascular surgery The Second Xiangya Hospital of Central South University Changsha Hunan China
| | - Ting Lu
- Department of Cardiovascular surgery The Second Xiangya Hospital of Central South University Changsha Hunan China
| | - Zhongshi Wu
- Department of Cardiovascular surgery The Second Xiangya Hospital of Central South University Changsha Hunan China
| |
Collapse
|
37
|
Tanaka T, Tanaka R, Ogawa Y, Takagi Y, Asakura T. Development of Small-diameter Polyester Vascular Grafts Coated with Silk Fibroin Sponge. Organogenesis 2019; 16:1-13. [PMID: 31679437 DOI: 10.1080/15476278.2019.1686295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
In recent years, the demand for functional small-diameter (< 6 mm) artificial vascular grafts has greatly increased due to an increase in the number of patients with vascular heart disease. However, currently, there are no available commercial small-diameter grafts. The objective of this research was to develop a porous silk fibroin (SF)-coated poly(ethylene terephthalate) (PET) graft with a diameter < 6 mm. The graft was compared with a gelatin-coated PET graft because the latter PET graft with a diameter ~ 6 mm was widely used as a commercial vascular graft. Initially, porous SF was prepared using Glyc as the porogen [termed SF(Glyc)] and the PET grafts were prepared through the double-Raschel knitting method. Subsequently, the degradation of the SF coating was monitored using protease XIV in vitro and was compared with that observed in gelatin-coated PET grafts. Finally, these grafts were also implanted into rats for an in vivo comparison. In degradation experiments, after 7 days, the SF was clearly digested by protease XIV, but the gelatin on the graft was still remained at the outer surface. In implantation experiments in rats, the SF(Glyc)-coated PET graft was rapidly degraded in vivo and remodeling to self-tissues was promoted compared with the gelatin-coated PET graft. Thrombus formation and intimal hyperplasia were observed in the gelatin-coated PET graft; however, such side reactions were not observed in the SF(Glyc)-coated PET graft. Thus, the porous SF(Glyc)-coated PET graft with a small diameter < 6 mm may be useful as a commercial vascular graft.
Collapse
Affiliation(s)
- Takashi Tanaka
- Department of Veterinary Surgery, Tokyo University of Agriculture & Technology, Fuchu, Tokyo, Japan
| | - Ryo Tanaka
- Department of Veterinary Surgery, Tokyo University of Agriculture & Technology, Fuchu, Tokyo, Japan
| | - Yoko Ogawa
- Fukui Wrap Knitting Co., Ltd, Fukui, Japan
| | | | - Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture & Technology, Koganei, Tokyo, Japan
| |
Collapse
|
38
|
Geelhoed WJ, van der Bogt KEA, Rothuizen TC, Damanik FFR, Hamming JF, Mota CD, van Agen MS, de Boer HC, Restrepo MT, Hinz B, Kislaya A, Poelma C, van Zonneveld AJ, Rabelink TJ, Moroni L, Rotmans JI. A novel method for engineering autologous non-thrombogenic in situ tissue-engineered blood vessels for arteriovenous grafting. Biomaterials 2019; 229:119577. [PMID: 31704466 DOI: 10.1016/j.biomaterials.2019.119577] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 10/14/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022]
Abstract
The durability of prosthetic arteriovenous (AV) grafts for hemodialysis access is low, predominantly due to stenotic lesions in the venous outflow tract and infectious complications. Tissue engineered blood vessels (TEBVs) might offer a tailor-made autologous alternative for prosthetic grafts. We have designed a method in which TEBVs are grown in vivo, by utilizing the foreign body response to subcutaneously implanted polymeric rods in goats, resulting in the formation of an autologous fibrocellular tissue capsule (TC). One month after implantation, the polymeric rod is extracted, whereupon TCs (length 6 cm, diameter 6.8 mm) were grafted as arteriovenous conduit between the carotid artery and jugular vein of the same goats. At time of grafting, the TCs were shown to have sufficient mechanical strength in terms of bursting pressure (2382 ± 129 mmHg), and suture retention strength (SRS: 1.97 ± 0.49 N). The AV grafts were harvested at 1 or 2 months after grafting. In an ex vivo whole blood perfusion system, the lumen of the vascular grafts was shown to be less thrombogenic compared to the initial TCs and ePTFE grafts. At 8 weeks after grafting, the entire graft was covered with an endothelial layer and abundant elastin expression was present throughout the graft. Patency at 1 and 2 months was comparable with ePTFE AV-grafts. In conclusion, we demonstrate the remodeling capacity of cellularized in vivo engineered TEBVs, and their potential as autologous alternative for prosthetic vascular grafts.
Collapse
Affiliation(s)
- W J Geelhoed
- Department of Internal Medicine, Leiden University Medical Center, the Netherlands; Einthoven Laboratory of Vascular and Regenerative Medicine, the Netherlands
| | - K E A van der Bogt
- Department of Surgery, Leiden University Medical Center, the Netherlands
| | - T C Rothuizen
- Department of Internal Medicine, Leiden University Medical Center, the Netherlands
| | - F F R Damanik
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - J F Hamming
- Department of Surgery, Leiden University Medical Center, the Netherlands
| | - C D Mota
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - M S van Agen
- Department of Internal Medicine, Leiden University Medical Center, the Netherlands; Einthoven Laboratory of Vascular and Regenerative Medicine, the Netherlands
| | - H C de Boer
- Department of Internal Medicine, Leiden University Medical Center, the Netherlands; Einthoven Laboratory of Vascular and Regenerative Medicine, the Netherlands
| | - M Tobón Restrepo
- Division of Diagnostic Imaging, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - B Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Canada
| | - A Kislaya
- Laboratory for Aero and Hydrodynamics, Delft University of Technology, Delft, the Netherlands
| | - C Poelma
- Laboratory for Aero and Hydrodynamics, Delft University of Technology, Delft, the Netherlands
| | - A J van Zonneveld
- Department of Internal Medicine, Leiden University Medical Center, the Netherlands; Einthoven Laboratory of Vascular and Regenerative Medicine, the Netherlands
| | - T J Rabelink
- Department of Internal Medicine, Leiden University Medical Center, the Netherlands
| | - L Moroni
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - J I Rotmans
- Department of Internal Medicine, Leiden University Medical Center, the Netherlands.
| |
Collapse
|
39
|
Donadoni F, Bonfanti M, Pichardo-Almarza C, Homer-Vanniasinkam S, Dardik A, Díaz-Zuccarini V. An in silico study of the influence of vessel wall deformation on neointimal hyperplasia progression in peripheral bypass grafts. Med Eng Phys 2019; 74:137-145. [PMID: 31540730 DOI: 10.1016/j.medengphy.2019.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/08/2019] [Accepted: 09/08/2019] [Indexed: 10/26/2022]
Abstract
Neointimal hyperplasia (NIH) is a major obstacle to graft patency in the peripheral arteries. A complex interaction of biomechanical factors contribute to NIH development and progression, and although haemodynamic markers such as wall shear stress have been linked to the disease, these have so far been insufficient to fully capture its behaviour. Using a computational model linking computational fluid dynamics (CFD) simulations of blood flow with a biochemical model representing NIH growth mechanisms, we analyse the effect of compliance mismatch, due to the presence of surgical stitches and/or to the change in distensibility between artery and vein graft, on the haemodynamics in the lumen and, subsequently, on NIH progression. The model enabled to simulate NIH at proximal and distal anastomoses of three patient-specific end-to-side saphenous vein grafts under two compliance-mismatch configurations, and a rigid wall case for comparison, obtaining values of stenosis similar to those observed in the computed tomography (CT) scans. The maximum difference in time-averaged wall shear stress between the rigid and compliant models was 3.4 Pa, and differences in estimation of NIH progression were only observed in one patient. The impact of compliance on the haemodynamic-driven development of NIH was small in the patient-specific cases considered.
Collapse
Affiliation(s)
- Francesca Donadoni
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Mirko Bonfanti
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK; Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), Department of Medical Physics and Biomedical Engineering, University College London, W1W 7TS, UK
| | - Cesar Pichardo-Almarza
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Shervanthi Homer-Vanniasinkam
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK; Leeds Teaching Hospitals NHS Trust, LS1 3EX, UK; Division of Surgery, University of Warwick, Warwick, UK
| | - Alan Dardik
- The Department of Surgery, Yale University School of Medicine, New Haven, CT, USA; Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Vanessa Díaz-Zuccarini
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK; Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), Department of Medical Physics and Biomedical Engineering, University College London, W1W 7TS, UK.
| |
Collapse
|
40
|
Keshavarzian M, Meyer CA, Hayenga HN. In Silico Tissue Engineering: A Coupled Agent-Based Finite Element Approach. Tissue Eng Part C Methods 2019; 25:641-654. [PMID: 31392930 DOI: 10.1089/ten.tec.2019.0103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Over the past two decades, the increase in prevalence of cardiovascular diseases and the limited availability of autologous blood vessels and saphenous vein grafts have motivated the development of tissue-engineered vascular grafts (TEVGs). However, compliance mismatch and poor mechanical properties of the TEVGs remain as two major issues that need to be addressed. Researchers have investigated the role of various culture conditions and mechanical conditioning in deposition and orientation of collagen fibers, which are the key structural components in the vascular wall; however, the intrinsic complexity of mechanobiological interactions demands implementing new engineering approaches that allow researchers to investigate various scenarios more efficiently. In this study, we utilized a coupled agent-based finite element analysis (AB-FEA) modeling approach to study the effect of various loading modes (uniaxial, biaxial, and equibiaxial), boundary conditions, stretch magnitudes, and growth factor concentrations on growth and remodeling of smooth muscle cell-populated TEVGs, with specific focus on collagen deposition and orientation. Our simulations (12 weeks of culture) showed that biaxial cyclic loading (and not uniaxial or equibiaxial) leads to alignment of collagen fibers in the physiological directions. Moreover, axial boundary conditions of the TEVG act as determinants of fiber orientations. Decreasing the serum concentration, from 10% to 5% or 1%, significantly decreased the growth and remodeling speed, but only affected the fiber orientation in the 1% serum case. In conclusion, in silico tissue engineering has the potential to evolve the future of tissue engineering, as it will allow researchers to conceptualize various interactions and investigate numerous scenarios with great speed. In this study, we were able to predict the orientation of collagen fibers in TEVGs using a coupled AB-FEA model in less than 8 h. Impact Statement Tissue-engineered vascular grafts (TEVGs) hold potential to replace the current gold standard of vascular grafting, saphenous vein grafts. However, developing TEVGs that mimic the mechanical performance of the native tissue remains a challenging task. We developed a computational model of the grafts' remodeling processes and studied the effects of various loading mechanisms and culture conditions on collagen fiber orientation, which is a key factor in mechanical performance of the grafts. We were able to predict the fiber orientations accurately and show that biaxial loading and axial boundary conditions are important factors in collagen fiber organization.
Collapse
Affiliation(s)
| | - Clark A Meyer
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas
| | - Heather N Hayenga
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas
| |
Collapse
|
41
|
Gooch KJ, Firstenberg MS, Shrefler BS, Scandling BW. Biomechanics and Mechanobiology of Saphenous Vein Grafts. J Biomech Eng 2019; 140:2666246. [PMID: 29222565 DOI: 10.1115/1.4038705] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Indexed: 11/08/2022]
Abstract
Within several weeks of use as coronary artery bypass grafts (CABG), saphenous veins (SV) exhibit significant intimal hyperplasia (IH). IH predisposes vessels to thrombosis and atherosclerosis, the two major modes of vein graft failure. The fact that SV do not develop significant IH in their native venous environment coupled with the rapidity with which they develop IH following grafting into the arterial circulation suggests that factors associated with the isolation and preparation of SV and/or differences between the venous and arterial environments contribute to disease progression. There is strong evidence suggesting that mechanical trauma associated with traditional techniques of SV preparation can significantly damage the vessel and might potentially reduce graft patency though modern surgical techniques reduces these injuries. In contrast, it seems possible that modern surgical technique, specifically endoscopic vein harvest, might introduce other mechanical trauma that could subtly injure the vein and perhaps contribute to the reduced patency observed in veins harvested using endoscopic techniques. Aspects of the arterial mechanical environment influence remodeling of SV grafted into the arterial circulation. Increased pressure likely leads to thickening of the medial wall but its role in IH is less clear. Changes in fluid flow, including increased average wall shear stress, may reduce IH while disturbed flow likely increase IH. Nonmechanical stimuli, such as exposure to arterial levels of oxygen, may also have a significant but not widely recognized role in IH. Several potentially promising approaches to alter the mechanical environment to improve graft patency are including extravascular supports or altered graft geometries are covered.
Collapse
Affiliation(s)
- Keith J Gooch
- Department of Biomedical Engineering, The Ohio State University, 290 Bevis Hall 1080 Carmack Drive, Columbus, OH 43210.,Davis Heart Lung Research Institute, The Ohio State University, Columbus, OH 43210 e-mail:
| | - Michael S Firstenberg
- Surgery and Integrative Medicine, Northeast Ohio Medical Universities, Akron, OH 44309
| | - Brittany S Shrefler
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210
| | - Benjamin W Scandling
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
42
|
RAMEZANPOUR MEHDI, MAEREFAT MEHDI, RAMEZANPOUR NAHID, MOKHTARI-DIZAJI MANIJHE, ROSHANALI FARIDEH, NEZAMI FARHADRIKHTEGAR. NUMERICAL INVESTIGATION OF THE EFFECTS OF BED SHAPE ON THE END-TO-SIDE CABG HEMODYNAMICS. J MECH MED BIOL 2019. [DOI: 10.1142/s0219519419500192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Disrupted flow initiates and aggravates intimal thickening in the end-to-side (ETS) coronary artery bypass grafting (CABG), which may lead to failure. To enhance the post-intervention hemodynamics, the geometry is either optimized or totally reconfigured. Majority of configurations proposed by researchers have not suited CABG surgery, for they entailed rigorous manipulation on conventional grafts in situ, which was neither swift nor straightforward. The aim of the present study is, thus, to introduce a slight, yet effective, modification to a conventional ETS CABG configuration, and numerically investigate its effects on updated hemodynamic and structural environment, anticipating the longevity of proposed configuration and CABG success. This fairly simple modification may easily be made positioning a pre-designed anastomotic device between the bed of host artery in the conventional ETS CABG and its surrounding tissues. Conducting comprehensive numerical simulations, performance of the proposed configuration was assessed using idealized and patient-specific geometries of the conventional ETS CABG. Blood flow was simulated in a conventional and an updated CABG configuration considering 2-way fluid–structure interaction. Results revealed that, although the proposed configuration may induce higher structural stresses in vessels walls, it may improve important hemodynamic metrics such as wall shear stress gradient, oscillatory shear index, and relative residence time on host artery bed reducing disruption of flow. This study may also set the stage for design engineers and regulatory officials to evolve ETS CABG toward more hemodynamics-friendly approaches. Further in vitro, preclinical, and clinical experiments are, yet, entailed to accomplish ideal designs of procedural guidelines/grafts.
Collapse
Affiliation(s)
- MEHDI RAMEZANPOUR
- Department of Mechanical Engineering, Tarbiat Modares University, Tehran, P. O. Box 14115-143, Iran
| | - MEHDI MAEREFAT
- Department of Mechanical Engineering, Tarbiat Modares University, Tehran, P. O. Box 14115-143, Iran
| | - NAHID RAMEZANPOUR
- Medical Biotechnology Research Center, Faculty of Paramedicine, Guilan, University of Medical Sciences, Rasht, P. O. Box 41887-94755, Iran
| | | | - FARIDEH ROSHANALI
- Department of Cardiac Surgery, Day General Hospital, Valiasr Street, Tehran, Iran
| | - FARHAD RIKHTEGAR NEZAMI
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, Massachusetts, US
| |
Collapse
|
43
|
Pepper V, Best CA, Buckley K, Schwartz C, Onwuka E, King N, White A, Dharmadhikari S, Reynolds SD, Johnson J, Grischkan J, Breuer CK, Chiang T. Factors Influencing Poor Outcomes in Synthetic Tissue-Engineered Tracheal Replacement. Otolaryngol Head Neck Surg 2019; 161:458-467. [PMID: 31035858 DOI: 10.1177/0194599819844754] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Humans receiving tissue-engineered tracheal grafts have experienced poor outcomes ultimately resulting in death or the need for graft explantation. We assessed the performance of the synthetic scaffolds used in humans with an ovine model of orthotopic tracheal replacement, applying standard postsurgical surveillance and interventions to define the factors that contributed to the complications seen at the bedside. STUDY DESIGN Large animal model. SETTING Pediatric academic research institute. SUBJECTS AND METHODS Human scaffolds were manufactured with an electrospun blend of polyethylene terephthalate and polyurethane reinforced with polycarbonate rings. They were seeded with autologous bone marrow-derived mononuclear cells and implanted in sheep. Animals were evaluated with routine bronchoscopy and fluoroscopy. Endoscopic dilation and stenting were performed to manage graft stenosis for up to a 4-month time point. Grafts and adjacent native airway were sectioned and evaluated with histology and immunohistochemistry. RESULTS All animals had signs of graft stenosis. Three of 5 animals (60%) designated for long-term surveillance survived until the 4-month time point. Graft dilation and stent placement resolved respiratory symptoms and prolonged survival. Necropsy demonstrated evidence of infection and graft encapsulation. Granulation tissue with signs of neovascularization was seen at the anastomoses, but epithelialization was never observed. Acute and chronic inflammation of the native airway epithelium was observed at all time points. Architectural changes of the scaffold included posterior wall infolding and scaffold delamination. CONCLUSIONS In our ovine model, clinically applied synthetic tissue-engineered tracheas demonstrated infectious, inflammatory, and mechanical failures with a lack of epithelialization and neovascularization.
Collapse
Affiliation(s)
- Victoria Pepper
- 1 Division of Pediatric Surgery, Loma Linda Children's Hospital, Loma Linda, California, USA
| | - Cameron A Best
- 2 Center for Regenerative Medicine, Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,3 Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Kaila Buckley
- 4 Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Cynthia Schwartz
- 5 Department of Otolaryngology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Ekene Onwuka
- 6 Department of General Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Nakesha King
- 6 Department of General Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Audrey White
- 7 College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Sayali Dharmadhikari
- 2 Center for Regenerative Medicine, Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,8 Department of Otolaryngology-Head and Neck Surgery, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Susan D Reynolds
- 9 Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Jed Johnson
- 10 Nanofiber Solutions Inc, Hilliard, Ohio, USA
| | - Jonathan Grischkan
- 8 Department of Otolaryngology-Head and Neck Surgery, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Christopher K Breuer
- 2 Center for Regenerative Medicine, Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,11 Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Tendy Chiang
- 2 Center for Regenerative Medicine, Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,8 Department of Otolaryngology-Head and Neck Surgery, Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
44
|
Anderson DEJ, Pohan G, Raman J, Konecny F, Yim EKF, Hinds MT. Improving Surgical Methods for Studying Vascular Grafts in Animal Models. Tissue Eng Part C Methods 2019; 24:457-464. [PMID: 29984616 DOI: 10.1089/ten.tec.2018.0099] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
While clinical vascular grafting uses an end-to-side surgical method, researchers primarily use end-to-end implant techniques in preclinical models. This may be due in part to the limitations of using small animal models in research. The work presented here provides support and evidence for the improvement of vascular graft implant techniques by demonstrating the successful implantation of experimental grafts into both large and small animal models. Specifically, models of aortoiliac baboon (Papio anubis) bypass and common carotid rabbit (Oryctolagus cuniculus) bypass were used to test vascular grafts for thrombosis and vascular healing after 1 month using an end-to-side anastomosis grafting procedure. Patency was evaluated with ultrasound or histological techniques, and neointimal growth was quantified with histology. In the development of this procedure for small animals, both an end-to-end/end-to-side and an end-to-side/end-to-side configuration were tested in rabbits. One hundred percent of rabbit implants (2/2) with an end-to-end/end-to-side configuration were patent at explant. However, with the end-to-side/end-to-side configuration, 66% (6/9) of rabbit implants and 93% (13/14) of baboon implants remained patent at 1 month, suggesting the importance of replicating the end-to-side method for testing vascular grafts for clinical use. This study describes feasible preclinical surgical procedures, which simulate clinical vascular bypass grafts even in small animals. Widespread implementation of these end-to-side surgical techniques in these or other animals should improve the quality of experimental, preclinical testing and ultimately increase the likelihood of translating new vascular graft technologies into clinical applications.
Collapse
Affiliation(s)
- Deirdre E J Anderson
- 1 Department of Biomedical Engineering, Oregon Health & Science University , Portland, Oregon
| | - Grace Pohan
- 2 Department of Chemical Engineering, University of Waterloo , Waterloo, Ontario, Canada
| | - Jaishankar Raman
- 3 Division of Cardiothoracic Surgery, Oregon Health & Science University , Portland, Oregon
| | - Filip Konecny
- 4 Division of Plastic Surgery, Department of Surgery, McMaster University , Hamilton, Ontario, Canada
| | - Evelyn K F Yim
- 2 Department of Chemical Engineering, University of Waterloo , Waterloo, Ontario, Canada
| | - Monica T Hinds
- 1 Department of Biomedical Engineering, Oregon Health & Science University , Portland, Oregon
| |
Collapse
|
45
|
Asakura T, Tanaka T, Tanaka R. Advanced Silk Fibroin Biomaterials and Application to Small-Diameter Silk Vascular Grafts. ACS Biomater Sci Eng 2019; 5:5561-5577. [PMID: 33405687 DOI: 10.1021/acsbiomaterials.8b01482] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As the incidences of cardiovascular diseases have been on the rise in recent years, the need for small-diameter artificial vascular grafts is increasing globally. Although synthetic polymers such as expanded polytetrafluoroethylene or poly(ethylene terephthalate) have been successfully used for artificial vascular grafts ≥6 mm in diameter, they fail at smaller diameters (<6 mm) due to thrombus formation and intimal hyperplasia. Thus, development of vascular grafts for small diameter vessel replacement that are <6 mm in diameter remains a major clinical challenge. Silk fibroin (SF) from Bombyx mori silkworm is well-known as an excellent textile and also has been used as suture material in surgery for more than 2000 years. Many attempts to develop small-diameter SF vascular grafts with <6 mm in diameter have been reported. Here, research and development in small-diameter vascular grafts with SF are reviewed as follows: (1) the heterogeneous structure of SF fiber (Silk II), including the packing arrangements and type II β-turn structure of SF (Silk I*) before spinning; (2) SF modified by transgenic silkworm, which is more suitable for vascular grafts; (3) preparation of small-diameter SF vascular grafts; (4) characterization of SF in the hydrated state, including dynamics of water molecules by nuclear magnetic resonance; and (5) evaluation of the SF grafts by in vivo implantation experiment. According to the findings, SF is a promising material for small-diameter vascular graft development.
Collapse
Affiliation(s)
- Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Takashi Tanaka
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Ryo Tanaka
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
46
|
Rosa S, Praça C, Pitrez PR, Gouveia PJ, Aranguren XL, Ricotti L, Ferreira LS. Functional characterization of iPSC-derived arterial- and venous-like endothelial cells. Sci Rep 2019; 9:3826. [PMID: 30846769 PMCID: PMC6405900 DOI: 10.1038/s41598-019-40417-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 02/11/2019] [Indexed: 02/06/2023] Open
Abstract
The current work reports the functional characterization of human induced pluripotent stem cells (iPSCs)- arterial and venous-like endothelial cells (ECs), derived in chemically defined conditions, either in monoculture or seeded in a scaffold with mechanical properties similar to blood vessels. iPSC-derived arterial- and venous-like endothelial cells were obtained in two steps: differentiation of iPSCs into endothelial precursor cells (CD31pos/KDRpos/VE-Cadmed/EphB2neg/COUP-TFneg) followed by their differentiation into arterial and venous-like ECs using a high and low vascular endothelial growth factor (VEGF) concentration. Cells were characterized at gene, protein and functional levels. Functionally, both arterial and venous-like iPSC-derived ECs responded to vasoactive agonists such as thrombin and prostaglandin E2 (PGE2), similar to somatic ECs; however, arterial-like iPSC-derived ECs produced higher nitric oxide (NO) and elongation to shear stress than venous-like iPSC-derived ECs. Both cells adhered, proliferated and prevented platelet activation when seeded in poly(caprolactone) scaffolds. Interestingly, both iPSC-derived ECs cultured in monoculture or in a scaffold showed a different inflammatory profile than somatic ECs. Although both somatic and iPSC-derived ECs responded to tumor necrosis factor-α (TNF-α) by an increase in the expression of intercellular adhesion molecule 1 (ICAM-1), only somatic ECs showed an upregulation in the expression of E-selectin or vascular cell adhesion molecule 1 (VCAM-1).
Collapse
Affiliation(s)
- S Rosa
- CNC UC- Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517, Coimbra, Portugal
| | - C Praça
- CNC UC- Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, 3000-354, Coimbra, Portugal
| | - P R Pitrez
- CNC UC- Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, 3000-354, Coimbra, Portugal
| | - P José Gouveia
- CNC UC- Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517, Coimbra, Portugal.,IIIUC- Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão - Pólo II, Rua Dom Francisco de Lemos, 3030-789, Coimbra, Portugal
| | - X L Aranguren
- Hematology and Cell Therapy Area, Clinica Universidad de Navarra, and Division of Oncology, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - L Ricotti
- The BioRobotics Institute, Scuola Superiore Sant' Anna, Viale Rinaldo Piaggio 34, 56025, Pontedera, PI, Italy
| | - L Silva Ferreira
- CNC UC- Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517, Coimbra, Portugal. .,Faculty of Medicine, University of Coimbra, 3000-354, Coimbra, Portugal.
| |
Collapse
|
47
|
Shah AH, Pokholenko O, Nanda HS, Steele TWJ. Non-aqueous, tissue compliant carbene-crosslinking bioadhesives. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:215-225. [PMID: 30948055 DOI: 10.1016/j.msec.2019.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 01/22/2019] [Accepted: 03/01/2019] [Indexed: 01/06/2023]
Abstract
Surgical adhesives are an attractive alternative to traditional mechanical tissue fixation methods of sutures and staples. Ease of application, biocompatibility, enhanced functionality (drug delivery) are known advantages but weak adhesion strength in the wet environment and lack of tissue compliant behavior still pose a challenge. In order to address these issues, non-aqueous bioadhesive based on blends of polyamidoamine (PAMAM) dendrimer, conjugated with 4-[3-(trifluoromethyl)-3H-diazirin-3-yl] benzyl bromide (PAMAM-g-diazirine) and liquid polyethylene glycol (PEG 400) has been developed. PEG 400 biocompatible solvent reduces the viscosity of PAMAM-g-diazirine dendrimer without incorporating aqueous solvents or plasticizers, allowing application by syringe or spray. Upon UV activation, diazirine-generated reactive intermediates lead to intermolecular dendrimer crosslinking. The properties of the crosslinked matrix are tissue compliant, with anisotropic material properties dependent on the PEG 400 wt%, UV dose, pressure and uncured adhesive thickness. The hygroscopic PAMAM-g-diazirine/PEG 400 blend was hypothesized to absorb water at the tissue interface, leading to high interfacial adhesion, however porous matrices led to cohesive failure. The hydrophilic nature of the polyether backbone (PEG 400) shielded cationic PAMAM dendrimers with cured bioadhesive film displaying significantly less platelet activation than neat PAMAM-g-diazirine or PLGA thin films.
Collapse
Affiliation(s)
- Ankur Harish Shah
- School of Materials Science and Engineering, Division of Materials Technology, Nanyang Technological University, Singapore 639798, Singapore
| | - Oleksander Pokholenko
- School of Materials Science and Engineering, Division of Materials Technology, Nanyang Technological University, Singapore 639798, Singapore
| | - Himanshu Sekhar Nanda
- Department of Mechanical Engineering, PDPM-Indian Institute of Information Technology, Design and Manufacturing (IIITDM)-Jabalpur, Dumna Airport Road, Jabalpur 482005, MP, India
| | - Terry W J Steele
- School of Materials Science and Engineering, Division of Materials Technology, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
48
|
Tamimi EA, Ardila DC, Ensley BD, Kellar RS, Vande Geest J. Computationally optimizing the compliance of multilayered biomimetic tissue engineered vascular grafts. J Biomech Eng 2019; 141:2725826. [PMID: 30778568 DOI: 10.1115/1.4042902] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Indexed: 12/19/2022]
Abstract
Coronary artery bypass grafts used to treat coronary artery disease often fail due to compliance mismatch. In this study, we have developed an experimental/computational approach to fabricate an acellular biomimetic hybrid tissue engineered vascular graft composed of alternating layers of electrospun porcine gelatin/polycaprolactone (PCL) and human tropoelastin/PCL blends with the goal of compliance-matching to rat abdominal aorta, while maintaining specific geometrical constraints. Polymeric blends at three different gelatin:PCL (G:PCL) and tropoelastin:PCL (T:PCL) ratios (80:20, 50:50 and 20:80) were mechanically characterized. The stress-strain data was used to develop predictive models, which were used as part of an optimization scheme that was implemented to determine the ratios of G:PCL and T:PCL and the thickness of the individual layers within a tissue engineered vascular graft that would compliance match a target compliance value. The hypocompliant, isocompliant, and hypercompliant grafts had target compliance values of 0.000256, 0.000568 and 0.000880 mmHg-1, respectively. Experimental validation of the optimization demonstrated that the hypercompliant and isocompliant grafts were not statistically significant from their respective target compliance values (p-value=0.37 and 0.89, respectively). The experimental compliance value of the hypocompliant graft was statistically significant than their target compliance value (p-value=0.047). We have successfully demonstrated a design optimization scheme that can be used to fabricate multilayered and biomimetic vascular grafts with targeted geometry and compliance.
Collapse
Affiliation(s)
- Ehab Akram Tamimi
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Diana Catalina Ardila
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Robert S Kellar
- Center for Bioengineering Innovation, Northern Arizona University, Flagstaff, AZ, 86011; Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ, 86011; Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011
| | - Jonathan Vande Geest
- ASME Member, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States, McGowan Institute for Regenerative Medicine, 300 Technology Drive, Pittsburgh, PA, United State 15219
| |
Collapse
|
49
|
Yeo GC. A New Vascular Engineering Strategy Using 3D Printed Ice. Trends Biotechnol 2019; 37:451-453. [PMID: 30773221 DOI: 10.1016/j.tibtech.2019.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 10/27/2022]
Abstract
Vascular engineering requires integrating dimensional flexibility, strength, and bioactivity to fabricate materials that enable diffusive exchange of oxygen and nutrients between cells and their environment. A recent publication (Biomaterials 2019;192:334-345) has described a new method of creating freestanding, tailorable, and biocompatible vascular constructs by coating ice scaffolds with natural or synthetic polymers.
Collapse
Affiliation(s)
- Giselle C Yeo
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia; Bosch Institute, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
50
|
Dharmadhikari S, Best CA, King N, Henderson M, Johnson J, Breuer CK, Chiang T. Mouse Model of Tracheal Replacement With Electrospun Nanofiber Scaffolds. Ann Otol Rhinol Laryngol 2019; 128:391-400. [PMID: 30700095 DOI: 10.1177/0003489419826134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES The clinical experience with tissue-engineered tracheal grafts (TETGs) has been fraught with graft stenosis and delayed epithelialization. A mouse model of orthotopic replacement that recapitulates the clinical findings would facilitate the study of the cellular and molecular mechanisms underlying graft stenosis. METHODS Electrospun nanofiber tracheal scaffolds were created using nonresorbable (polyethylene terephthalate + polyurethane) and co-electrospun resorbable (polylactide-co-caprolactone/polyglycolic acid) polymers (n = 10/group). Biomechanical testing was performed to compare load displacement of nanofiber scaffolds to native mouse tracheas. Mice underwent orthotopic tracheal replacement with syngeneic grafts (n = 5) and nonresorbable (n = 10) and resorbable (n = 10) scaffolds. Tissue at the anastomosis was evaluated using hematoxylin and eosin (H&E), K5+ basal cells were evaluated with the help of immunofluorescence testing, and cellular infiltration of the scaffold was quantified. Micro computed tomography was performed to assess graft patency and correlate radiographic and histologic findings with respiratory symptoms. RESULTS Synthetic scaffolds were supraphysiologic in compression tests compared to native mouse trachea ( P < .0001). Nonresorbable scaffolds were stiffer than resorbable scaffolds ( P = .0004). Eighty percent of syngeneic recipients survived to the study endpoint of 60 days postoperatively. Mean survival with nonresorbable scaffolds was 11.40 ± 7.31 days and 6.70 ± 3.95 days with resorbable scaffolds ( P = .095). Stenosis manifested with tissue overgrowth in nonresorbable scaffolds and malacia in resorbable scaffolds. Quantification of scaffold cellular infiltration correlated with length of survival in resorbable scaffolds (R2 = 0.95, P = .0051). Micro computed tomography demonstrated the development of graft stenosis at the distal anastomosis on day 5 and progressed until euthanasia was performed on day 11. CONCLUSION Graft stenosis seen in orthotopic tracheal replacement with synthetic tracheal scaffolds can be modeled in mice. The wide array of lineage tracing and transgenic mouse models available will permit future investigation of the cellular and molecular mechanisms underlying TETG stenosis.
Collapse
Affiliation(s)
- Sayali Dharmadhikari
- 1 Center for Regenerative Medicine, Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,2 Department of Otolaryngology, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Cameron A Best
- 1 Center for Regenerative Medicine, Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,3 Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Nakesha King
- 4 Department of General Surgery, The Ohio State University, Columbus, Ohio, USA
| | | | - Jed Johnson
- 5 Nanofiber Solutions, Inc, Hilliard, Ohio, USA
| | - Christopher K Breuer
- 1 Center for Regenerative Medicine, Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,6 Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Tendy Chiang
- 1 Center for Regenerative Medicine, Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,2 Department of Otolaryngology, Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|