1
|
Yu N, Pasha M, Chua JJE. Redox changes and cellular senescence in Alzheimer's disease. Redox Biol 2024; 70:103048. [PMID: 38277964 PMCID: PMC10840360 DOI: 10.1016/j.redox.2024.103048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
The redox process and cellular senescence are involved in a range of essential physiological functions. However, they are also implicated in pathological processes underlying age-related neurodegenerative disorders, including Alzheimer's disease (AD). Elevated levels of reactive oxygen species (ROS) are generated as a result of abnormal accumulation of beta-amyloid peptide (Aβ), tau protein, and heme dyshomeostasis and is further aggravated by mitochondria dysfunction and endoplasmic reticulum (ER) stress. Excessive ROS damages vital cellular components such as proteins, DNA and lipids. Such damage eventually leads to impaired neuronal function and cell death. Heightened oxidative stress can also induce cellular senescence via activation of the senescence-associated secretory phenotype to further exacerbate inflammation and tissue dysfunction. In this review, we focus on how changes in the redox system and cellular senescence contribute to AD and how they are affected by perturbations in heme metabolism and mitochondrial function. While potential therapeutic strategies targeting such changes have received some attention, more research is necessary to bring them into clinical application.
Collapse
Affiliation(s)
- Nicole Yu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; LSI Neurobiology Programme, National University of Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mazhar Pasha
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; LSI Neurobiology Programme, National University of Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - John Jia En Chua
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; LSI Neurobiology Programme, National University of Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore.
| |
Collapse
|
2
|
Paul BD, Pieper AA. Neuroprotective Roles of the Biliverdin Reductase-A/Bilirubin Axis in the Brain. Biomolecules 2024; 14:155. [PMID: 38397392 PMCID: PMC10887292 DOI: 10.3390/biom14020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Biliverdin reductase-A (BVRA) is a multi-functional enzyme with a multitude of important roles in physiologic redox homeostasis. Classically, BVRA is well known for converting the heme metabolite biliverdin to bilirubin, which is a potent antioxidant in both the periphery and the brain. However, BVRA additionally participates in many neuroprotective signaling cascades in the brain that preserve cognition. Here, we review the neuroprotective roles of BVRA and bilirubin in the brain, which together constitute a BVRA/bilirubin axis that influences healthy aging and cognitive function.
Collapse
Affiliation(s)
- Bindu D. Paul
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
| | - Andrew A. Pieper
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106, USA
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
3
|
Bilska B, Damulewicz M, Abaquita TAL, Pyza E. Changes in heme oxygenase level during development affect the adult life of Drosophila melanogaster. Front Cell Neurosci 2023; 17:1239101. [PMID: 37876913 PMCID: PMC10591093 DOI: 10.3389/fncel.2023.1239101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023] Open
Abstract
Heme oxygenase (HO) has been shown to control various cellular processes in both mammals and Drosophila melanogaster. Here, we investigated how changes in HO levels in neurons and glial cells during development affect adult flies, by using the TARGET Drosophila system to manipulate the expression of the ho gene. The obtained data showed differences in adult survival, maximum lifespan, climbing, locomotor activity, and sleep, which depended on the level of HO (after ho up-regulation or downregulation), the timing of expression (chronic or at specific developmental stages), cell types (neurons or glia), sex (males or females), and age of flies. In addition to ho, the effects of changing the mRNA level of the Drosophila CNC factor gene (NRF2 homolog in mammals and master regulator of HO), were also examined to compare with those observed after changing ho expression. We showed that HO levels in neurons and glia must be maintained at an appropriate physiological level during development to ensure the well-being of adults. We also found that the downregulation of ho in either neurons or glia in the brain is compensated by ho expressed in the retina.
Collapse
Affiliation(s)
| | | | | | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Cracow, Poland
| |
Collapse
|
4
|
Pal I, Dey SG. The Role of Heme and Copper in Alzheimer's Disease and Type 2 Diabetes Mellitus. JACS AU 2023; 3:657-681. [PMID: 37006768 PMCID: PMC10052274 DOI: 10.1021/jacsau.2c00572] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 06/19/2023]
Abstract
Beyond the well-explored proposition of protein aggregation or amyloidosis as the central event in amyloidogenic diseases like Alzheimer's Disease (AD), and Type 2 Diabetes Mellitus (T2Dm); there are alternative hypotheses, now becoming increasingly evident, which suggest that the small biomolecules like redox noninnocent metals (Fe, Cu, Zn, etc.) and cofactors (Heme) have a definite influence in the onset and extent of such degenerative maladies. Dyshomeostasis of these components remains as one of the common features in both AD and T2Dm etiology. Recent advances in this course reveal that the metal/cofactor-peptide interactions and covalent binding can alarmingly enhance and modify the toxic reactivities, oxidize vital biomolecules, significantly contribute to the oxidative stress leading to cell apoptosis, and may precede the amyloid fibrils formation by altering their native folds. This perspective highlights this aspect of amyloidogenic pathology which revolves around the impact of the metals and cofactors in the pathogenic courses of AD and T2Dm including the active site environments, altered reactivities, and the probable mechanisms involving some highly reactive intermediates as well. It also discusses some in vitro metal chelation or heme sequestration strategies which might serve as a possible remedy. These findings might open up a new paradigm in our conventional understanding of amyloidogenic diseases. Moreover, the interaction of the active sites with small molecules elucidates potential biochemical reactivities that can inspire designing of drug candidates for such pathologies.
Collapse
Affiliation(s)
- Ishita Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick
Road, Jadavpur, Kolkata 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick
Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
5
|
Chen X, Zhang W, Lin Z, Zheng C, Chen S, Zhou H, Liu Z. Preliminary evidence for developing safe and efficient fecal microbiota transplantation as potential treatment for aged related cognitive impairments. Front Cell Infect Microbiol 2023; 13:1103189. [PMID: 37113132 PMCID: PMC10127103 DOI: 10.3389/fcimb.2023.1103189] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/17/2023] [Indexed: 04/29/2023] Open
Abstract
Background Recent studies have reported that gut microbiota is closely associated with cognitive fuction. Fecal microbiota transplantation (FMT) may be a potential treatment for cognitive impairment, but its efficacy in patients with cognitive impairment is unknown. Objectives This study aimed to investigate the safety and efficacy of FMT for cognitive impairment treatment. Methods Five patients aged 54-80 years (three women) were enrolled in this single-arm clinical trial from July 2021 to May 2022. The Montreal Cognitive Assessment-B (MoCA-B), Activities of Daily Living (ADL), and the cognitive section of the Alzheimer's Disease Assessment Scale (ADAS-Cog) were assessed at days 0, 30, 60, 90, and 180. Additionally, stool and serum samples were obtained twice before FMT was administered and six months after the treatment. The structure of fecal microbiota was analyzed by 16S RNA gene sequencing. Serum samples were analyzed for metabolomics and lipopolysaccharide (LPS)-binding proteins by liquid chromatography-mass spectrometry and enzyme-linked immunosorbent assay, respectively. Safety was assessed based on adverse events, vital signs, and laboratory parameters during FMT and the follow-up period. Results The MoCA, ADL, and ADAS-Cog scores of patients with mild cognitive impairment (patients C and E) after FMT were improved or maintained compared with those before transplantation. However, patients with severe cognitive impairment (patients A, B, and D) had no worsening of cognitive scores. Fecal microbiota analysis showed that FMT changed the structure of gut microbiota. The results of serum metabolomics analysis suggested that there were significant changes in the serum metabolomics of patients after FMT, with 7 up-regulated and 28 down-regulated metabolites. 3b,12a-dihydroxy-5a-cholanoic acid, 25-acetylvulgaroside, deoxycholic acid, 2(R)-hydroxydocosanoic acid, and P-anisic acid increased, while bilirubin and other metabolites decreased. KEFF pathway analysis indicated that the main metabolic pathways were bile secretion and choline metabolism in cancer. No adverse effects were reported throughout the study. Conclusions In this pilot study, FMT could maintain and improve cognitive function in mild cognitive impairment by changing gut microbiota structure and affecting serum metabolomics. Fecal bacteria capsules were safe. However, further studies are needed to evaluate the safety and efficacy of fecal microbiota transplantation. ClinicalTrials.gov Identifier: CHiCTR2100043548.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhou Liu
- *Correspondence: Haihong Zhou, ; Zhou Liu,
| |
Collapse
|
6
|
Wang H, Wu S, Wang L, Gou X, Guo X, Liu Z, Li P. Association between serum total bilirubin and Alzheimer's disease: A bidirectional Mendelian randomization study. Arch Gerontol Geriatr 2022; 103:104786. [PMID: 35961107 DOI: 10.1016/j.archger.2022.104786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 11/23/2022]
Abstract
Oxidative stress plays an important role in the pathogenesis of Alzheimer's disease (AD). As a potent antioxidant, serum bilirubin is decreased in AD and may be related to its pathogenesis, but the causal association between serum bilirubin and AD has not been reported. This was investigated in the present study by bidirectional two-sample Mendelian randomization (MR) analysis. Genetic instruments at the genome-wide significance level (P < 5 × 10-8) were selected from the United Kingdom Biobank (n = 342,829). Summary-level AD data were obtained from a large-scale genome-wide association study (n = 63,926). Causal estimates were evaluated using the inverse variance weighted (IVW) approach and other five complementary methods. MR-Egger, IVW and MR pleiotropy residual sum and outlier (MR-PRESSO) methods were used for sensitivity analyses. The results showed that there was no significant association between serum total bilirubin and AD (odds ratio=1.003, 95% confidence interval: 0.967-1.041, P = 0.865). Inverse MR revealed that serum total bilirubin was increased in AD (beta = 0.009, SE = 0.003, P = 0.010). These results indicate that serum total bilirubin is not causally associated with AD and cannot be used for screening or diagnosis, but can potentially serve as a biomarker of disease severity, and it needs further clinical studies.
Collapse
Affiliation(s)
- Haiyan Wang
- Department of Obstetrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, 11 Renminxi Road, Foshan, Guangdong 528000, China; Biobank, Foshan Fetal Medicine Research Institute, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Shuzhen Wu
- Department of Obstetrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, 11 Renminxi Road, Foshan, Guangdong 528000, China
| | - Lijuan Wang
- Department of Obstetrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, 11 Renminxi Road, Foshan, Guangdong 528000, China
| | - Xiaoyan Gou
- Department of Obstetrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, 11 Renminxi Road, Foshan, Guangdong 528000, China; Biobank, Foshan Fetal Medicine Research Institute, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Xiaoling Guo
- Department of Obstetrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, 11 Renminxi Road, Foshan, Guangdong 528000, China
| | - Zhengping Liu
- Department of Obstetrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, 11 Renminxi Road, Foshan, Guangdong 528000, China; Foshan Fetal Medicine Research Institute, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Pengsheng Li
- Department of Obstetrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, 11 Renminxi Road, Foshan, Guangdong 528000, China; Foshan Fetal Medicine Research Institute, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China.
| |
Collapse
|
7
|
Altered peripheral factors affecting the absorption, distribution, metabolism, and excretion of oral medicines in Alzheimer's disease. Adv Drug Deliv Rev 2022; 185:114282. [PMID: 35421522 DOI: 10.1016/j.addr.2022.114282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/23/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) has traditionally been considered solely a neurological condition. Therefore, numerous studies have been conducted to identify the existence of pathophysiological changes affecting the brain and the blood-brain barrier in individuals with AD. Such studies have provided invaluable insight into possible changes to the central nervous system exposure of drugs prescribed to individuals with AD. However, there is now increasing recognition that extra-neurological systems may also be affected in AD, such as the small intestine, liver, and kidneys. Examination of these peripheral pathophysiological changes is now a burgeoning area of scientific research, owing to the potential impact of these changes on the absorption, distribution, metabolism, and excretion (ADME) of drugs used for both AD and other concomitant conditions in this population. The purpose of this review is to identify and summarise available literature reporting alterations to key organs influencing the pharmacokinetics of drugs, with any changes to the small intestine, liver, kidney, and circulatory system on the ADME of drugs described. By assessing studies in both rodent models of AD and samples from humans with AD, this review highlights possible dosage adjustment requirements for both AD and non-AD drugs so as to ensure the achievement of optimum pharmacotherapy in individuals with AD.
Collapse
|
8
|
Abstract
Amyloids are protein aggregates bearing a highly ordered cross β structural motif, which may be functional but are mostly pathogenic. Their formation, deposition in tissues and consequent organ dysfunction is the central event in amyloidogenic diseases. Such protein aggregation may be brought about by conformational changes, and much attention has been directed toward factors like metal binding, post-translational modifications, mutations of protein etc., which eventually affect the reactivity and cytotoxicity of the associated proteins. Over the past decade, a global effort from different groups working on these misfolded/unfolded proteins/peptides has revealed that the amino acid residues in the second coordination sphere of the active sites of amyloidogenic proteins/peptides cause changes in H-bonding pattern or protein-protein interactions, which dramatically alter the structure and reactivity of these proteins/peptides. These second sphere effects not only determine the binding of transition metals and cofactors, which define the pathology of some of these diseases, but also change the mechanism of redox reactions catalyzed by these proteins/peptides and form the basis of oxidative damage associated with these amyloidogenic diseases. The present review seeks to discuss such second sphere modifications and their ramifications in the etiopathology of some representative amyloidogenic diseases like Alzheimer's disease (AD), type 2 diabetes mellitus (T2Dm), Parkinson's disease (PD), Huntington's disease (HD), and prion diseases.
Collapse
Affiliation(s)
- Madhuparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Arnab Kumar Nath
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Ishita Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
9
|
Nath AK, Dey SG. Simultaneous Binding of Heme and Cu to Amyloid β Peptides: Active Site and Reactivities. Dalton Trans 2022; 51:4986-4999. [DOI: 10.1039/d2dt00162d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amyloid imbalance and Aβ plaque formation are key histopathological features of Alzheimer’s disease (AD). These amyloid plaques observed in post-mortem AD brains have been found to contain increased levels of...
Collapse
|
10
|
Zhong X, Liao Y, Chen X, Mai N, Ouyang C, Chen B, Zhang M, Peng Q, Liang W, Zhang W, Wu Z, Huang X, Li C, Chen H, Lao W, Zhang CE, Wang X, Ning Y, Liu J. Abnormal Serum Bilirubin/Albumin Concentrations in Dementia Patients With Aβ Deposition and the Benefit of Intravenous Albumin Infusion for Alzheimer's Disease Treatment. Front Neurosci 2020; 14:859. [PMID: 33013289 PMCID: PMC7494757 DOI: 10.3389/fnins.2020.00859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/23/2020] [Indexed: 12/13/2022] Open
Abstract
Background Our previous study in animal models revealed that bilirubin could induce Aβ formation and deposition. Bilirubin may be important in neurodegenerative dementia with Aβ deposition. Hence, lowering the concentration of the free bilirubin capable of crossing the blood brain-barrier may benefit the treatment of Alzheimer's disease (AD). Objectives The objectives of this study were to examine the change in the serum bilirubin and albumin concentrations of dementia patients with Aβ deposition, and to determine the effects of intravenous administration of albumin in the treatment of AD. Methods Bilirubin and albumin concentrations in dementia patients with Aβ deposition were examined. Cell viability and apoptosis were determined in dopaminergic neuron-like cells MN9D treated with bilirubin in the presence of diverse concentrations of serum. Human albumin at a dose of 10 g every 2 weeks for 24 weeks was administered intravenously to AD patients to examine the effect of albumin on AD symptoms. Results Significantly higher indirect bilirubin (IBIL) concentrations, lower albumin concentrations, and higher ratio of IBIL to albumin (IBIL/ALB) were observed in dementia patients with Aβ deposition, including AD, dementia with Lewy bodies, and general paresis of insane. In vitro assays showed that bilirubin-induced injury in cultured dopaminergic neuron-like cells negatively depends on the concentration of serum in the culture medium. General linear model with repeated measures analysis indicated a main effect of group on the change in albumin concentrations and Alzheimer's Disease Cooperative Study Activities of Daily Living Inventory scale (ADCS-ADL) scores, and the main effect of time and group, and group-by-time interaction on the change of Clinical Dementia Rating Scale-Sum of Boxes (CDR-SB) scores. Analysis of the combined data of the entire 28 weeks of assessment period using the area under curve convincingly showed significantly improvements in the change of albumin concentrations, ADCS-ADL scores, and CDR-SB scores. Conclusion IBIL and the IBIL/ALB ratio are significantly higher in dementia patients with Aβ deposition, and intravenous administration of albumin is beneficial to AD treatment. Trial Registration The intervention study was registered at http://www.chictr.org.cn (ChiCTR-IOR-17011539). Date of registration: June 1, 2017.
Collapse
Affiliation(s)
- Xiaomei Zhong
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Yuning Liao
- Protein Modification and Degradation Lab, SKLRD, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinru Chen
- Institute of Neuroscience, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Naikeng Mai
- Institute of Neuroscience, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Cong Ouyang
- Institute of Neuroscience, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Ben Chen
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Min Zhang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Qi Peng
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Wanyuan Liang
- Institute of Neuroscience, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Weiru Zhang
- Institute of Neuroscience, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Zhangying Wu
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Xingxiao Huang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Caijun Li
- Guangzhou Yihe Nursing Home, Guangzhou, China
| | - Hong Chen
- Guangzhou Yihe Nursing Home, Guangzhou, China
| | - Weimin Lao
- Guangzhou Songhe Nursing Home, Guangzhou, China
| | - Chang-E Zhang
- Protein Modification and Degradation Lab, SKLRD, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Yuping Ning
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Jinbao Liu
- Protein Modification and Degradation Lab, SKLRD, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
11
|
Amyloid β chaperone - lipocalin-type prostaglandin D synthase acts as a peroxidase in the presence of heme. Biochem J 2020; 477:1227-1240. [PMID: 32271881 PMCID: PMC7148433 DOI: 10.1042/bcj20190536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 12/01/2022]
Abstract
The extracellular transporter, lipocalin-type prostaglandin D synthase (L-PGDS) binds to heme and heme metabolites with high affinity. It has been reported that L-PGDS protects neuronal cells against apoptosis induced by exposure to hydrogen peroxide. Our study demonstrates that when human WT L-PGDS is in complex with heme, it exhibits a strong peroxidase activity thus behaving as a pseudo-peroxidase. Electron paramagnetic resonance studies confirm that heme in the L-PGDS–heme complex is hexacoordinated with high-spin Fe(III). NMR titration of heme in L-PGDS points to hydrophobic interaction between heme and several residues within the β-barrel cavity of L-PGDS. In addition to the transporter function, L-PGDS is a key amyloid β chaperone in human cerebrospinal fluid. The presence of high levels of bilirubin and its derivatives, implicated in Alzheimer's disease, by binding to L-PGDS may reduce its chaperone activity. Nevertheless, our ThT binding assay establishes that heme and heme metabolites do not significantly alter the neuroprotective chaperone function of L-PGDS. Guided by NMR data we reconstructed the heme L-PGDS complex using extensive molecular dynamics simulations providing a platform for mechanistic interpretation of the catalytic and transporting functions and their modulation by secondary ligands like Aβ peptides and heme metabolites.
Collapse
|
12
|
Roy M, Pal I, Nath AK, Dey SG. Peroxidase activity of heme bound amyloid β peptides associated with Alzheimer's disease. Chem Commun (Camb) 2020; 56:4505-4518. [PMID: 32297620 DOI: 10.1039/c9cc09758a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The amyloid cascade hypothesis attributes the neurodegeneration observed in Alzheimer's disease (AD) to the deposition of the amyloid β (Aβ) peptide into plaques and fibrils in the AD brain. The metal ion hypothesis which implicates several metal ions, viz. Zn2+, Cu2+ and Fe3+, in the AD pathology on account of their abnormal accumulation in the Aβ plaques along with an overall dyshomeostasis of these metals in the AD brain was proposed a while back. Metal ion chelators and ionophores, put forward as possible drug candidates for AD, are yet to succeed in clinical trials. Heme, which is widely distributed in the mammalian body as the prosthetic group of several important proteins and enzymes, has been thought to be associated with AD by virtue of its colocalization in the Aβ plaques along with the similarity of several heme deficiency symptoms with those of AD and most importantly, due to its ability to bind Aβ. This feature article illustrates the active site environment of heme-Aβ which resembles those of peroxidases. It also discusses the peroxidase activity of heme-Aβ, its ability to effect oxidative degradation of neurotransmitters like serotonin and also the identification of the highly reactive high-valent intermediate, compound I. The effect of second sphere residues on the formation and peroxidase activity of heme-Aβ along with the generation and decay of compound I is highlighted throughout the article. The reactivities of heme bound Aβ peptides give an alternative theory to understand the possible cause of this disease.
Collapse
Affiliation(s)
- Madhuparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | | | | | | |
Collapse
|
13
|
Cannabidiol Protects Dopaminergic Neurons in Mesencephalic Cultures against the Complex I Inhibitor Rotenone Via Modulation of Heme Oxygenase Activity and Bilirubin. Antioxidants (Basel) 2020; 9:antiox9020135. [PMID: 32033040 PMCID: PMC7070382 DOI: 10.3390/antiox9020135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/25/2020] [Accepted: 01/30/2020] [Indexed: 12/13/2022] Open
Abstract
Phytocannabinoids protect neurons against stressful conditions, possibly via the heme oxygenase (HO) system. In cultures of primary mesencephalic neurons and neuroblastoma cells, we determined the capability of cannabidiol (CBD) and tetrahydrocannabinol (THC) to counteract effects elicited by complex I-inhibitor rotenone by analyzing neuron viability, morphology, gene expression of IL6, CHOP, XBP1, HO-1 (stress response), and HO-2, and in vitro HO activity. Incubation with rotenone led to a moderate stress response but massive degeneration of dopaminergic neurons (DN) in primary mesencephalic cultures. Both phytocannabinoids inhibited in-vitro HO activity, with CBD being more potent. Inhibition of the enzyme reaction was not restricted to neuronal cells and occurred in a non-competitive manner. Although CBD itself decreased viability of the DNs (from 100% to 78%), in combination with rotenone, it moderately increased survival from 28.6% to 42.4%. When the heme degradation product bilirubin (BR) was added together with CBD, rotenone-mediated degeneration of DN was completely abolished, resulting in approximately the number of DN determined with CBD alone (77.5%). Using N18TG2 neuroblastoma cells, we explored the neuroprotective mechanism underlying the combined action of CBD and BR. CBD triggered the expression of HO-1 and other cell stress markers. Co-treatment with rotenone resulted in the super-induction of HO-1 and an increased in-vitro HO-activity. Co-application of BR completely mitigated the rotenone-induced stress response. Our findings indicate that CBD induces HO-1 and increases the cellular capacity to convert heme when stressful conditions are met. Our data further suggest that CBD via HO may confer full protection against (oxidative) stress when endogenous levels of BR are sufficiently high.
Collapse
|
14
|
Chen H, Liang L, Xu H, Xu J, Yao L, Li Y, Tan Y, Li X, Huang Q, Yang Z, Wu J, Chen J, Huang H, Wang X, Zhang CE, Liu J. Short Term Exposure to Bilirubin Induces Encephalopathy Similar to Alzheimer’s Disease in Late Life. J Alzheimers Dis 2020; 73:277-295. [DOI: 10.3233/jad-190945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Haoyu Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong, People’s Republic of China
| | - Lu Liang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong, People’s Republic of China
| | - Hua Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong, People’s Republic of China
| | - Jia Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong, People’s Republic of China
| | - Leyi Yao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong, People’s Republic of China
| | - Yanling Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong, People’s Republic of China
| | - Yufan Tan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong, People’s Republic of China
| | - Xiaofen Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong, People’s Republic of China
| | - Qingtian Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong, People’s Republic of China
| | - Zhenjun Yang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong, People’s Republic of China
| | - Jiawen Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong, People’s Republic of China
| | - Jinghong Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong, People’s Republic of China
| | - Hongbiao Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong, People’s Republic of China
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA
| | - Chang-E. Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong, People’s Republic of China
| | - Jinbao Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Lab of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong, People’s Republic of China
| |
Collapse
|
15
|
Duvigneau JC, Esterbauer H, Kozlov AV. Role of Heme Oxygenase as a Modulator of Heme-Mediated Pathways. Antioxidants (Basel) 2019; 8:antiox8100475. [PMID: 31614577 PMCID: PMC6827082 DOI: 10.3390/antiox8100475] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/27/2019] [Accepted: 10/07/2019] [Indexed: 02/07/2023] Open
Abstract
The heme oxygenase (HO) system is essential for heme and iron homeostasis and necessary for adaptation to cell stress. HO degrades heme to biliverdin (BV), carbon monoxide (CO) and ferrous iron. Although mostly beneficial, the HO reaction can also produce deleterious effects, predominantly attributed to excessive product formation. Underrated so far is, however, that HO may exert effects additionally via modulation of the cellular heme levels. Heme, besides being an often-quoted generator of oxidative stress, plays also an important role as a signaling molecule. Heme controls the anti-oxidative defense, circadian rhythms, activity of ion channels, glucose utilization, erythropoiesis, and macrophage function. This broad spectrum of effects depends on its interaction with proteins ranging from transcription factors to enzymes. In degrading heme, HO has the potential to exert effects also via modulation of heme-mediated pathways. In this review, we will discuss the multitude of pathways regulated by heme to enlarge the view on HO and its role in cell physiology. We will further highlight the contribution of HO to pathophysiology, which results from a dysregulated balance between heme and the degradation products formed by HO.
Collapse
Affiliation(s)
- J Catharina Duvigneau
- Institute for Medical Biochemistry, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Harald Esterbauer
- Department of Laboratory Medicine, Medical University of Vienna, 1210 Vienna, Austria.
| | - Andrey V Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 1200 Vienna, Austria.
- Laboratory of Navigational Redox Lipidomics, Department of Human Pathology, IM Sechenov Moscow State Medical University, 119992 Moscow, Russia.
| |
Collapse
|
16
|
Guix FX, Sartório CL, Ill-Raga G. BACE1 Translation: At the Crossroads Between Alzheimer's Disease Neurodegeneration and Memory Consolidation. J Alzheimers Dis Rep 2019; 3:113-148. [PMID: 31259308 PMCID: PMC6597968 DOI: 10.3233/adr-180089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human life unfolds not only in time and space, but also in the recollection and interweaving of memories. Therefore, individual human identity depends fully on a proper access to the autobiographical memory. Such access is hindered under pathological conditions such as Alzheimer’s disease, which affects millions of people worldwide. Unfortunately, no effective cure exists to prevent this disorder, the impact of which will rise alarmingly within the next decades. While Alzheimer’s disease is largely considered to be the outcome of amyloid-β (Aβ) peptide accumulation in the brain, conceiving this complex disorder strictly as the result of Aβ-neurotoxicity is perhaps a too straight-line simplification. Instead, complementary to this view, the tableau of molecular disarrangements in the Alzheimer’s disease brain may be reflecting, at least in part, a loss of function phenotype in memory processing. Here we take BACE1 translation and degradation as a gateway to study molecular mechanisms putatively involved in the transition between memory and neurodegeneration. BACE1 participates in the excision of Aβ-peptide from its precursor holoprotein, but plays a role in synaptic plasticity too. Its translation is governed by eIF2α phosphorylation: a hub integrating cellular responses to stress, but also a critical switch in memory consolidation. Paralleling these dualities, the eIF2α-kinase HRI has been shown to be a nitric oxide-dependent physiological activator of hippocampal BACE1 translation. Finally, beholding BACE1 as a representative protease active in the CNS, we venture a new perspective on the cellular basis of memory, which may incorporate neurodegeneration in itself as a drift in memory consolidating systems.
Collapse
Affiliation(s)
- Francesc X Guix
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa-CSIC, Madrid, Spain
| | - Carmem L Sartório
- Division of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Gerard Ill-Raga
- Division of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| |
Collapse
|
17
|
Pan Y, Omori K, Ali I, Tachikawa M, Terasaki T, Brouwer KLR, Nicolazzo JA. Altered Expression of Small Intestinal Drug Transporters and Hepatic Metabolic Enzymes in a Mouse Model of Familial Alzheimer's Disease. Mol Pharm 2018; 15:4073-4083. [PMID: 30074800 DOI: 10.1021/acs.molpharmaceut.8b00500] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Drug transporter expression and function at the blood-brain barrier is altered in Alzheimer's disease (AD). However, the impact of AD on the expression of transporters and metabolizing enzymes in peripheral tissues has received little attention. The current study evaluated the expression of drug transporters and metabolizing enzymes in the small intestine and liver from 8- to 9-month-old female wild-type (WT) and APPswe/PSEN 1dE9 (APP/PS1) transgenic mice, a widely used AD model, using a quantitative targeted absolute proteomics (QTAP) approach. Furthermore, the general morphological appearance of the liver was assessed by immunohistochemistry, and lipid content was visualized using Oil Red O staining. The small intestines of APP/PS1 mice exhibited a significant 2.3-fold increase in multidrug resistance-associated protein 2 (Mrp2), a 1.9-fold decrease in monocarboxylate transporter 1 (Mct1), and a 3.6-fold increase in UDP-glucuronosyltransferase (Ugt) 2b5 relative to those from WT mice based on QTAP analysis. While the liver from APP/PS1 mice exhibited no changes in drug transporter expression, there was a 1.3-fold elevation in cytochrome P450 (Cyp) 51a1 and a 1.2-fold reduction in Cyp2c29 protein expression, and this was associated with morphological alterations including accumulation of hepatocyte lipids. These studies are the first to demonstrate that the protein expression of transporters and metabolizing enzymes important in oral drug absorption are modified in a mouse model of familial AD, which may lead to altered disposition of some orally administered drugs in AD.
Collapse
Affiliation(s)
- Yijun Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences , Monash University , 399 Royal Parade , Parkville , Victoria 3052 , Australia
| | - Kotaro Omori
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences , Tohoku University , 6-3 Aoba , Aramaki, Aoba-ku, Sendai 980-8578 , Japan
| | - Izna Ali
- UNC Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , 301 Pharmacy Lane , Chapel Hill , North Carolina 27599 , United States
| | - Masanori Tachikawa
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences , Tohoku University , 6-3 Aoba , Aramaki, Aoba-ku, Sendai 980-8578 , Japan
| | - Tetsuya Terasaki
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences , Tohoku University , 6-3 Aoba , Aramaki, Aoba-ku, Sendai 980-8578 , Japan
| | - Kim L R Brouwer
- UNC Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , 301 Pharmacy Lane , Chapel Hill , North Carolina 27599 , United States
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences , Monash University , 399 Royal Parade , Parkville , Victoria 3052 , Australia
| |
Collapse
|
18
|
Shibama S, Ugajin T, Yamaguchi T, Yokozeki H. Bilirubin oxidation derived from oxidative stress is associated with disease severity of atopic dermatitis in adults. Clin Exp Dermatol 2018; 44:153-160. [PMID: 29869448 DOI: 10.1111/ced.13674] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND Bilirubin is an essential antioxidant. Its oxidative metabolites, biopyrrins, are sensitive urinary markers of oxidative stress. Multiple studies suggest that oxidative stress affects the pathogenesis of skin diseases such as atopic dermatitis (AD). AIM To examine oxidative stress-induced bilirubin oxidation and its association with AD pathogenesis in adults. METHODS In total, 11 patients with AD and 7 healthy controls (HCs) were enrolled. Bilirubin oxidation profiles in the combined urine of the patients and that of the HCs were examined using high-performance liquid chromatography (HPLC) and fast atom bombardment mass spectrometry. The concentrations of urinary biopyrrins and serum biomarkers for AD disease severity, such as IgE and thymus and activation-regulated chemokine (TARC)/CCL17, were measured by ELISA to determine correlations between urinary biopyrrins and serum biomarkers. Local bilirubin oxidation in AD skin lesions was assessed by immunohistochemical analyses using two antibodies against bilirubin. RESULTS Levels of dipyrrole-monopyrrole-aldehyde, a novel urinary biopyrrin, were higher in patients with AD than in HCs, and increased with disease severity based on the SCORing Atopic Dermatitis (SCORAD) objective scoring system. Additionally, urinary biopyrrin levels correlated significantly with serum IgE and TARC/CCL17 levels. Furthermore, immunohistochemical analyses revealed that biopyrrins were strongly expressed in both infiltrating and resident cells in AD lesions. However, bilirubin was expressed at low levels in the lesions, suggesting that bilirubin oxidation is augmented in AD lesions. CONCLUSIONS Bilirubin oxidation derived from oxidative stress in the skin lesions can be associated with disease severity of AD.
Collapse
Affiliation(s)
- S Shibama
- Department of Dermatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Dermatology, Sakura Hospital, Medical Center, Toho University, Sakura City, Japan
| | - T Ugajin
- Department of Dermatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - T Yamaguchi
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - H Yokozeki
- Department of Dermatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
19
|
Martin-de-Pablos A, Córdoba-Fernández A, Fernández-Espejo E. Analysis of neurotrophic and antioxidant factors related to midbrain dopamine neuronal loss and brain inflammation in the cerebrospinal fluid of the elderly. Exp Gerontol 2018; 110:54-60. [PMID: 29775745 DOI: 10.1016/j.exger.2018.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 04/10/2018] [Accepted: 05/14/2018] [Indexed: 01/26/2023]
Abstract
Midbrain dopamine neuronal loss and neuroinflammation are two phenomena that are associated with brain senescence. Neurotrophic factor changes and oxidative stress could subserve these phenomena. Aging-related brain changes can be well monitored through the cerebrospinal fluid (CSF). The objective was to analyze neurotrophic and oxidative parameters that could be related to midbrain dopamine neuronal loss or brain inflammation in the CSF of elderly subjects: 1) levels of the dopaminotrophic factors BDNF, GDNF, persephin, and neurturin, 2) levels of the proinflammatory factors TGFβ1 and TGFβ2; 3) activity of main antioxidant enzymes (catalases, glutathione-peroxidase, glutathione-reductase, glutathione-S-transferases, peroxirredoxins, and superoxide-dismutases), 4) ferritin content, antioxidant protein which reduces reactive free iron, and 5) antioxidant potential of the cerebrospinal fluid. ELISA and PAO tests were used. Subjects were also evaluated clinically, and the group of old subjects with mild cognitive impairment was studied separately. The findings indicate that normal elderly CSF is devoid of changes in either dopaminotrophic or proinflammatory factors. The antioxidant efficacy is slightly reduced with normal aging, through a reduction of glutathione-S-transferase activity in people older than 74 years (p < 0.05). However old people with mild cognitive impairment show reduced BDNF levels, and stronger signs of oxidative stress such as low antioxidant potential and glutathione-S-transferase activity (p < 0.05). To sum up, the present study demonstrates that, in CSF of normal senescence, dopaminotrophic factors and proinflammatory TGF-family ligands are not affected, and antioxidant efficacy is slightly reduced. CSF of elderly subjects with mild cognitive impairment shows more oxidative and trophic changes that are characterized by reduction of BDNF content, glutathione-S-transferase activity, and antioxidant potential.
Collapse
Affiliation(s)
- Angel Martin-de-Pablos
- Laboratorio de Neurofisiologia y Neurología Molecular, Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, E-41009 Sevilla, Spain; Departamento de Cirugía, Universidad de Sevilla, E-41009 Sevilla, Spain
| | | | - Emilio Fernández-Espejo
- Laboratorio de Neurofisiologia y Neurología Molecular, Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, E-41009 Sevilla, Spain.
| |
Collapse
|
20
|
Wagner KH, Shiels RG, Lang CA, Seyed Khoei N, Bulmer AC. Diagnostic criteria and contributors to Gilbert's syndrome. Crit Rev Clin Lab Sci 2018; 55:129-139. [PMID: 29390925 DOI: 10.1080/10408363.2018.1428526] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Hyperbilirubinemia is a well-known condition in the clinical setting; however, the causes of elevated serum bilirubin are diverse, as are the clinical ramifications of this condition. For example, diagnoses of individuals vary depending on whether they exhibit an unconjugated or conjugated hyperbilirubinemia. Diagnoses can include conditions of disordered bilirubin metabolism (Gilbert's, Crigler-Najjar, Rotor, or Dubin-Johnson syndromes) or an acquired disease, including alcoholic/non-alcoholic fatty liver disease, hepatotropic hepatitis, cirrhosis, or hepato-biliary malignancy. Assessment of bilirubin concentrations is typically conducted as part of routine liver function testing. Mildly elevated total bilirubin with normal serum activities of liver transaminases, biliary damage markers, and red blood cell counts, however, may indicate the presence of Gilbert's syndrome (GS), a benign condition that is present in ∼5-10% of the population. In this case, mildly elevated unconjugated bilirubin in GS is strongly associated with "reduced" prevalence of chronic diseases, particularly cardiovascular diseases (CVD) and type 2 diabetes mellitus (and associated risk factors), as well as CVD-related and all-cause mortality. These reports challenge the dogma that bilirubin is simply a potentially neurotoxic by-product of heme catabolism and emphasize the importance of understanding its potential beneficial physiologic and detrimental pathophysiologic effects, in order to appropriately consider bilirubin test results within the clinical laboratory setting. With this information, we hope to improve the understanding of disorders of bilirubin metabolism, emphasize the diagnostic importance of these conditions, and outline the potential impact GS may have on resistance to disease.
Collapse
Affiliation(s)
- Karl-Heinz Wagner
- a Department of Nutritional Sciences and Research Platform Active Ageing , University of Vienna , Vienna , Austria
| | - Ryan G Shiels
- b School of Medical Science and Menzies Health Institute Queensland , Griffith University , Gold Coast , Australia
| | - Claudia Anna Lang
- a Department of Nutritional Sciences and Research Platform Active Ageing , University of Vienna , Vienna , Austria
| | - Nazlisadat Seyed Khoei
- a Department of Nutritional Sciences and Research Platform Active Ageing , University of Vienna , Vienna , Austria
| | - Andrew C Bulmer
- b School of Medical Science and Menzies Health Institute Queensland , Griffith University , Gold Coast , Australia
| |
Collapse
|
21
|
Mancuso C. Bilirubin and brain: A pharmacological approach. Neuropharmacology 2017; 118:113-123. [PMID: 28315352 DOI: 10.1016/j.neuropharm.2017.03.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/09/2017] [Accepted: 03/12/2017] [Indexed: 01/01/2023]
Abstract
For many decades, the world scientific literature has accounted for a number of works on the biological effects of bilirubin-IXalpha (BR). The first studies focused on the neurotoxic effects of the excessive production of BR, in particular regarding both physiological neonatal jaundice and the more severe ones, typically as consequences of severe hemolysis or other underlying diseases. Only since 1987, has significant evidence, however, underlined the neuroprotective role of BR linked to the scavenging effect of free radicals as reactive oxygen species and nitric oxide and its congeners. Despite the presence in the literature of many excellent papers dealing with the multiple roles played by BR in health and disease, there were very few and somewhat dated reviews that summarize the key findings related to the neuroprotective and neurotoxic effects of the bile pigment and underlying mechanisms. In light of the previous statements, the aim of this review is to provide a summary of the main discoveries in the last years on the effects of BR on the central nervous system. An analytical description about the synthesis of BR, its distribution in the systemic circulation, liver metabolism and elimination through feces and urine will be provided, together with the main mechanisms claimed to describe the neurotoxicity and neuroprotection by the bile pigment. Finally, the possible translational aspects of pharmacological modulation in the production of BR in order to prevent or counteract toxic effects or enhance the protective actions, will be discussed.
Collapse
Affiliation(s)
- Cesare Mancuso
- Institute of Pharmacology, Catholic University School of Medicine, Largo F. Vito, 1-00168 Rome, Italy.
| |
Collapse
|
22
|
Cacciottolo M, Morgan TE, Finch CE. Rust on the Brain from Microbleeds and Its Relevance to Alzheimer Studies: Invited Commentary on Cacciottolo Neurobiology of Aging, 2016. ACTA ACUST UNITED AC 2016; 6. [PMID: 28042517 DOI: 10.4172/2161-0460.1000287] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cerebral microbleeds (MB) and small vessel disease (SVD) with congophilic arterial angiopathy (CAA) are increasingly recognized as a variable factor in AD cognitive impairments. This commentary on our recent report on sex-ApoE interactions in MBs published this February, briefly explores three aspects of MBs that could not be fully discussed therein: I, A possible gap between the prevalence of MBs as detected by MRI and post mortem analysis; II, The role of hemoglobin-degradation products in amyloid-attributed neurodegenerative changes; and III, Possible assessment of MB by cerebrospinal fluid (CSF) assays for iron-related markers to better screen patient subgroups for AD interventions.
Collapse
Affiliation(s)
- M Cacciottolo
- Leonard Davis School of Gerontology, Los Angeles CA, USA
| | - T E Morgan
- Leonard Davis School of Gerontology, Los Angeles CA, USA
| | - C E Finch
- Leonard Davis School of Gerontology, Los Angeles CA, USA; Department of Neurobiology, Dornsife College, University of Southern California, Los Angeles CA, USA
| |
Collapse
|
23
|
Ghosh C, Mukherjee S, Seal M, Dey SG. Peroxidase to Cytochrome b Type Transition in the Active Site of Heme-Bound Amyloid β Peptides Relevant to Alzheimer’s Disease. Inorg Chem 2016; 55:1748-57. [DOI: 10.1021/acs.inorgchem.5b02683] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Chandradeep Ghosh
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Soumya Mukherjee
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Manas Seal
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Somdatta Ghosh Dey
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
24
|
Inflammation and Oxidative Stress: The Molecular Connectivity between Insulin Resistance, Obesity, and Alzheimer's Disease. Mediators Inflamm 2015; 2015:105828. [PMID: 26693205 PMCID: PMC4674598 DOI: 10.1155/2015/105828] [Citation(s) in RCA: 312] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/29/2015] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes (T2DM), Alzheimer's disease (AD), and insulin resistance are age-related conditions and increased prevalence is of public concern. Recent research has provided evidence that insulin resistance and impaired insulin signalling may be a contributory factor to the progression of diabetes, dementia, and other neurological disorders. Alzheimer's disease (AD) is the most common subtype of dementia. Reduced release (for T2DM) and decreased action of insulin are central to the development and progression of both T2DM and AD. A literature search was conducted to identify molecular commonalities between obesity, diabetes, and AD. Insulin resistance affects many tissues and organs, either through impaired insulin signalling or through aberrant changes in both glucose and lipid (cholesterol and triacylglycerol) metabolism and concentrations in the blood. Although epidemiological and biological evidence has highlighted an increased incidence of cognitive decline and AD in patients with T2DM, the common molecular basis of cell and tissue dysfunction is rapidly gaining recognition. As a cause or consequence, the chronic inflammatory response and oxidative stress associated with T2DM, amyloid-β (Aβ) protein accumulation, and mitochondrial dysfunction link T2DM and AD.
Collapse
|
25
|
Li L, Peng Y, Hui Y, Zhang S, Zhou Y, Li D, Li J, Si Z, Li J, Wang D, Li Y, Dong M, Gao X. Overexpression of Heme Oxygenase 1 Impairs Cognitive Ability and Changes the Plasticity of the Synapse. J Alzheimers Dis 2015; 47:595-608. [DOI: 10.3233/jad-150027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Lisha Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
- State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin, China
- Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China
| | - Yahui Peng
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
- State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin, China
- Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China
| | - Yang Hui
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
- State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin, China
- Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China
| | - Shuai Zhang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - You Zhou
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Dan Li
- People’s Hospital of Yuxi City, Yuki, China
| | - Jihong Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
- State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin, China
- Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China
| | - Zizhen Si
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Jing Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Dayong Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
- State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin, China
- Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China
| | - Yanze Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
- State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin, China
- Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China
| | - Min Dong
- GE Healthcare Life Sciences, Shanghai, China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
- State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin, China
- Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China
| |
Collapse
|
26
|
Looking to the horizon: the role of bilirubin in the development and prevention of age-related chronic diseases. Clin Sci (Lond) 2015; 129:1-25. [DOI: 10.1042/cs20140566] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Bilirubin, the principal tetrapyrrole, bile pigment and catabolite of haem, is an emerging biomarker of disease resistance, which may be related to several recently documented biological functions. Initially believed to be toxic in infants, the perception of bilirubin has undergone a transformation: it is now considered to be a molecule that may promote health in adults. Data from the last decade demonstrate that mildly elevated serum bilirubin levels are strongly associated with reduced prevalence of chronic diseases, particularly cardiovascular diseases (CVDs), as well as CVD-related mortality and risk factors. Recent data also link bilirubin to other chronic diseases, including cancer and Type 2 diabetes mellitus, and to all-cause mortality. Therefore, there is evidence to suggest that bilirubin is a biomarker for reduced chronic disease prevalence and a predictor of all-cause mortality, which is of important clinical significance. In the present review, detailed information on the association between bilirubin and all-cause mortality, as well as the pathological conditions of CVD, cancer, diabetes and neurodegenerative diseases, is provided. The mechanistic background concerning how bilirubin and its metabolism may influence disease prevention and its clinical relevance is also discussed. Given that the search for novel biomarkers of these diseases, as well as for novel therapeutic modalities, is a key research objective for the near future, bilirubin represents a promising candidate, meeting the criteria of a biomarker, and should be considered more carefully in clinical practice as a molecule that might provide insights into disease resistance. Clearly, however, greater molecular insight is warranted to support and strengthen the conclusion that bilirubin can prevent disease, with future research directions also proposed.
Collapse
|
27
|
Barone E, Butterfield DA. Insulin resistance in Alzheimer disease: Is heme oxygenase-1 an Achille's heel? Neurobiol Dis 2015; 84:69-77. [PMID: 25731746 DOI: 10.1016/j.nbd.2015.02.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/18/2015] [Indexed: 01/10/2023] Open
Abstract
Insulin resistance, clinically defined as the inability of insulin to increase glucose uptake and utilization, has been found to be associated with the progression of Alzheimer disease (AD). Indeed, postmortem AD brain shows all the signs of insulin resistance including: (i) reduced brain insulin receptor (IR) sensitivity, (ii) hypophosphorylation of the insulin receptor and downstream second messengers such as IRS-1, and (iii) attenuated insulin and insulin growth factor (IGF)-1 receptor expression. However, the exact mechanisms driving insulin resistance have not been completely elucidated. Quite recently, the levels of the peripheral inducible isoform of heme oxygenase (HO-1), a well-known protein up-regulated during cell stress response, were proposed to be among the strongest positive predictors of metabolic disease, including insulin resistance. Because our group previously reported on levels, activation state and oxidative stress-induced post-translational modifications of HO-1 in AD brain and our ongoing studies to better elucidate the role of HO-1 in insulin resistance-associated AD pathology, the aim of this review is to provide reader with a critical analysis on new aspects of the interplay between HO-1 and insulin resistance and on how the available lines of evidence could be useful for further comprehension of processes in AD brain.
Collapse
Affiliation(s)
- Eugenio Barone
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA.
| |
Collapse
|
28
|
Rücker H, Amslinger S. Identification of heme oxygenase-1 stimulators by a convenient ELISA-based bilirubin quantification assay. Free Radic Biol Med 2015; 78:135-46. [PMID: 25462643 DOI: 10.1016/j.freeradbiomed.2014.10.506] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 02/09/2023]
Abstract
The upregulation of heme oxygenase-1 (HO-1) has proven to be a useful tool for fighting inflammation. In order to identify new HO-1 inducers, an efficient screening method was developed which can provide new lead structures for drug research. We designed a simple ELISA-based HO-1 enzyme activity assay, which allows for the screening of 12 compounds in parallel in the setting of a 96-well plate. The well-established murine macrophage cell line RAW264.7 is used and only about 26µg of protein from whole cell lysates is needed for the analysis of HO-1 activity. The quantification of HO-1 activity is based on an indirect ELISA using the specific anti-bilirubin antibody 24G7 to quantify directly bilirubin in the whole cell lysate, applying a horseradish peroxidase-tagged antibody together with ortho-phenylenediamine and H2O2 for detection. The bilirubin is produced on the action of HO enzymes by converting their substrate heme to biliverdin and additional recombinant biliverdin reductase together with NADPH at pH 7.4 in buffer. This sensitive assay allows for the detection of 0.57-82pmol bilirubin per sample in whole cell lysates. Twenty-three small molecules, mainly natural products with an α,β-unsaturated carbonyl unit such as polyphenols, including flavonoids and chalcones, terpenes, an isothiocyanate, and the drug oltipraz were tested at typically 6 or 24h incubation with RAW264.7 cells. The activity of known HO-1 inducers was confirmed, while the chalcones cardamonin, flavokawain A, calythropsin, 2',3,4'-trihydroxy-4-methoxychalcone (THMC), and 2',4'-dihydroxy-3,4-dimethoxychalcone (DHDMC) were identified as new potent HO-1 inducers. The highest inductive power after 6h incubation was found at 10µM for DHDMC (6.1-fold), carnosol (3.9-fold), butein (3.1-fold), THMC (2.9-fold), and zerumbone (2.5-fold). Moreover, the time dependence of HO-1 protein production for DHDMC was compared to its enzyme activity, which was further evaluated in the presence of lipopolysaccharide and the specific HO-1 inhibitor tin protoporphyrin IX. Taken together, we developed a convenient and highly sensitive ELISA-based HO-1 enzyme activity assay, allowing the identification and characterization of molecules potentially useful for the treatment of inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Hannelore Rücker
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Sabine Amslinger
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| |
Collapse
|
29
|
Li M, Zhao C, Duan T, Ren J, Qu X. New insights into Alzheimer's disease amyloid inhibition: nanosized metallo-supramolecular complexes suppress aβ-induced biosynthesis of heme and iron uptake in PC12 cells. Adv Healthc Mater 2014; 3:832-6. [PMID: 24574275 DOI: 10.1002/adhm.201300470] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/20/2013] [Indexed: 12/12/2022]
Abstract
Nanosized metallo-supramolecular compounds, [Ni2 L3 ](4+) and [Fe2 L3 ](4+) , can not only strongly inhibit Aβ aggregation but also reduce the peroxidase activity of Aβ-heme. Further studies demonstrate that through blocking the heme-binding site, these two compounds can suppress Aβ-induced biosynthesis of heme and iron uptake in PC12 cells. This work provides new insights into molecular mechanisms of Aβ inhibitors on Aβ-mediated neurotoxicity.
Collapse
Affiliation(s)
- Meng Li
- Laboratory of Chemical Biology; Division of Biological Inorganic Chemistry; State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry; University of Chinese Academy of Sciences, Chinese Academy of Sciences; Changchun Jilin 130022 China
| | - Chuanqi Zhao
- Laboratory of Chemical Biology; Division of Biological Inorganic Chemistry; State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry; University of Chinese Academy of Sciences, Chinese Academy of Sciences; Changchun Jilin 130022 China
| | - Taicheng Duan
- Laboratory of Chemical Biology; Division of Biological Inorganic Chemistry; State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry; University of Chinese Academy of Sciences, Chinese Academy of Sciences; Changchun Jilin 130022 China
- National Analytical Research Center of Electrochemistry & Spectroscopy; Changchun Institute of Applied Chemistry; Chinese Academy of Science; Changchun Jilin 130022 China
| | - Jinsong Ren
- Laboratory of Chemical Biology; Division of Biological Inorganic Chemistry; State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry; University of Chinese Academy of Sciences, Chinese Academy of Sciences; Changchun Jilin 130022 China
| | - Xiaogang Qu
- Laboratory of Chemical Biology; Division of Biological Inorganic Chemistry; State Key Laboratory of Rare Earth Resource Utilization; Changchun Institute of Applied Chemistry; University of Chinese Academy of Sciences, Chinese Academy of Sciences; Changchun Jilin 130022 China
| |
Collapse
|
30
|
Simultaneous determination of bilirubin and its glucuronides in liver microsomes and recombinant UGT1A1 enzyme incubation systems by HPLC method and its application to bilirubin glucuronidation studies. J Pharm Biomed Anal 2014; 92:149-59. [DOI: 10.1016/j.jpba.2014.01.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 01/17/2014] [Accepted: 01/18/2014] [Indexed: 12/22/2022]
|
31
|
Ahmed AI, Driessen S, van Schendel FM. Role of Plasma Bilirubin As a Biomarker for Alzheimer's Disease: A Retrospective Cohort Study. J Am Geriatr Soc 2014; 62:398-9. [DOI: 10.1111/jgs.12678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amir I.A. Ahmed
- Department of Elderly; Vincent van Gogh Institute; Venray the Netherlands
- Departments of Geriatric Medicine, Pharmacology and Toxicology; Radboud University Medical Center; Nijmegen the Netherlands
| | - Suzan Driessen
- Department of Elderly; Vincent van Gogh Institute; Venray the Netherlands
| | - Frans M.E. van Schendel
- Department of Elderly; Vincent van Gogh Institute; Venray the Netherlands
- Department of Geriatric Medicine; Vie Curi Medical Centre; Venlo the Netherlands
| |
Collapse
|
32
|
The Janus face of the heme oxygenase/biliverdin reductase system in Alzheimer disease: it's time for reconciliation. Neurobiol Dis 2013; 62:144-59. [PMID: 24095978 DOI: 10.1016/j.nbd.2013.09.018] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 09/24/2013] [Indexed: 12/23/2022] Open
Abstract
Alzheimer disease (AD) is the most common form of dementia among the elderly and is characterized by progressive loss of memory and cognition. These clinical features are due in part to the increase of reactive oxygen and nitrogen species that mediate neurotoxic effects. The up-regulation of the heme oxygenase-1/biliverdin reductase-A (HO-1/BVR-A) system is one of the earlier events in the adaptive response to stress. HO-1/BVR-A reduces the intracellular levels of pro-oxidant heme and generates equimolar amounts of the free radical scavengers biliverdin-IX alpha (BV)/bilirubin-IX alpha (BR) as well as the pleiotropic gaseous neuromodulator carbon monoxide (CO) and ferrous iron. Two main and opposite hypotheses for a role of the HO-1/BVR-A system in AD propose that this system mediates neurotoxic and neuroprotective effects, respectively. This apparent controversy was mainly due to the fact that for over about 20years HO-1 was the only player on which all the analyses were focused, excluding the other important and essential component of the entire system, BVR. Following studies from the Butterfield laboratory that reported alterations in BVR activity along with decreased phosphorylation and increased oxidative/nitrosative post-translational modifications in the brain of subjects with AD and amnestic mild cognitive impairment (MCI) subjects, a debate was opened on the real pathophysiological and clinical significance of BVR-A. In this paper we provide a review of the main discoveries about the HO/BVR system in AD and MCI, and propose a mechanism that reconciles these two hypotheses noted above of neurotoxic and the neuroprotective aspects of this important stress responsive system.
Collapse
|
33
|
Pramanik D, Mukherjee S, Dey SG. Apomyoglobin Sequesters Heme from Heme Bound Aβ Peptides. Inorg Chem 2013; 52:10929-35. [DOI: 10.1021/ic401771j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Debajyoti Pramanik
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India 700032
| | - Soumya Mukherjee
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India 700032
| | - Somdatta Ghosh Dey
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India 700032
| |
Collapse
|
34
|
Mukherjee S, Dey SG. Heme Bound Amylin: Spectroscopic Characterization, Reactivity, and Relevance to Type 2 Diabetes. Inorg Chem 2013; 52:5226-35. [DOI: 10.1021/ic4001413] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Soumya Mukherjee
- Department of Inorganic
Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India 700032
| | - Somdatta Ghosh Dey
- Department of Inorganic
Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India 700032
| |
Collapse
|
35
|
Pramanik D, Ghosh C, Mukherjee S, Dey SG. Interaction of amyloid β peptides with redox active heme cofactor: Relevance to Alzheimer's disease. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2012.02.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
36
|
Mancuso C, Barone E, Guido P, Miceli F, Di Domenico F, Perluigi M, Santangelo R, Preziosi P. Inhibition of lipid peroxidation and protein oxidation by endogenous and exogenous antioxidants in rat brain microsomes in vitro. Neurosci Lett 2012; 518:101-5. [PMID: 22609281 DOI: 10.1016/j.neulet.2012.04.062] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 04/16/2012] [Accepted: 04/23/2012] [Indexed: 10/28/2022]
Abstract
Reactive oxygen and reactive nitrogen species oxidize and nitrate DNA, lipid and proteins thus leading to neuronal death. Both endogenous and dietary antioxidants were shown to afford neuroprotection either by scavenging free radicals or inducing antioxidant enzymes. That said, the differential contribution of endogenous versus nutritional antioxidants to prevent neurodegeneration is still debated. In this study the free radical scavenging activity of two endogenous antioxidants, such as bilirubin and its precursor biliverdin, was compared with that of the dietary antioxidant alpha-tocopherol in rat brain microsomes exposed to peroxyl radical or peroxynitrite in vitro. Bilirubin and biliverdin (1-200 μM) inhibited both peroxyl radical- and peroxynitrite-dependent lipid peroxidation with a greater potency and efficacy than alpha-tocopherol. However, both BV and BR displayed greater potency and efficacy in preventing peroxynitrite- than peroxyl radical-induced lipid peroxidation. The greater antioxidant effect of both bilirubin and biliverdin than alpha-tocopherol was also confirmed against peroxyl radical- and peroxynitrite-induced protein oxidation. In conclusion, both bilirubin and biliverdin exhibited a greater antioxidant activity than alpha-tocopherol in preventing oxidative stress damage in rat brain.
Collapse
Affiliation(s)
- Cesare Mancuso
- Institute of Pharmacology, Catholic University School of Medicine, Largo F. Vito, 1, 00168 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Crystallographic studies of heme oxygenase complexed with an unstable reaction intermediate, verdoheme. J Inorg Biochem 2012; 113:102-9. [PMID: 22673156 DOI: 10.1016/j.jinorgbio.2012.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 04/05/2012] [Accepted: 04/11/2012] [Indexed: 11/20/2022]
Abstract
This article discusses the accuracy of X-ray structural studies of heme oxygenase (HO) in complex with an unstable intermediate, verdoheme. Heme degradation by HO proceeds through three successive steps of O(2) activation. The mechanism of the third step, the ring opening of verdoheme, has been the least understood. Recent structural studies of the verdoheme-HO complex provide detailed information concerning this mechanism. Due to X-ray-induced photoreduction and the instability of verdoheme, it has been difficult to obtain an accurate structure for the ferrous verdoheme-HO complex. Therefore, accurate structural studies, including analysis of the electronic state of the verdoheme-HO complex, are needed to elucidate the proper reaction mechanism.
Collapse
|
38
|
Barone E, Di Domenico F, Cenini G, Sultana R, Cini C, Preziosi P, Perluigi M, Mancuso C, Butterfield DA. Biliverdin reductase--a protein levels and activity in the brains of subjects with Alzheimer disease and mild cognitive impairment. Biochim Biophys Acta Mol Basis Dis 2011; 1812:480-7. [PMID: 21241799 DOI: 10.1016/j.bbadis.2011.01.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 12/21/2010] [Accepted: 01/10/2011] [Indexed: 01/17/2023]
Abstract
Biliverdin reductase-A is a pleiotropic enzyme involved not only in the reduction of biliverdin-IX-alpha into bilirubin-IX-alpha, but also in the regulation of glucose metabolism and cell growth secondary to its serine/threonine/tyrosine kinase activity. Together with heme oxygenase, whose metabolic role is to degrade heme into biliverdin-IX-alpha, it forms a powerful system involved in the cell stress response during neurodegenerative disorders. In this paper, an up-regulation of the biliverdin reductase-A protein levels was found in the hippocampus of the subjects with Alzheimer disease and arguably its earliest form, mild cognitive impairment. Moreover a significant reduction in the phosphorylation of serine, threonine and tyrosine residues of biliverdin reductase-A was found, and this was paralleled by a marked reduction in its reductase activity. Interestingly, the levels of both total and phosphorylated biliverdin reductase-A were unchanged as well as its enzymatic activity in the cerebella. These results demonstrated a dichotomy between biliverdin reductase-A protein levels and activity in the hippocampus of subjects affected by Alzheimer disease and mild cognitive impairment, and this effect likely is attributable to a reduction in the phosphorylation of serine, threonine and tyrosine residues of biliverdin reductase-A. Consequently, not just the increased levels of biliverdin reductase-A, but also its changed activity and phosphorylation state, should be taken into account when considering potential biomarkers for Alzheimer disease and mild cognitive impairment.
Collapse
Affiliation(s)
- Eugenio Barone
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Pramanik D, Dey SG. Active Site Environment of Heme-Bound Amyloid β Peptide Associated with Alzheimer’s Disease. J Am Chem Soc 2010; 133:81-7. [DOI: 10.1021/ja1084578] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Debajyoti Pramanik
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India 700032
| | - Somdatta Ghosh Dey
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India 700032
| |
Collapse
|
40
|
Mueller C, Zhou W, Vanmeter A, Heiby M, Magaki S, Ross MM, Espina V, Schrag M, Dickson C, Liotta LA, Kirsch WM. The heme degradation pathway is a promising serum biomarker source for the early detection of Alzheimer's disease. J Alzheimers Dis 2010; 19:1081-91. [PMID: 20157261 DOI: 10.3233/jad-2010-1303] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
One of the remaining challenges in Alzheimer's disease (AD) research is the establishment of biomarkers for early disease detection. As part of a prospective study spanning a period of five years, we have collected serial serum samples from cognitively normal, mild cognitively impaired (MCI), and mild AD participants, including same patient samples before and after cognitive decline. Using mass spectrometry we identified several promising leads for biomarker development, such as prosaposin, phospholipase D1, biliverdin reductase B, and S100 calcium binding protein A7. Selected candidate markers were verified using reverse phase protein microarray assays. Of 15 protein/protein abundance ratios that were significantly altered in sera from subjects with mild AD compared to Normal or MCI subjects, 14 were composed of ratios containing heme oxygenase-1, biliverdin reductase A, or biliverdin reductase B. Moreover, an increase in the protein abundance ratio of matrix metallopeptidase 9/biliverdin reductase differentiated stable MCI subjects from MCI subjects progressing into mild AD before the onset of cognitive decline. These findings strongly implicate the heme degradation pathway as a promising source of protein biomarkers for the early detection of AD.
Collapse
|
41
|
Down-regulation of aminolevulinate synthase, the rate-limiting enzyme for heme biosynthesis in Alzheimer's disease. Neurosci Lett 2009; 460:180-4. [PMID: 19477221 DOI: 10.1016/j.neulet.2009.05.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 05/14/2009] [Accepted: 05/15/2009] [Indexed: 01/01/2023]
Abstract
Heme is an essential cell metabolite, intracellular regulatory molecule, and protein prosthetic group. Given the known alterations in heme metabolism and redox metal distribution and the up-regulation of heme oxygenase enzyme in Alzheimer's disease (AD), we hypothesized that heme dyshomeostasis plays a key role in the pathogenesis. To begin testing this hypothesis, we used qRT-PCR to quantify the expression of aminolevulinate synthase (ALAS1) and porphobilinogen deaminase (PBGD), rate-limiting enzymes in the heme biosynthesis pathway. The relative expression of ALAS1 mRNA, the first and rate-limiting enzyme for heme biosynthesis under normal physiological conditions, was significantly (p<0.05) reduced by nearly 90% in AD compared to control. Coordinately, the relative expression of PBGD mRNA, which encodes porphobilinogen deaminase, the third enzyme in the heme synthesis pathway and a secondary rate-limiting enzyme in heme biosynthesis, was also significantly (p<0.02) reduced by nearly 60% in AD brain compared to control and significantly related to apolipoprotein E genotype (p<0.005). In contrast, the relative expression of ALAD mRNA, which encodes aminolevulinate dehydratase, the second and a non-rate-limiting enzyme for heme biosynthesis, was unchanged between the two groups. Taken together, our results suggest regulation of cerebral heme biosynthesis is profoundly altered in AD and may contribute toward disease pathogenesis by affecting cell metabolism as well as iron homeostasis.
Collapse
|
42
|
KUNII HIROYUKI, ISHIKAWA KAZUNOBU, YAMAGUCHI TOKIO, KOMATSU NOBUO, ICHIHARA TOSHIKATSU, MARUYAMA YUKIO. BILIRUBIN AND ITS OXIDATIVE METABOLITE BIOPYRRINS IN PATIENTS WITH ACUTE MYOCARDIAL INFARCTION. Fukushima J Med Sci 2009; 55:39-51. [DOI: 10.5387/fms.55.39] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
43
|
Zelenka J, Lenícek M, Muchová L, Jirsa M, Kudla M, Balaz P, Zadinová M, Ostrow JD, Wong RJ, Vítek L. Highly sensitive method for quantitative determination of bilirubin in biological fluids and tissues. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 867:37-42. [PMID: 18373963 DOI: 10.1016/j.jchromb.2008.03.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 02/11/2008] [Accepted: 03/05/2008] [Indexed: 11/24/2022]
Abstract
Unconjugated bilirubin (UCB) exhibits potent antioxidant and cytoprotective properties, but causes apoptosis and cytotoxicity at pathologically elevated concentrations. Accurate measurement of UCB concentrations in cells, fluids and tissues is needed to evaluate its role in redox regulation, prevention of atherosclerotic and malignant diseases, and bilirubin encephalopathy. In the present study, we developed and validated a highly sensitive method for tissue UCB determinations. UCB was extracted from rat organs with chloroform/methanol/hexane at pH 6.2 and then partitioned into a minute volume of alkaline buffer that was subjected to HPLC using an octyl reverse phase (RP) column. Addition of mesobilirubin as an internal standard corrected for losses of UCB during extraction. Recoveries averaged 75+/-5%. The detection limit was 10pmol UCB/g wet tissue. Variance was +/-2.5%. When used to measure UCB concentrations in tissues of jaundiced Gunn rats, this procedure yielded UCB levels directly comparable to published methods, and accurately determined very low tissue bilirubin concentrations (</=40pmol UCB/g tissue) in non-jaundiced rats.
Collapse
Affiliation(s)
- Jaroslav Zelenka
- Institute of Clinical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University in Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Vítek L, Kráslová I, Muchová L, Novotný L, Yamaguchi T. Urinary excretion of oxidative metabolites of bilirubin in subjects with Gilbert syndrome. J Gastroenterol Hepatol 2007; 22:841-5. [PMID: 17565639 DOI: 10.1111/j.1440-1746.2006.04564.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM Bilirubin is a potent endogenous antioxidant substance. Recent data suggest a direct relationship exists between urinary excretion of biopyrrins, a novel group of bilirubin oxidative metabolites, and severity of oxidative stress. The aim of this study was to evaluate urinary excretion of biopyrrins in subjects with Gilbert syndrome. METHODS The study included patients with Gilbert syndrome (n = 33) and healthy blood donors (n = 25). In all subjects complete biochemical tests were conducted along with analysis of urinary excretion of biopyrrins. Linear and logistic regression analyses were used for multiple adjustments of possible confounders/modifiers. RESULTS As expected, high serum bilirubin levels were found in the Gilbert syndrome group as compared to controls (27.8 +/- 9.7 vs 9.9 +/- 3.0 micromol/L, P < 0.001). In contrast, urinary levels of biopyrrins were substantially lower in the Gilbert syndrome group as compared to normobilirubinemic control subjects (19.9 +/- 26.0 vs 90.2 +/- 139.1 U/g urinary creatinine, P < 0.001). The Gilbert syndrome group also had very low prevalence odds ratios for urinary biopyrrins above the median of the control values even after adjustment for possibly confounding factors (odds ratio 0.18, 95% confidence interval 0.33-0.94; P = 0.042). CONCLUSIONS An inverse relationship was demonstrated between serum bilirubin level and urinary excretion of biopyrrins, which is presumably due to antioxidative effects of elevated serum bilirubin levels in Gilbert syndrome.
Collapse
Affiliation(s)
- Libor Vítek
- Institute of Clinical Biochemistry and Laboratory Diagnostics, First Medical Faculty, Charles University, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
45
|
Kanekiyo T, Ban T, Aritake K, Huang ZL, Qu WM, Okazaki I, Mohri I, Murayama S, Ozono K, Taniike M, Goto Y, Urade Y. Lipocalin-type prostaglandin D synthase/beta-trace is a major amyloid beta-chaperone in human cerebrospinal fluid. Proc Natl Acad Sci U S A 2007; 104:6412-7. [PMID: 17404210 PMCID: PMC1851035 DOI: 10.1073/pnas.0701585104] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The conformational change in amyloid beta (Abeta) peptide from its monomeric form to aggregates is crucial in the pathogenesis of Alzheimer's disease (AD). In the healthy brain, some unidentified chaperones appear to prevent the aggregation of Abeta. Here we reported that lipocalin-type prostaglandin D synthase (L-PGDS)/beta-trace, the most abundant cerebrospinal fluid (CSF) protein produced in the brain, was localized in amyloid plaques in both AD patients and AD-model Tg2576 mice. Surface plasmon resonance analysis revealed that L-PGDS/beta-trace tightly bound to Abeta monomers and fibrils with high affinity (K(D) = 18-50 nM) and that L-PGDS/beta-trace recognized residues 25-28 in Abeta, which is the key region for its conformational change to a beta-sheet structure. The results of a thioflavin T fluorescence assay to monitor Abeta aggregation disclosed that L-PGDS/beta-trace inhibited the spontaneous aggregation of Abeta (1-40) and Abeta (1-42) within its physiological range (1-5 microM) in CSF. L-PGDS/beta-trace also prevented the seed-dependent aggregation of 50 microM Abeta with K(i) of 0.75 microM. Moreover, the inhibitory activity toward Abeta (1-40) aggregation in human CSF was decreased by 60% when L-PGDS/beta-trace was removed from the CSF by immunoaffinity chromatography. The deposition of Abeta after intraventricular infusion of Abeta (1-42) was 3.5-fold higher in L-PGDS-deficient mice and reduced to 23% in L-PGDS-overexpressing mice as compared with their wild-type levels. These data indicate that L-PGDS/beta-trace is a major endogenous Abeta-chaperone in the brain and suggest that the disturbance of this function may be involved in the onset and progression of AD. Our findings may provide a diagnostic and therapeutic approach for AD.
Collapse
Affiliation(s)
- Takahisa Kanekiyo
- *Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Suita, Osaka 565-0874, Japan
- Department of Pediatrics and
| | - Tadato Ban
- Institute for Protein Research, Osaka University and CREST Japan Science and Technology Agency, Suita, Osaka 565-0871, Japan
| | - Kosuke Aritake
- *Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Suita, Osaka 565-0874, Japan
| | - Zhi-Li Huang
- *Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Suita, Osaka 565-0874, Japan
- State Key Laboratory of Medical Neurobiology, Shanghai Medical College of Fudan University, Shanghai 200032, China; and
| | - Wei-Min Qu
- *Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Suita, Osaka 565-0874, Japan
| | - Issay Okazaki
- *Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Suita, Osaka 565-0874, Japan
| | - Ikuko Mohri
- *Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Suita, Osaka 565-0874, Japan
- Mental Health and Environmental Effects Research, The Research Center for Child Mental Development, Graduate School of Medicine, and
| | - Shigeo Murayama
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo 173-0015, Japan
| | | | - Masako Taniike
- Mental Health and Environmental Effects Research, The Research Center for Child Mental Development, Graduate School of Medicine, and
| | - Yuji Goto
- Institute for Protein Research, Osaka University and CREST Japan Science and Technology Agency, Suita, Osaka 565-0871, Japan
| | - Yoshihiro Urade
- *Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Suita, Osaka 565-0874, Japan
- **To whom correspondence should be addressed. E-mail:
| |
Collapse
|
46
|
Vítek L, Schwertner HA. The Heme Catabolic Pathway and its Protective Effects on Oxidative Stress‐Mediated Diseases. Adv Clin Chem 2007; 43:1-57. [PMID: 17249379 DOI: 10.1016/s0065-2423(06)43001-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Bilirubin, the principal bile pigment, is the end product of heme catabolism. For many years, bilirubin was thought to have no physiological function other than that of a waste product of heme catabolism--useless at best and toxic at worst. Although hyperbilirubinemia in neonates has been shown to be neurotoxic, studies performed during the past decade have found that bilirubin has a number of new and interesting biochemical and biological properties. In addition, there is now a strong body of evidence suggesting that bilirubin may have a beneficial role in preventing oxidative changes in a number of diseases including atherosclerosis and cancer, as well as a number of inflammatory, autoimmune, and degenerative diseases. The results also suggest that activation of the heme oxygenase and heme catabolic pathway may have beneficiary effects on disease prevention either through the action of bilirubin or in conjunction with bilirubin. If so, it may be possible to therapeutically induce heme oxygenase, increase bilirubin concentrations, and lower the risk of oxidative stress-related diseases.
Collapse
Affiliation(s)
- Libor Vítek
- Fourth Department of Internal Medicine, Institute of Clinical Biochemistry, Laboratory Diagnostics, Charles University of Prague, U Nemocnice 2, Praha 2, 128 08 Prague, Czech Republic
| | | |
Collapse
|
47
|
Aycicek A, Iscan A, Erel O, Akcali M, Selek S. Total antioxidant/oxidant status in meningism and meningitis. Pediatr Neurol 2006; 35:382-6. [PMID: 17138006 DOI: 10.1016/j.pediatrneurol.2006.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 04/26/2006] [Accepted: 07/06/2006] [Indexed: 11/21/2022]
Abstract
The objective of this study was to investigate the antioxidant/oxidant status of serum and cerebrospinal fluid in children with meningismus and acute bacterial meningitis. Twenty-three children (age range, 0.75 to 9 years) with fever and meningeal signs that required analysis of the cerebrospinal fluid, but no cytologic or biochemical evidence of meningitis in their serum and cerebrospinal fluid, constituted the meningismus group. Thirty-one children (age range, 0.5 to 10 years) with acute bacterial meningitis constituted the meningitis group. Twenty-nine healthy children (age range, 0.5 to 11 years) were recruited as control subjects. Antioxidant status (ascorbic acid, albumin, thiol, uric acid, total bilirubin, total antioxidant capacity, catalase and ceruloplasmin concentrations) and oxidant status (lipid hydroperoxide and total oxidant status) were measured. The serum antioxidant status was lower, and oxidant status levels higher in both meningitis and meningismus subjects than in the control children (P < 0.001). Cerebrospinal fluid oxidant status was lower in the meningitis group than in the meningismus group (P < 0.05). These results indicate that serum antioxidant status was lower, and serum oxidant status was higher in children in the meningismus and meningitis groups, whereas cerebrospinal fluid oxidant status was higher in the meningismus group than in the meningitis group.
Collapse
Affiliation(s)
- Ali Aycicek
- Pediatric Service, Sanliurfa Children's Hospital, Sanliurfa, Turkey.
| | | | | | | | | |
Collapse
|
48
|
Mense SM, Zhang L. Heme: a versatile signaling molecule controlling the activities of diverse regulators ranging from transcription factors to MAP kinases. Cell Res 2006; 16:681-92. [PMID: 16894358 DOI: 10.1038/sj.cr.7310086] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Heme (iron protoporphyrin IX) is an essential molecule for numerous living organisms. Not only does it serve as a prosthetic group in enzymes, it also acts as a signaling molecule that controls diverse molecular and cellular processes ranging from signal transduction to protein complex assembly. Deficient heme synthesis or function impacts the hematopoietic, hepatic and nervous systems in humans. Recent studies have revealed a series of heme-regulated transcription factors and signal transducers including Hap1, a heme-activated transcription factor that mediates the effects of oxygen on gene transcription in the yeast Saccharomyces cerevisiae; Bach1, a transcriptional repressor that is negatively regulated by heme in mammalian cells; IRR, an iron regulatory protein that mediates the iron-dependant regulation of heme synthesis in the bacterium Bradyrhizobium japonicum; and heme-regulated inhibitor, an eucaryotic initiation factor 2alpha kinase that coordinates protein synthesis with heme availability in reticulocytes. In this review, we summarize the current knowledge about how heme controls the activity of these transcriptional regulators and signal transducers, and discuss diseases associated with defective heme synthesis, degradation and function.
Collapse
Affiliation(s)
- Sarah M Mense
- Department of Environmental Health Sciences, Columbia University, Mailman School of Public Health, New York, NY 10032, USA
| | | |
Collapse
|
49
|
Calabrese V, Butterfield DA, Scapagnini G, Stella AMG, Maines MD. Redox regulation of heat shock protein expression by signaling involving nitric oxide and carbon monoxide: relevance to brain aging, neurodegenerative disorders, and longevity. Antioxid Redox Signal 2006; 8:444-77. [PMID: 16677090 DOI: 10.1089/ars.2006.8.444] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Increased free radical generation and decreased efficiency of the reparative/degradative mechanisms both primarily contribute to age-related elevation in the level of oxidative stress and brain damage. Excess formation of reactive oxygen and nitrogen species can cause proteasomal dysfunction and protein overloading. The major neurodegenerative diseases are all associated with the presence of abnormal proteins. Different integrated responses exist in the brain to detect oxidative stress which is controlled by several genes termed vitagenes, including the heat shock protein (HSP) system. Of the various HSPs, heme oxygenase-I (HO-1), by generating the vasoactive molecule carbon monoxide and the potent antioxidant bilirubin, could represent a protective system potentially active against brain oxidative injury. The HO-1 gene is redox regulated and its expression is modulated by redox active compounds, including nutritional antioxidants. Given the broad cytoprotective properties of the heat shock response, there is now strong interest in discovering and developing pharmacological agents capable of inducing the heat shock response. These findings have opened up new neuroprotective strategies, as molecules inducing this defense mechanism can be a therapeutic target to minimize the deleterious consequences associated with accumulation of conformationally aberrant proteins to oxidative stress, such as in neurodegenerative disorders and brain aging, with resulting prolongation of a healthy life span.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Section of Biochemistry and Molecular Biology, Department of Chemistry, Faculty of Medicine, University of Catania, Catania, Italy
| | | | | | | | | |
Collapse
|
50
|
Doré S. Unique Properties of Polyphenol Stilbenes in the Brain: More than Direct Antioxidant Actions; Gene/Protein Regulatory Activity. Neurosignals 2005; 14:61-70. [PMID: 15956815 DOI: 10.1159/000085386] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Accepted: 03/01/2005] [Indexed: 11/19/2022] Open
Abstract
The 'French Paradox' has been typically associated with moderate consumption of wine, especially red wine. A polyphenol 3,4',5-trihydroxy-trans-stilbene (a member of the non-flavonoids family), better known as resveratrol, has been purported to have many health benefits. A number of these valuable properties have been attributed to its intrinsic antioxidant capabilities, although the potential level of resveratrol in the circulation is likely not enough to neutralize free radical scavenging. The brain and the heart are uniquely vulnerable to hypoxic conditions and oxidative stress injuries. Recently, evidence suggests that resveratrol could act as a signaling molecule within tissues and cells to modulate the expression of genes and proteins. Stimulation of such proteins and enzymes could explain some the intracellular antioxidative properties. The modulation of genes could suffice as an explanation of some of resveratrol's cytoprotective actions, as well as its influence on blood flow, cell death, and inflammatory cascades. Resveratrol stimulation of the expression of heme oxygenase is one example. Increased heme oxygenase activity has led to significant protection against models of in vitro and in vivo oxidative stress injury. Resveratrol could provide cellular resistance against insults; although more work is necessary before it is prescribed as a potential prophylactic in models of either acute or chronic conditions, such as stroke, amyotrophic lateral sclerosis, Parkinson, Alzheimer, and a variety of age-related vascular disorders.
Collapse
Affiliation(s)
- Sylvain Doré
- Johns Hopkins University, School of Medicine, ACCM Department, Baltimore, MD 21205, USA.
| |
Collapse
|