1
|
Coppola VJ, Scribner HR, Barnett C, Flanigan KAS, Riesgo VR, Bingman VP. Age-related reductions in whole brain mass and telencephalon volume in very old white Carneau pigeons (Columba livia). Neurosci Lett 2024; 828:137754. [PMID: 38556244 DOI: 10.1016/j.neulet.2024.137754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
While studies have identified age-related cognitive impairment in pigeons (Columba livia), no study has detected the brain atrophy which typically accompanies cognitive impairment in older mammals. Instead, Coppola and Bingman (Aging is associated with larger brain mass and volume in homing pigeons (Columba livia), Neurosci. Letters 698 (2019) 39-43) reported increased whole brain mass and telencephalon volume in older, compared to younger, homing pigeons. One reason for this unexpected finding might be that the older pigeons studied were not old enough to display age-related brain atrophy. Therefore, the current study repeated Coppola and Bingman, but with a sample of older white Carneau pigeons that were on average 5.34 years older. Brains from young and old homing pigeons were weighed and orthogonal measurements of the telencephalon, cerebellum, and optic tectum were obtained. Despite having a heavier body mass than younger pigeons, older pigeons had a significant reduction in whole brain mass and telencephalon volume, but not cerebellum or optic tectum volume. This study is therefore the first to find that pigeons experience age-related brain atrophy.
Collapse
Affiliation(s)
- Vincent J Coppola
- Department of Behavioral Sciences, University of Findlay, Findlay, OH, USA.
| | - Holden R Scribner
- Department of Behavioral Sciences, University of Findlay, Findlay, OH, USA
| | - Caillie Barnett
- Department of Behavioral Sciences, University of Findlay, Findlay, OH, USA
| | - Kaylyn A S Flanigan
- Department of Psychology, Bowling Green State University, Bowling Green, OH, USA; J.P. Scott Center for Neuroscience, Mind, & Behavior, Bowling Green, OH, USA.
| | - Victoria R Riesgo
- Department of Psychology, Bowling Green State University, Bowling Green, OH, USA; J.P. Scott Center for Neuroscience, Mind, & Behavior, Bowling Green, OH, USA.
| | - Verner P Bingman
- Department of Psychology, Bowling Green State University, Bowling Green, OH, USA; J.P. Scott Center for Neuroscience, Mind, & Behavior, Bowling Green, OH, USA.
| |
Collapse
|
2
|
Nakano Y, Madarame H. Systemic amyloid A (AA) amyloidosis in the Bengalese finch (Lonchura striata var. domestica). J Vet Med Sci 2020; 82:1484-1487. [PMID: 32788502 PMCID: PMC7653305 DOI: 10.1292/jvms.20-0365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The incidence of systemic amyloid A (AA) amyloidosis was high in Bengalese finches
(Lonchura striata var. domestica), as 150 of 235 birds from 5 breeding
colonies (63.8%) tested positive for it. The incidence was statistically significantly
higher in one colony. The liver was the most frequently affected organ (150 cases),
followed by the spleen and then the kidneys. The degree of amyloid deposition was high in
the liver and spleen and low in the kidneys. The histological distribution of amyloid
deposits was similar in all finch species. Species-specific or colony-specific
predisposing factors for systemic AA amyloidosis in Bengalese finches remain to be
elucidated. As far as we know, this is the first report of amyloidosis in Bengalese
finches.
Collapse
Affiliation(s)
- Yumiko Nakano
- Nakano Bird Clinic, 3-35-10 Wakamiya, Nakano-ku, Tokyo 165-0033, Japan
| | - Hiroo Madarame
- Veterinary Teaching Hospital, Azabu Universiry, 1-17-71 Fuchinobe, Chuo, Sagamihara, Kanagawa 252-5201 Japan
| |
Collapse
|
3
|
Ono A, Nakayama Y, Inoue M, Yanai T, Murakami T. AA Amyloid Deposition in the Central and Peripheral Nervous Systems in Flamingos. Vet Pathol 2020; 57:700-705. [PMID: 32677873 DOI: 10.1177/0300985820939976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AA amyloidosis is characterized by amyloid deposition in systemic organs, but amyloid deposition in the central nervous system (CNS) or peripheral nervous system (PNS) is rare. In this study, AA amyloidosis was observed in 31 of 48 flamingos that died at a Japanese zoo. Almost all cases developed AA amyloidosis secondary to inflammatory diseases such as enteritis. Affected flamingos had AA amyloid deposition around blood vessels in periventricular white matter of the brain and in peripheral nerves. In addition, cerebral Aβ amyloidosis was observed in one of the 31 cases with AA amyloidosis. In conclusion, flamingos in the zoo commonly developed systemic amyloidosis with frequent amyloid deposition in the CNS and PNS, which seems to be a unique distribution in this avian species. Comparative pathological analyses in flamingos may help elucidate the pathogenesis of amyloid neuropathy.
Collapse
Affiliation(s)
- Ayumi Ono
- Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yumi Nakayama
- Tokyo University of Agriculture and Technology, Tokyo, Japan
| | | | - Tokuma Yanai
- Gifu University, Gifu-shi, Gifu, Japan.,Okayama University of Science, Imabari-shi, Ehime, Japan
| | | |
Collapse
|
4
|
Coppola VJ, Bingman VP. c-Fos revealed lower hippocampal participation in older homing pigeons when challenged with a spatial memory task. Neurobiol Aging 2019; 87:98-107. [PMID: 31889558 DOI: 10.1016/j.neurobiolaging.2019.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 01/12/2023]
Abstract
Homing pigeons experience age-related spatial-cognitive decline similar to that seen in mammals. In contrast to mammals, however, previous studies have shown the hippocampal formation (HF) of old, cognitively impaired pigeons to be greater in volume and neuron number compared with young pigeons. As a partial explanation of the cognitive decline in older birds, it was hypothesized that older pigeons have reduced HF activation during spatial learning. The present study compared HF activation (via the activity-dependent expression of the immediate early gene c-Fos) between younger and older pigeons during learning of a spatial, delayed nonmatch-to-sample task. On the last day of training, c-Fos activation significantly correlated with behavioral performance in the young, but not old, pigeons suggesting more HF engagement by the young pigeons in solving the task. The behavioral correlation was additionally associated with consistently higher, but insignificant c-Fos activation across practically every HF subdivision in the young compared with the old pigeons. In sum, the results of the present study are consistent with the hypothesis that age-related decline in the spatial cognitive ability of homing pigeons is in part a result of an older HF being less responsive to the processing of spatial information. However, alternative interpretations of the data are discussed.
Collapse
Affiliation(s)
- Vincent J Coppola
- Department of Psychology, Bowling Green State University, Bowling Green, OH, USA; J.P. Scott Center for Neuroscience, Mind, & Behavior, Bowling Green, OH, USA.
| | - Verner P Bingman
- Department of Psychology, Bowling Green State University, Bowling Green, OH, USA; J.P. Scott Center for Neuroscience, Mind, & Behavior, Bowling Green, OH, USA
| |
Collapse
|
5
|
Moir RD, Tanzi RE. Low Evolutionary Selection Pressure in Senescence Does Not Explain the Persistence of Aβ in the Vertebrate Genome. Front Aging Neurosci 2019; 11:70. [PMID: 30983989 PMCID: PMC6447958 DOI: 10.3389/fnagi.2019.00070] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 03/12/2019] [Indexed: 01/08/2023] Open
Abstract
The argument is frequently made that the amyloid-β protein (Aβ) persists in the human genome because Alzheimer's disease (AD) primarily afflicts individuals over reproductive age and, therefore, there is low selective pressure for the peptide's elimination or modification. This argument is an important premise for AD amyloidosis models and therapeutic strategies that characterize Aβ as a functionless and intrinsically pathological protein. Here, we review if evolutionary theory and data on the genetics and biology of Aβ are consistent with low selective pressure for the peptide's expression in senescence. Aβ is an ancient neuropeptide expressed across vertebrates. Consistent with unusually high evolutionary selection constraint, the human Aβ sequence is shared by a majority of vertebrate species and has been conserved across at least 400 million years. Unlike humans, the overwhelming majority of vertebrate species do not cease reproduction in senescence and selection pressure is maintained into old age. Hence, low selective pressure in senescence does not explain the persistence of Aβ across the vertebrate genome. The "Grandmother hypothesis" (GMH) is the prevailing model explaining the unusual extended postfertile period of humans. In the GMH, high risk associated with birthing in old age has lead to early cessation of reproduction and a shift to intergenerational care of descendants. The rechanneling of resources to grandchildren by postreproductive individuals increases reproductive success of descendants. In the GMH model, selection pressure does not end following menopause. Thus, evolutionary models and phylogenetic data are not consistent with the absence of reproductive selection pressure for Aβ among aged vertebrates, including humans. Our analysis suggests an alternative evolutionary model for the persistence of Aβ in the vertebrate genome. Aβ has recently been identified as an antimicrobial effector molecule of innate immunity. High conservation across the Chordata phylum is consistent with strong positive selection pressure driving human Aβ's remarkable evolutionary longevity. Ancient origins and widespread conservation suggest the human Aβ sequence is highly optimized for its immune role. We detail our analysis and discuss how the emerging "Antimicrobial Protection Hypothesis" of AD may provide insights into possible evolutionary roles for Aβ in infection, aging, and disease etiology.
Collapse
Affiliation(s)
- Robert D. Moir
- Genetics and Aging Research Unit, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Harvard Medical School – Massachusetts General Hospital, Boston, MA, United States
| | | |
Collapse
|
6
|
Managing Aged Animals in Zoos to Promote Positive Welfare: A Review and Future Directions. Animals (Basel) 2018; 8:ani8070116. [PMID: 30011793 PMCID: PMC6070885 DOI: 10.3390/ani8070116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/06/2018] [Accepted: 07/11/2018] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Many animals experience physical and behavioral changes as they age. Age-related changes in physical or mental ability can limit the opportunities for animals to experience positive well-being. As animals in zoos are living longer than ever, understanding common physical, cognitive, and behavioral changes associated with ageing across species can help inform management practices. This review aggregates information about common age-related changes across a wide number of species, discusses the potential welfare impacts of these changes for ageing animals, and suggests methods for caretakers to maximize positive welfare opportunities for ageing animals under human care. Abstract Improvements in veterinary care, nutrition, and husbandry of animals living in zoos have led to an increase in the longevity of these animals over the past 30 years. In this same time period, the focus of animal welfare science has shifted from concerns over mitigating negative welfare impacts to promoting positive welfare experiences for animals. For instance, providing opportunities for animals to exert agency, solve problems, or acquire rewards are all associated with positive welfare outcomes. Many common age-related changes result in limitations to opportunities for positive welfare experiences, either due to pain or other physical, cognitive, or behavioral limitations. This review aggregates information regarding common age-related physical and behavioral changes across species, discusses how age-related changes may limit positive welfare opportunities of aged animals in human care, and suggests potential management methods to help promote positive welfare for animals at all life stages in zoos and aquariums.
Collapse
|
7
|
Nešić S, Kukolj V, Marinković D, Vučićević I, Jovanović M. Histological and immunohistochemical characteristics of cerebral amyloid angiopathy in elderly dogs. Vet Q 2016; 37:1-7. [PMID: 27669976 DOI: 10.1080/01652176.2016.1235301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Cerebral amyloid angiopathy (CAA) is a disorder characterized by amyloid deposition in the wall of cerebral blood vessels. The deposits of amyloid occur frequently in the blood vessels of the frontal, parietal and occipital cortex. OBJECTIVE To examine the characteristics of CAA classified according to the Vonsattel scale in elderly dogs histologically and immunohistochemically as well as the semi-quantitative evaluation of the amyloid deposits in the different segments of the brain. ANIMALS AND METHODS The brains of 36 dogs of different breeds and sexes, which had been routinely necropsied, were used and divided into two groups: dogs from 1 to 5 and 10 to 18 years old. The tissue sections were stained by hematoxylin-eosin, Congo red and immunohistochemically. RESULTS Amyloid was accumulated in the wall of cerebral blood vessels in 70% of dogs over the age of 10 years predominantly in the frontal cortex. CAA was demonstrated in elderly dogs as follows: in the frontal cortex (n = 19 or 63%), the parietal cortex (n = 12 or 40%), the hippocampus (40%) and the cerebellum (n = 5 or 17%). The deposits of amyloid in the wall of blood vessels detected by Congo red staining were also Aβ1-14 and Aβ1-42 immunohistochemically positive. Most commonly, the amyloid deposits affected a moderate number of blood vessels. The accumulation of amyloid was immunohistochemically revealed in the blood vessel walls as well as in the senile plaques and neurons. CONCLUSION The amount of amyloid in the arterial walls increased with age in dogs, whereas the amyloid accumulated in plaques was Congo red negative.
Collapse
Affiliation(s)
- Slađan Nešić
- a Department of Veterinary Pathology, Faculty of Veterinary Medicine , University of Belgrade , Belgrade , Serbia
| | - Vladimir Kukolj
- a Department of Veterinary Pathology, Faculty of Veterinary Medicine , University of Belgrade , Belgrade , Serbia
| | - Darko Marinković
- a Department of Veterinary Pathology, Faculty of Veterinary Medicine , University of Belgrade , Belgrade , Serbia
| | - Ivana Vučićević
- a Department of Veterinary Pathology, Faculty of Veterinary Medicine , University of Belgrade , Belgrade , Serbia
| | - Milijan Jovanović
- a Department of Veterinary Pathology, Faculty of Veterinary Medicine , University of Belgrade , Belgrade , Serbia
| |
Collapse
|
8
|
Changes in hippocampal volume and neuron number co-occur with memory decline in old homing pigeons (Columba livia). Neurobiol Learn Mem 2016; 131:117-20. [DOI: 10.1016/j.nlm.2016.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 11/18/2022]
|
9
|
Youssef SA, Capucchio MT, Rofina JE, Chambers JK, Uchida K, Nakayama H, Head E. Pathology of the Aging Brain in Domestic and Laboratory Animals, and Animal Models of Human Neurodegenerative Diseases. Vet Pathol 2016; 53:327-48. [DOI: 10.1177/0300985815623997] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
According to the WHO, the proportion of people over 60 years is increasing and expected to reach 22% of total world’s population in 2050. In parallel, recent animal demographic studies have shown that the life expectancy of pet dogs and cats is increasing. Brain aging is associated not only with molecular and morphological changes but also leads to different degrees of behavioral and cognitive dysfunction. Common age-related brain lesions in humans include brain atrophy, neuronal loss, amyloid plaques, cerebrovascular amyloid angiopathy, vascular mineralization, neurofibrillary tangles, meningeal osseous metaplasia, and accumulation of lipofuscin. In aging humans, the most common neurodegenerative disorder is Alzheimer’s disease (AD), which progressively impairs cognition, behavior, and quality of life. Pathologic changes comparable to the lesions of AD are described in several other animal species, although their clinical significance and effect on cognitive function are poorly documented. This review describes the commonly reported age-associated neurologic lesions in domestic and laboratory animals and the relationship of these lesions to cognitive dysfunction. Also described are the comparative interspecies similarities and differences to AD and other human neurodegenerative diseases including Parkinson’s disease and progressive supranuclear palsy, and the spontaneous and transgenic animal models of these diseases.
Collapse
Affiliation(s)
- S. A. Youssef
- Department of Pathobiology, Dutch Molecular Pathology Center, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - M. T. Capucchio
- Department of Veterinary Sciences, Torino University, Torino, Italy
| | - J. E. Rofina
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - J. K. Chambers
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - K. Uchida
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - H. Nakayama
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - E. Head
- Sanders Brown Center on Aging, Pharmacology & Nutritional Sciences, University of Kentucky, Lexington, UK, USA
| |
Collapse
|
10
|
KIMOTO M, IKOMA S, FUJIMOTO S, NAKANO M, SHINTANI S, NISHIMURA M, FURUOKA H. Pathological Study of Cerebral Amyloidosis in Three Aged Large Eagles. ACTA ACUST UNITED AC 2015. [DOI: 10.5686/jjzwm.20.71] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Miki KIMOTO
- Laboratory of veterinary pathology, Obihiro University of Agriculture and Veterinary Medicine
| | | | | | - Mie NAKANO
- Laboratory of veterinary pathology, Obihiro University of Agriculture and Veterinary Medicine
| | - Sayo SHINTANI
- Laboratory of veterinary pathology, Obihiro University of Agriculture and Veterinary Medicine
| | - Maki NISHIMURA
- Laboratory of veterinary pathology, Obihiro University of Agriculture and Veterinary Medicine
| | - Hidefumi FURUOKA
- Laboratory of veterinary pathology, Obihiro University of Agriculture and Veterinary Medicine
| |
Collapse
|
11
|
Takahashi E, Kuribayashi H, Chambers JK, Imamura E, Une Y. Senile plaques and cerebral amyloid angiopathy in an aged California sea lion (Zalophus californianus). Amyloid 2014; 21:211-5. [PMID: 24779910 DOI: 10.3109/13506129.2014.908840] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Senile plaques (SPs) and cerebral amyloid angiopathy (CAA) consisting of β-amyloid (Aβ) are major features in the brain of Alzheimer's disease (AD) patients and elderly humans and animals. In this study, we report the finding of SPs and CAA in an aged sea lion (30 years), which is the first demonstration of AD-related pathological changes in a marine animal. Histologically, SPs were observed at the cerebral cortex, most frequently at the frontal lobe, with two morphologically different types: the small round type and the large granular type. Only the small round SPs were positive for Congo red staining. The SPs were equally immunoreactive to Aβ40 and Aβ42 and were mainly composed of Aβ with an N-terminal pyroglutamate residue at position 3. Amyloid depositions at vessel walls were noted at the meninges and within the parenchyma. Interestingly, double immunofluorescence staining for Aβ40 and Aβ42 showed that the two subtypes were deposited segmentally in different parts of the vessel walls. The lesions observed in the sea lion suggest that Aβ deposition is widely present in various animal species, including marine mammals; however, the peculiar deposits similar to cotton wool plaques and the specific pattern of CAA are characteristic features of this animal.
Collapse
Affiliation(s)
- Erika Takahashi
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Azabu University , Fuchinobe, Chuo-ku, Sagamihara, Kanagawa , Japan
| | | | | | | | | |
Collapse
|
12
|
Abstract
BACKGROUND Amyloid-β plaques are a defining characteristic of Alzheimer Disease. However, Amyloid-β deposition is also found in other forms of dementia and in non-pathological contexts. Amyloid-β deposition is variable among vertebrate species and the evolutionary emergence of the amyloidogenic property is currently unknown. Evolutionary persistence of a pathological peptide sequence may depend on the functions of the precursor gene, conservation or mutation of nucleotides or peptide domains within the precursor gene, or a species-specific physiological environment. RESULTS In this study, we asked when amyloidogenic Amyloid-β first arose using phylogenetic trees constructed for the Amyloid-β Precursor Protein gene family and by modeling the potential for Amyloid-β aggregation across species in silico. We collected the most comprehensive set of sequences for the Amyloid-β Precursor Protein family using an automated, iterative meta-database search and constructed a highly resolved phylogeny. The analysis revealed that the ancestral gene for invertebrate and vertebrate Amyloid-β Precursor Protein gene families arose around metazoic speciation during the Ediacaran period. Synapomorphic frequencies found domain-specific conservation of sequence. Analyses of aggregation potential showed that potentially amyloidogenic sequences are a ubiquitous feature of vertebrate Amyloid-β Precursor Protein but are also found in echinoderm, nematode, and cephalochordate, and hymenoptera species homologues. CONCLUSIONS The Amyloid-β Precursor Protein gene is ancient and highly conserved. The amyloid forming Amyloid-β domains may have been present in early deuterostomes, but more recent mutations appear to have resulted in potentially unrelated amyloid forming sequences. Our results further highlight that the species-specific physiological environment is as critical to Amyloid-β formation as the peptide sequence.
Collapse
Affiliation(s)
- William G Tharp
- Center for Clinical and Translational Science, University of Vermont, Given Courtyard N309, 89 Beaumont Avenue, Burlington, VT, 05405, USA
- Division of Endocrinology, Department of Medicine, University of Vermont, Given Courtyard N309, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Indra Neil Sarkar
- Center for Clinical and Translational Science, University of Vermont, Given Courtyard N309, 89 Beaumont Avenue, Burlington, VT, 05405, USA
- Department of Microbiology and Molecular Genetics, University of Vermont, Given Courtyard N309, 89 Beaumont Avenue, Burlington, VT, 05405, USA
- Department of Computer Science, University of Vermont, Given Courtyard N309, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| |
Collapse
|
13
|
Glass DJ, Arnold SE. Some evolutionary perspectives on Alzheimer's disease pathogenesis and pathology. Alzheimers Dement 2011; 8:343-51. [PMID: 22137143 DOI: 10.1016/j.jalz.2011.05.2408] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 02/20/2011] [Accepted: 05/12/2011] [Indexed: 10/14/2022]
Abstract
There is increasing urgency to develop effective prevention and treatment for Alzheimer's disease (AD) as the aging population swells. Yet, our understanding remains limited for the elemental pathophysiological mechanisms of AD dementia that may be causal, compensatory, or epiphenomenal. To this end, we consider AD and why it exists from the perspectives of natural selection, adaptation, genetic drift, and other evolutionary forces. We discuss the connection between the apolipoprotein E (APOE) allele and AD, with special consideration to APOE ɛ4 as the ancestral allele. The phylogeny of AD-like changes across species is also examined, and pathology and treatment implications of AD are discussed from the perspective of evolutionary medicine. In particular, amyloid-β (Aβ) neuritic plaques and paired helical filament tau (PHFtau) neurofibrillary tangles have been traditionally viewed as injurious pathologies to be targeted, but may be preservative or restorative processes that mitigate harmful neurodegenerative processes or may be epiphenoma of the essential processes that cause neurodegeneration. Thus, we raise fundamental questions about current strategies for AD prevention and therapeutics.
Collapse
Affiliation(s)
- Daniel J Glass
- Department of Psychology, State University of New York at New Paltz, USA
| | | |
Collapse
|
14
|
Mutsuga M, Chambers JK, Uchida K, Tei M, Makibuchi T, Mizorogi T, Takashima A, Nakayama H. Binding of curcumin to senile plaques and cerebral amyloid angiopathy in the aged brain of various animals and to neurofibrillary tangles in Alzheimer's brain. J Vet Med Sci 2011; 74:51-7. [PMID: 21891973 DOI: 10.1292/jvms.11-0307] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The binding of curcumin to senile plaques (SPs) and cerebral amyloid angiopathy (CAA) was examined in the aged brain of various animal species and a human patient with Alzheimer's disease (AD), together with its binding to neurofibrillary tangles (NFTs). Brain sections were immunostained with anti-amyloid β protein 1-42 (Aβ42) and anti-amyloid β protein 1-40 (Aβ40) antibodies. These sections were also stained with alkaline Congo red, periodic acid-methenamine silver (PAM), and curcumin (0.009% curcumin solution) with or without formic acid pretreatment. The sections from the AD brain were also immunostained for anti-paired helical filament-tau (PHF-tau), and were stained with Gallyas silver for NFTs. Some SPs in the AD, monkey, dog, bear, and amyloid precursor protein transgenic mouse (APP Tg-mouse) brains contained congophilic materials, and were intensely positive for curcumin. In addition, curcumin labeled some diffuse SPs negative for Congo red in the AD, monkey, bear, and APP Tg-mouse brains. In all animals, CAA was intensely positive for both Congo red and curcumin. The specific curcumin staining activity was lost by formic acid pretreatment. In the AD brain, NFTs positive for PHF-tau and Gallyas silver were moderately stained with curcumin. These findings indicate that curcumin specifically binds to the aggregated Aβ molecules in various animals, and further to phosphorylated tau protein, probably according to its conformational nature.
Collapse
Affiliation(s)
- Mayu Mutsuga
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Chambers JK, Mutsuga M, Uchida K, Nakayama H. Characterization of AβpN3 deposition in the brains of dogs of various ages and other animal species. Amyloid 2011; 18:63-71. [PMID: 21557687 DOI: 10.3109/13506129.2011.570385] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Senile plaques (SP) are characteristic histopathological manifestations of Alzheimer's disease (AD), but are also found in normal aging (NA). Recent studies have demonstrated that beta amyloid (Aβ) proteins that have been truncated at the N-terminal position 3 (AβpN3) are the predominant component of SP in AD, but not in NA. The present study revealed that AβpN3 was deposited in an age-dependent manner in canine brains. Moreover, AβpN3 was the main component of the SP that developed in very old dogs. The deposition of AβpN3 increased in accordance with the number of SP, but that of N-terminally intact Aβ (AβN1) did not. In addition, AβpN3 was also deposited in the SP of a Japanese macaque and an American black bear, but not in a feline brain. Focal microvascular cerebral amyloid angiopathy was also observed in the deep cortices and the white matter of the dogs and a woodpecker. Those were always composed of both AβpN3 and AβN1. In conclusion, though non-human animals do not develop full pathology of AD of the human type, AβpN3 is widely deposited in the brains of senescent vertebrates.
Collapse
Affiliation(s)
- James K Chambers
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo-ku, Japan
| | | | | | | |
Collapse
|
16
|
Chambers JK, Kuribayashi H, Ikeda SI, Une Y. Distribution of neprilysin and deposit patterns of Abeta subtypes in the brains of aged squirrel monkeys (Saimiri sciureus). Amyloid 2010; 17:75-82. [PMID: 20462366 DOI: 10.3109/13506129.2010.483119] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Beta-amyloid (Abeta) is deposited in the parenchyma and blood vessel walls of the senescent brain, and forms lesions termed senile plaques (SPs) and cerebral amyloid angiopathy (CAA). Since in Alzheimer's disease (AD) excessive Abeta is linked to cognitive deterioration, the mechanisms of degradation and clearance of Abeta are now being researched for use in AD therapy. We conducted an immunohistochemical study of the patterns of deposition of two Abeta subtypes (Abeta40 and Abeta42) and the distribution of the Abeta degrading enzyme neprilysin (NEP) in the brains of aged squirrel monkeys, a species known to develop CAA and SPs. Abeta deposits were observed mainly in the cerebral cortex of five older monkeys, and were absent in monkeys under 12 years of age. NEP expression was observed in the caudate nucleus, putamen, globus pallidus, substantia nigra and the molecular layer of the dentate gyrus, and thus exhibited a distribution complementary to those of CAA and SPs in cerebral cortex and hippocampus. It is known that CAA is more prominent than SPs in squirrel monkey brains. However, we confirmed that Abeta40 is deposited predominantly in the arterioles of the meninges and penetrates vertically into the cerebral cortex, whereas Abeta42 is deposited predominantly in the capillaries of the cerebral cortex. These distinct patterns of deposition of Abeta subtypes are likely related to the difference in biochemical character of these two subtypes. We have demonstrated for the first time the distribution of NEP in the brain of a non-human primate, the squirrel monkey, which appears useful for research on AD treatment.
Collapse
Affiliation(s)
- James K Chambers
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | | | | | | |
Collapse
|
17
|
Abstract
Aging processes leading to specific organ problems are not obvious in aging psittacines. In general, birds live long and age slowly despite their high metabolic rates and very high total lifetime energy expenditures. Most pathologic processes seen in older parrots are generally not specific for aging because they are seen in young birds as well. Pathologic processes that have a tendency to occur more in older psittacines are atherosclerosis and repeated injury processes, such as chronic pulmonary interstitial fibrosis, pneumoconiosis, liver fibrosis, and lens cataracts. Also, some neoplasms are more often seen at an older age.
Collapse
|
18
|
Affiliation(s)
- Caleb E Finch
- Andrus Gerontology Center and Department of Biological Sciences, University of Souther California, Los Angeles, California, USA.
| |
Collapse
|