1
|
Morales J, Welter D, Bowler EH, Cerezo M, Harris LW, McMahon AC, Hall P, Junkins HA, Milano A, Hastings E, Malangone C, Buniello A, Burdett T, Flicek P, Parkinson H, Cunningham F, Hindorff LA, MacArthur JAL. A standardized framework for representation of ancestry data in genomics studies, with application to the NHGRI-EBI GWAS Catalog. Genome Biol 2018; 19:21. [PMID: 29448949 PMCID: PMC5815218 DOI: 10.1186/s13059-018-1396-2] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/19/2018] [Indexed: 12/23/2022] Open
Abstract
The accurate description of ancestry is essential to interpret, access, and integrate human genomics data, and to ensure that these benefit individuals from all ancestral backgrounds. However, there are no established guidelines for the representation of ancestry information. Here we describe a framework for the accurate and standardized description of sample ancestry, and validate it by application to the NHGRI-EBI GWAS Catalog. We confirm known biases and gaps in diversity, and find that African and Hispanic or Latin American ancestry populations contribute a disproportionately high number of associations. It is our hope that widespread adoption of this framework will lead to improved analysis, interpretation, and integration of human genomics data.
Collapse
Affiliation(s)
- Joannella Morales
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | - Danielle Welter
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | - Emily H. Bowler
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | - Maria Cerezo
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | - Laura W. Harris
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | - Aoife C. McMahon
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | - Peggy Hall
- Division of Genomic Medicine, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-9305 USA
| | - Heather A. Junkins
- Division of Genomic Medicine, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-9305 USA
| | - Annalisa Milano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | - Emma Hastings
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | - Cinzia Malangone
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | - Annalisa Buniello
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | - Tony Burdett
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | - Helen Parkinson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | - Fiona Cunningham
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | - Lucia A. Hindorff
- Division of Genomic Medicine, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-9305 USA
| | - Jacqueline A. L. MacArthur
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| |
Collapse
|
2
|
Larruga JM, Marrero P, Abu-Amero KK, Golubenko MV, Cabrera VM. Carriers of mitochondrial DNA macrohaplogroup R colonized Eurasia and Australasia from a southeast Asia core area. BMC Evol Biol 2017; 17:115. [PMID: 28535779 PMCID: PMC5442693 DOI: 10.1186/s12862-017-0964-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 05/11/2017] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The colonization of Eurasia and Australasia by African modern humans has been explained, nearly unanimously, as the result of a quick southern coastal dispersal route through the Arabian Peninsula, the Indian subcontinent, and the Indochinese Peninsula, to reach Australia around 50 kya. The phylogeny and phylogeography of the major mitochondrial DNA Eurasian haplogroups M and N have played the main role in giving molecular genetics support to that scenario. However, using the same molecular tools, a northern route across central Asia has been invoked as an alternative that is more conciliatory with the fossil record of East Asia. Here, we assess as the Eurasian macrohaplogroup R fits in the northern path. RESULTS Haplogroup U, with a founder age around 50 kya, is one of the oldest clades of macrohaplogroup R in western Asia. The main branches of U expanded in successive waves across West, Central and South Asia before the Last Glacial Maximum. All these dispersions had rather overlapping ranges. Some of them, as those of U6 and U3, reached North Africa. At the other end of Asia, in Wallacea, another branch of macrohaplogroup R, haplogroup P, also independently expanded in the area around 52 kya, in this case as isolated bursts geographically well structured, with autochthonous branches in Australia, New Guinea, and the Philippines. CONCLUSIONS Coeval independently dispersals around 50 kya of the West Asia haplogroup U and the Wallacea haplogroup P, points to a halfway core area in southeast Asia as the most probable centre of expansion of macrohaplogroup R, what fits in the phylogeographic pattern of its ancestor, macrohaplogroup N, for which a northern route and a southeast Asian origin has been already proposed.
Collapse
Affiliation(s)
- Jose M Larruga
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain
| | - Patricia Marrero
- Research Support General Service, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain
| | - Khaled K Abu-Amero
- Glaucoma Research Chair, Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Vicente M Cabrera
- Departamento de Genética, Facultad de Biología, Universidad de La Laguna, E-38271 La Laguna, Tenerife, Spain.
| |
Collapse
|
3
|
Nagle N, van Oven M, Wilcox S, van Holst Pellekaan S, Tyler-Smith C, Xue Y, Ballantyne KN, Wilcox L, Papac L, Cooke K, van Oorschot RAH, McAllister P, Williams L, Kayser M, Mitchell RJ. Aboriginal Australian mitochondrial genome variation - an increased understanding of population antiquity and diversity. Sci Rep 2017; 7:43041. [PMID: 28287095 PMCID: PMC5347126 DOI: 10.1038/srep43041] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/17/2017] [Indexed: 01/06/2023] Open
Abstract
Aboriginal Australians represent one of the oldest continuous cultures outside Africa, with evidence indicating that their ancestors arrived in the ancient landmass of Sahul (present-day New Guinea and Australia) ~55 thousand years ago. Genetic studies, though limited, have demonstrated both the uniqueness and antiquity of Aboriginal Australian genomes. We have further resolved known Aboriginal Australian mitochondrial haplogroups and discovered novel indigenous lineages by sequencing the mitogenomes of 127 contemporary Aboriginal Australians. In particular, the more common haplogroups observed in our dataset included M42a, M42c, S, P5 and P12, followed by rarer haplogroups M15, M16, N13, O, P3, P6 and P8. We propose some major phylogenetic rearrangements, such as in haplogroup P where we delinked P4a and P4b and redefined them as P4 (New Guinean) and P11 (Australian), respectively. Haplogroup P2b was identified as a novel clade potentially restricted to Torres Strait Islanders. Nearly all Aboriginal Australian mitochondrial haplogroups detected appear to be ancient, with no evidence of later introgression during the Holocene. Our findings greatly increase knowledge about the geographic distribution and phylogenetic structure of mitochondrial lineages that have survived in contemporary descendants of Australia’s first settlers.
Collapse
Affiliation(s)
- Nano Nagle
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Mannis van Oven
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, The Netherlands
| | - Stephen Wilcox
- Australian Genome Research Facility, Melbourne, Victoria, Australia
| | - Sheila van Holst Pellekaan
- Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, Australia.,School of Biological Sciences, University of Sydney, Sydney, Australia
| | - Chris Tyler-Smith
- The Wellcome Trust Sanger Institute, Welcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Yali Xue
- The Wellcome Trust Sanger Institute, Welcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Kaye N Ballantyne
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, The Netherlands.,Office of the Chief Forensic Scientist, Victoria Police Forensic Services Department, Melbourne, Victoria, Australia
| | - Leah Wilcox
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Luka Papac
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Karen Cooke
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Roland A H van Oorschot
- Office of the Chief Forensic Scientist, Victoria Police Forensic Services Department, Melbourne, Victoria, Australia
| | | | - Lesley Williams
- Community Elder and Cultural Advisor, Brisbane, Queensland, Australia
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, The Netherlands
| | - R John Mitchell
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia
| | | |
Collapse
|
4
|
Iyngkaran P, Thomas MC, Johnson R, French J, Ilton M, McDonald P, Hare DL, Fatkin D. Contextualizing Genetics for Regional Heart Failure Care. Curr Cardiol Rev 2016; 12:231-42. [PMID: 27280306 PMCID: PMC5011192 DOI: 10.2174/1573403x12666160606123103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/18/2015] [Accepted: 01/11/2016] [Indexed: 12/21/2022] Open
Abstract
Congestive heart failure (CHF) is a chronic and often devastating cardiovascular disorder with no cure. There has been much advancement in the last two decades that has seen improvements in morbidity and mortality. Clinicians have also noted variations in the responses to therapies. More detailed observations also point to clusters of diseases, phenotypic groupings, unusual severity and the rates at which CHF occurs. Medical genetics is playing an increasingly important role in answering some of these observations. This developing field in many respects provides more information than is currently clinically applicable. This includes making sense of the established single gene mutations or uncommon private mutations. In this thematic series which discusses the many factors that could be relevant for CHF care, once established treatments are available in the communities; this section addresses a contextual role for medical genetics.
Collapse
|
5
|
Mitochondrial DNA diversity of present-day Aboriginal Australians and implications for human evolution in Oceania. J Hum Genet 2016; 62:343-353. [PMID: 27904152 DOI: 10.1038/jhg.2016.147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/21/2016] [Accepted: 10/27/2016] [Indexed: 12/30/2022]
Abstract
Aboriginal Australians are one of the more poorly studied populations from the standpoint of human evolution and genetic diversity. Thus, to investigate their genetic diversity, the possible date of their ancestors' arrival and their relationships with neighboring populations, we analyzed mitochondrial DNA (mtDNA) diversity in a large sample of Aboriginal Australians. Selected mtDNA single-nucleotide polymorphisms and the hypervariable segment haplotypes were analyzed in 594 Aboriginal Australians drawn from locations across the continent, chiefly from regions not previously sampled. Most (~78%) samples could be assigned to mtDNA haplogroups indigenous to Australia. The indigenous haplogroups were all ancient (with estimated ages >40 000 years) and geographically widespread across the continent. The most common haplogroup was P (44%) followed by S (23%) and M42a (9%). There was some geographic structure at the haplotype level. The estimated ages of the indigenous haplogroups range from 39 000 to 55 000 years, dates that fit well with the estimated date of colonization of Australia based on archeological evidence (~47 000 years ago). The distribution of mtDNA haplogroups in Australia and New Guinea supports the hypothesis that the ancestors of Aboriginal Australians entered Sahul through at least two entry points. The mtDNA data give no support to the hypothesis of secondary gene flow into Australia during the Holocene, but instead suggest long-term isolation of the continent.
Collapse
|
6
|
Nagle N, Ballantyne KN, van Oven M, Tyler-Smith C, Xue Y, Taylor D, Wilcox S, Wilcox L, Turkalov R, van Oorschot RA, McAllister P, Williams L, Kayser M, Mitchell RJ. Antiquity and diversity of aboriginal Australian Y-chromosomes. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2015; 159:367-81. [DOI: 10.1002/ajpa.22886] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 10/01/2015] [Accepted: 10/08/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Nano Nagle
- Department of Biochemistry and Genetics; La Trobe Institute of Molecular Sciences, La Trobe University; Melbourne VIC Australia
| | - Kaye N. Ballantyne
- Victorian Police Forensic Services Department; Office of the Chief Forensic Scientist; Melbourne VIC Australia
- Department of Forensic Molecular Biology; Erasmus MC University Medical Center; Rotterdam The Netherlands
| | - Mannis van Oven
- Department of Forensic Molecular Biology; Erasmus MC University Medical Center; Rotterdam The Netherlands
| | - Chris Tyler-Smith
- The Wellcome Trust Sanger Institute; Welcome Trust Genome Campus; Hinxton Cambridgeshire UK
| | - Yali Xue
- The Wellcome Trust Sanger Institute; Welcome Trust Genome Campus; Hinxton Cambridgeshire UK
| | - Duncan Taylor
- Forensic Science South Australia; 21 Divett Place Adelaide SA 5000 Australia
- School of Biological Sciences; Flinders University; Adelaide SA 5001 Australia
| | - Stephen Wilcox
- Australian Genome Research Facility; Melbourne VIC Australia
| | - Leah Wilcox
- Department of Biochemistry and Genetics; La Trobe Institute of Molecular Sciences, La Trobe University; Melbourne VIC Australia
| | - Rust Turkalov
- Australian Genome Research Facility; Melbourne VIC Australia
| | - Roland A.H. van Oorschot
- Victorian Police Forensic Services Department; Office of the Chief Forensic Scientist; Melbourne VIC Australia
| | | | - Lesley Williams
- Department of Communities; Child Safety and Disability Services, Queensland Government; Brisbane QLD Australia
| | - Manfred Kayser
- Department of Forensic Molecular Biology; Erasmus MC University Medical Center; Rotterdam The Netherlands
| | - Robert J. Mitchell
- Department of Biochemistry and Genetics; La Trobe Institute of Molecular Sciences, La Trobe University; Melbourne VIC Australia
| | | |
Collapse
|
7
|
Clarkson C, Smith M, Marwick B, Fullagar R, Wallis LA, Faulkner P, Manne T, Hayes E, Roberts RG, Jacobs Z, Carah X, Lowe KM, Matthews J, Florin SA. The archaeology, chronology and stratigraphy of Madjedbebe (Malakunanja II): A site in northern Australia with early occupation. J Hum Evol 2015; 83:46-64. [DOI: 10.1016/j.jhevol.2015.03.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 03/26/2015] [Accepted: 03/30/2015] [Indexed: 11/28/2022]
|
8
|
Pugach I, Stoneking M. Genome-wide insights into the genetic history of human populations. INVESTIGATIVE GENETICS 2015; 6:6. [PMID: 25834724 PMCID: PMC4381409 DOI: 10.1186/s13323-015-0024-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 03/05/2015] [Indexed: 12/21/2022]
Abstract
Although mtDNA and the non-recombining Y chromosome (NRY) studies continue to provide valuable insights into the genetic history of human populations, recent technical, methodological and computational advances and the increasing availability of large-scale, genome-wide data from contemporary human populations around the world promise to reveal new aspects, resolve finer points, and provide a more detailed look at our past demographic history. Genome-wide data are particularly useful for inferring migrations, admixture, and fine structure, as well as for estimating population divergence and admixture times and fluctuations in effective population sizes. In this review, we highlight some of the stories that have emerged from the analyses of genome-wide SNP genotyping data concerning the human history of Southern Africa, India, Oceania, Island South East Asia, Europe and the Americas and comment on possible future study directions. We also discuss advantages and drawbacks of using SNP-arrays, with a particular focus on the ascertainment bias, and ways to circumvent it.
Collapse
Affiliation(s)
- Irina Pugach
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D04103 Leipzig, Germany
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D04103 Leipzig, Germany
| |
Collapse
|
9
|
Gomes SM, Bodner M, Souto L, Zimmermann B, Huber G, Strobl C, Röck AW, Achilli A, Olivieri A, Torroni A, Côrte-Real F, Parson W. Human settlement history between Sunda and Sahul: a focus on East Timor (Timor-Leste) and the Pleistocenic mtDNA diversity. BMC Genomics 2015; 16:70. [PMID: 25757516 PMCID: PMC4342813 DOI: 10.1186/s12864-014-1201-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 12/22/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Distinct, partly competing, "waves" have been proposed to explain human migration in(to) today's Island Southeast Asia and Australia based on genetic (and other) evidence. The paucity of high quality and high resolution data has impeded insights so far. In this study, one of the first in a forensic environment, we used the Ion Torrent Personal Genome Machine (PGM) for generating complete mitogenome sequences via stand-alone massively parallel sequencing and describe a standard data validation practice. RESULTS In this first representative investigation on the mitochondrial DNA (mtDNA) variation of East Timor (Timor-Leste) population including >300 individuals, we put special emphasis on the reconstruction of the initial settlement, in particular on the previously poorly resolved haplogroup P1, an indigenous lineage of the Southwest Pacific region. Our results suggest a colonization of southern Sahul (Australia) >37 kya, limited subsequent exchange, and a parallel incubation of initial settlers in northern Sahul (New Guinea) followed by westward migrations <28 kya. CONCLUSIONS The temporal proximity and possible coincidence of these latter dispersals, which encompassed autochthonous haplogroups, with the postulated "later" events of (South) East Asian origin pinpoints a highly dynamic migratory phase.
Collapse
Affiliation(s)
- Sibylle M Gomes
- Department of Biology, University of Aveiro, Campus de Santiago, Aveiro, Portugal.
| | - Martin Bodner
- Institute of Legal Medicine, Medical University of Innsbruck, Müllerstr. 44, 6020, Innsbruck, Austria.
| | - Luis Souto
- Department of Biology, University of Aveiro, Campus de Santiago, Aveiro, Portugal.
- Cencifor Centro de Ciências Forenses, Coimbra, Portugal.
| | - Bettina Zimmermann
- Institute of Legal Medicine, Medical University of Innsbruck, Müllerstr. 44, 6020, Innsbruck, Austria.
| | - Gabriela Huber
- Institute of Legal Medicine, Medical University of Innsbruck, Müllerstr. 44, 6020, Innsbruck, Austria.
| | - Christina Strobl
- Institute of Legal Medicine, Medical University of Innsbruck, Müllerstr. 44, 6020, Innsbruck, Austria.
| | - Alexander W Röck
- Institute of Legal Medicine, Medical University of Innsbruck, Müllerstr. 44, 6020, Innsbruck, Austria.
| | - Alessandro Achilli
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", University of Pavia, Pavia, Italy.
- Dipartimento di Chimica, Biologia e Biotecnologie, University of Perugia, Perugia, Italy.
| | - Anna Olivieri
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", University of Pavia, Pavia, Italy.
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", University of Pavia, Pavia, Italy.
| | | | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Müllerstr. 44, 6020, Innsbruck, Austria.
- Penn State Eberly College of Science, University Park, PA, USA.
| |
Collapse
|
10
|
Walton SF, Weir C. The interplay between diet and emerging allergy: what can we learn from Indigenous Australians? Int Rev Immunol 2012; 31:184-201. [PMID: 22587020 DOI: 10.3109/08830185.2012.667180] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The pathophysiology of atopic diseases, including asthma and allergy, is the result of complex gene-environment interactions. Since European colonization the Indigenous population of Australia has undergone significant changes with respect to their lifestyle as hunter-gatherers. These changes have had a detrimental effect on Aboriginal health, in part due to immunological modification. This review provides a comparative look at both the traditional Aboriginal/Indigenous diet and modern Western diets, examines some common allergies increasingly reported in contemporary Indigenous populations, and reviews concepts such the effect of vitamin deficiencies and changes in gut microbiota on immune function.
Collapse
Affiliation(s)
- Shelley F Walton
- School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Queensland, Australia.
| | | |
Collapse
|
11
|
Ballantyne KN, van Oven M, Ralf A, Stoneking M, Mitchell RJ, van Oorschot RAH, Kayser M. MtDNA SNP multiplexes for efficient inference of matrilineal genetic ancestry within Oceania. Forensic Sci Int Genet 2011; 6:425-36. [PMID: 21940232 DOI: 10.1016/j.fsigen.2011.08.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 08/18/2011] [Accepted: 08/25/2011] [Indexed: 01/22/2023]
Abstract
Human mitochondrial DNA (mtDNA) is a convenient marker for tracing matrilineal bio-geographic ancestry and is widely applied in forensic, genealogical and anthropological studies. In forensic applications, DNA-based ancestry inference can be useful for finding unknown suspects by concentrating police investigations in cases where autosomal STR profiling was unable to provide a match, or can help provide clues in missing person identification. Although multiplexed mtDNA single nucleotide polymorphism (SNP) assays to infer matrilineal ancestry at a (near) continental level are already available, such tools are lacking for the Oceania region. Here, we have developed a hierarchical system of three SNaPshot multiplexes for genotyping 26 SNPs defining all major mtDNA haplogroups for Oceania (including Australia, Near Oceania and Remote Oceania). With this system, it was possible to conclusively assign 74% of Oceanian individuals to their Oceanian matrilineal ancestry in an established literature database (after correcting for obvious external admixture). Furthermore, in a set of 161 genotyped individuals collected in Australia, Papua New Guinea and Fiji, 87.6% were conclusively assigned an Oceanian matrilineal origin. For the remaining 12.4% of the genotyped samples either a Eurasian origin was detected indicating likely European admixture (1.9%), the identified haplogroups are shared between Oceania and S/SE-Asia (5%), or the SNPs applied did not allow a geographic inference to be assigned (5.6%). Sub-regional assignment within Oceania was possible for 32.9% of the individuals genotyped: 49.5% of Australians were assigned an Australian origin and 13.7% of the Papua New Guineans were assigned a Near Oceanian origin, although none of the Fijians could be assigned a specific Remote Oceanian origin. The low assignment rates of Near and Remote Oceania are explained by recent migrations from Asia via Near Oceania into Remote Oceania. Combining the mtDNA multiplexes for Oceania introduced here with those we developed earlier for all other continental regions, global matrilineal bio-geographic ancestry assignment from DNA is now achievable in a highly efficient way that is also suitable for applications with limited material such as forensic case work.
Collapse
Affiliation(s)
- Kaye N Ballantyne
- Department of Forensic Molecular Biology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
12
|
Guba Z, Hadadi É, Major Á, Furka T, Juhász E, Koós J, Nagy K, Zeke T. HVS-I polymorphism screening of ancient human mitochondrial DNA provides evidence for N9a discontinuity and East Asian haplogroups in the Neolithic Hungary. J Hum Genet 2011; 56:784-96. [DOI: 10.1038/jhg.2011.103] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
McEvoy BP, Lind JM, Wang ET, Moyzis RK, Visscher PM, van Holst Pellekaan SM, Wilton AN. Whole-genome genetic diversity in a sample of Australians with deep Aboriginal ancestry. Am J Hum Genet 2010; 87:297-305. [PMID: 20691402 DOI: 10.1016/j.ajhg.2010.07.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 06/30/2010] [Accepted: 07/16/2010] [Indexed: 12/19/2022] Open
Abstract
Australia was probably settled soon after modern humans left Africa, but details of this ancient migration are not well understood. Debate centers on whether the Pleistocene Sahul continent (composed of New Guinea, Australia, and Tasmania) was first settled by a single wave followed by regional divergence into Aboriginal Australian and New Guinean populations (common origin) or whether different parts of the continent were initially populated independently. Australia has been the subject of relatively few DNA studies even though understanding regional variation in genomic structure and diversity will be important if disease-association mapping methods are to be successfully evaluated and applied across populations. We report on a genome-wide investigation of Australian Aboriginal SNP diversity in a sample of participants from the Riverine region. The phylogenetic relationship of these Aboriginal Australians to a range of other global populations demonstrates a deep common origin with Papuan New Guineans and Melanesians, with little evidence of substantial later migration until the very recent arrival of European colonists. The study provides valuable and robust insights into an early and important phase of human colonization of the globe. A broader survey of Australia, including diverse geographic sample populations, will be required to fully appreciate the continent's unique population history and consequent genetic heritage, as well as the importance of both to the understanding of health issues.
Collapse
Affiliation(s)
- Brian P McEvoy
- Queensland Institute of Medical Research, Brisbane, Queensland 4006, Australia.
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
The human history of Oceania is unique in the way that it encompasses both the first out-of-Africa expansion of modern humans to New Guinea and Australia as well as the last regional human occupation of Polynesia. Other anthropological peculiarities of Oceania include features like the extraordinarily rich linguistic diversity especially of New Guinea with about 1,000 often very distinct languages, the independent and early development of agriculture in the highlands of New Guinea about 10,000 years ago, or the long-term isolation of the entire region from the outside world, which lasted as long as until the 1930s for most of the interior of New Guinea. This review will provide an overview on the genetic aspects of human population history of Oceania and how some of the anthropological peculiarities are reflected in human genetic data. Due to current data availability it will mostly focus on insights from sex-specifically inherited mitochondrial DNA and Y-chromosomal DNA, whereas more genome-wide autosomal DNA data are soon expected to add additional details or may correct views obtained from these two, albeit highly complex, genetic loci.
Collapse
Affiliation(s)
- Manfred Kayser
- Department of Forensic Molecular Biology, Erasmus University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| |
Collapse
|
15
|
Yan CX, Chen F, Dang YH, Li T, Zheng HB, Chen T, Li SB. [Sequence polymorphism of mtDNA HVR Iand HVR II of Oroqen ethnic group in Inner Mongolia]. YI CHUAN = HEREDITAS 2008; 30:439-47. [PMID: 18424414 DOI: 10.3724/sp.j.1005.2008.00439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Venous blood samples from 50 unrelated Oroqen individuals living in Inner Mongolia were collected and their mtDNA HVR I and HVR II sequences were detected by using ABI PRISM377 sequencers. The number of polymorphic loci, haplotype, haplotype frequence, average nucleotide variability and other polymorphic parameters were calculated. Based on Oroqen mtDNA sequence data obtained in our experiments and published data, genetic distance between Oroqen ethnic group and other populations were computered by Nei's measure. Phylogenetic tree was constructed by Neighbor Joining method. Comparing with Anderson sequence, 52 polymorphic loci in HVR I and 24 loci in HVR II were found in Oroqen mtDNA sequence, 38 and 27 haplotypes were defined herewith. Haplotype diversity and average nucleotide variability were 0.964+/-0.018 and 7.379 in HVR I, 0.929+/-0.019 and 2.408 in HVR II respectively. Fst and dA genetic distance between 12 populations were calculated based on HVR I sequence, and their relative coefficients were 0.993(P < 0.01). A phylogenetic tree was constructed based on genetic distances and included Oroqen, Taiwan and South Han population in a clade, which indicated near genetic relation between them, and far relation with northern Han, Mongolian and other foreign populations. The genetic polymorphism of mtDNA HVR I and HVR II in Oroqen ethnic group has some specificities compared with that of other populations. These data provide a useful tool in forensic identification, population genetic study and other research fields.
Collapse
Affiliation(s)
- Chun-Xia Yan
- Department of Forensic Sciences, Key Laboratory of the Health Ministry for Forensic Sciences, Xi'an Jiaotong University School of Medicire, Xi'an 710061, China.
| | | | | | | | | | | | | |
Collapse
|
16
|
Ricaut FX, Thomas T, Arganini C, Staughton J, Leavesley M, Bellatti M, Foley R, Mirazon Lahr M. Mitochondrial DNA variation in Karkar Islanders. Ann Hum Genet 2008; 72:349-67. [PMID: 18307577 DOI: 10.1111/j.1469-1809.2008.00430.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We analyzed 375 base pairs (bp) of the first hypervariable region (HVS-I) of the mitochondrial DNA (mtDNA) control region and intergenic COII/tRNALys 9-bp deletion from 47 Karkar Islanders (north coast of Papua New Guinea) belonging to the Waskia Papuan language group. To address questions concerning the origin and evolution of this population we compared the Karkar mtDNA haplotypes and haplogroups to those of neighbouring East Asians and Oceanic populations. The results of the phylogeographic analysis show grouping in three different clusters of the Karkar Islander mtDNA lineages: one group of lineages derives from the first Pleistocene settlers of New Guinea-Island Melanesia, a second set derives from more recent arrivals of Austronesian speaking populations, and the third contains lineages specific to the Karkar Islanders, but still rooted to Austronesian and New Guinea-Island Melanesia populations. Our results suggest (i) the absence of a strong association between language and mtDNA variation and, (ii) reveal that the mtDNA haplogroups F1a1, M7b1 and E1a, which probably originated in Island Southeast Asia and may be considered signatures of Austronesian population movements, are preserved in the Karkar Islanders but absent in other New Guinea-Island Melanesian populations. These findings indicate that the Karkar Papuan speakers retained a certain degree of their own genetic uniqueness and a high genetic diversity. We present a hypothesis based on archaeological, linguistic and environmental datasets to argue for a succession of (partial) depopulation and repopulation and expansion events, under conditions of structured interaction, which may explain the variability expressed in the Karkar mtDNA.
Collapse
Affiliation(s)
- F X Ricaut
- Leverhulme Centre for Human Evolutionary Studies, University of Cambridge, The Henry Wellcome Building, Fitzwilliam Street, CB2 1QH, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Tzen JM, Hsu HJ, Wang MN. Redefinition of hypervariable region I in mitochondrial DNA control region and comparing its diversity among various ethnic groups. Mitochondrion 2007; 8:146-54. [PMID: 18248776 DOI: 10.1016/j.mito.2007.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 11/28/2007] [Accepted: 11/29/2007] [Indexed: 11/18/2022]
Abstract
The hypervariable region I (HVR-I) of the mitochondrial DNA control region described in the literature is variable in its 5'and 3' ends as well as in its length, causing a problem when data from different ethnic groups are to be compared. To redefine HVR-I, which should be highly polymorphic yet relatively short in length, we analyzed 1437 reported sequences distributed among 11 geographic areas in the world. The results showed that the 237-bp (nts 16126-16362) redefined HVR-I (rHVR-I) had a global genetic diversity of 0.9905 and the 154-bp (nts 16209-16362) short HVR-I (sHVR-I) had a global diversity of 0.9735. Being flanked by a stretch of highly conservative sequences, both rHVR-I and sHVR-I can be produced by PCR, even if extracted from badly degraded specimens. Comparing the genetic diversity among 3870 sequences from 25 countries, we found that the genetic diversity of rHVR-I was 0.9869+/-0.0133 in Asian countries, 0.9685+/-0.0193 in African countries, 0.9299+/-0.0664 in European countries, and 0.8477+/-0.1857 in American countries, whereas that of sHVR-I was 0.9689+/-0.0284 in Asian countries, 0.9504+/-0.0334 in African countries, 0.8721+/-0.0911 in European countries, and 0.8230+/-0.1693 in American countries. The difference in genetic diversity among these countries is consistent with the notion that genetic diversity roughly reflects the genetic history of a given ethnic group. Our results indicate that a polymorphic, short, and PCR-producible HVR-I can be defined, making the comparison among various ethnic groups possible.
Collapse
Affiliation(s)
- Jessica M Tzen
- Taipei American School, 800 Chung Shan North Road, Sec. 6, Taipei 111, Taiwan
| | | | | |
Collapse
|
18
|
Alfonso-Sánchez MA, Pérez-Miranda AM, Herrera RJ. Autosomal microsatellite variability of the Arrernte people of Australia. Am J Hum Biol 2007; 20:91-9. [PMID: 17957762 DOI: 10.1002/ajhb.20685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The genomic diversity of the Arrernte people of Australia or caterpillar people was investigated utilizing 13 autosomal short tandem repeat (STR) markers. Significant departures from Hardy-Weinberg equilibrium were detected at the D18S51, TPOX and CSF1PO loci, which persisted after applying the Bonferroni correction. Gene diversity values oscillate between 0.6302 (CSF1PO) and 0.8731 (D21S11). Observed heterozygosity (Ho) ranges from 0.2632 (D18S51) to 0.8333 (vWA) and is lower than the expected heterozygosity (He) for 12 of the 13 loci analyzed. The genetic relationships of the Arrernte with Middle Eastern, East Asian, South Asian and Indian populations were analyzed by distance-based methods, including Neighbor-Joining trees and nonmetric multidimensional scaling. In addition, the genetic contribution of the populations included in the analysis to the Arrernte gene pool was estimated utilizing weighted least square coefficients. Although the Arrernte population exhibits a remarkable level of genetic differentiation, results of the phylogeographic analyses based on autosomal microsatellite data suggest a certain degree of genetic relatedness between the Arrernte tribe of Australia and populations from the Indian subcontinent. In contrast, the STR diversity analyses failed to detect substantial East Asian contribution to the genetic background of the Arrernte group.
Collapse
Affiliation(s)
- M A Alfonso-Sánchez
- Molecular Biology and Human Diversity Laboratory, Department of Biological Sciences, Florida International University, Miami, Florida 33199, USA
| | | | | |
Collapse
|
19
|
Walsh SJ, Mitchell RJ, Watson N, Buckleton JS. A comprehensive analysis of microsatellite diversity in Aboriginal Australians. J Hum Genet 2007; 52:712-728. [PMID: 17628738 DOI: 10.1007/s10038-007-0172-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 06/18/2007] [Indexed: 10/23/2022]
Abstract
Indigenous Australians have a unique evolutionary history that has resulted in a complex system of inter and intra-tribal relationships. While a number of studies have examined the population genetics of indigenous Australians, most have used a single sample to illuminate details of the global dispersal of modern humans and few studies have focussed on the population genetic features of the widely dispersed communities of the indigenous population. In this study we examine the largest Aboriginal Australian sample yet analysed (N = 8,868) at fifteen hypervariable autosomal microsatellite loci. A comprehensive analysis of differentiation indicates different levels of heterogeneity among indigenous peoples from traditional regions of Aboriginal Australia. The most genetically differentiated populations inhabit the North of the country, in particular the Tiwi of Melville and Bathurst islands, Arnhem Land (itself divided into West and East Arnhem), and Fitzmaurice regions. These tribal groups are most differentiated from other Aboriginal Australian tribes, especially those of the Central Desert regions, and also show marked heterogeneity from one another. These genetic findings are supportive of observations of body measurements, skin colour, and dermatoglyphic features which also vary substantially between tribes of the North (e.g. Arnhem Land) and Central Australian regions and, more specifically, between the Tiwi and West and East Arnhem tribes. This study provides the most comprehensive survey of the population genetics of Aboriginal Australia.
Collapse
Affiliation(s)
- Simon J Walsh
- Forensic and Technical Services, Australian Federal Police, GPO Box 401, Canberra, ACT, 2601, Australia.
- Centre for Forensic Science, UTS, PO Box 123, Broadway, NSW, 2007, Australia.
| | - R John Mitchell
- Department of Human Genetics, LaTrobe University, Melbourne, Australia
| | | | | |
Collapse
|
20
|
Hudjashov G, Kivisild T, Underhill PA, Endicott P, Sanchez JJ, Lin AA, Shen P, Oefner P, Renfrew C, Villems R, Forster P. Revealing the prehistoric settlement of Australia by Y chromosome and mtDNA analysis. Proc Natl Acad Sci U S A 2007; 104:8726-30. [PMID: 17496137 PMCID: PMC1885570 DOI: 10.1073/pnas.0702928104] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Published and new samples of Aboriginal Australians and Melanesians were analyzed for mtDNA (n=172) and Y variation (n=522), and the resulting profiles were compared with the branches known so far within the global mtDNA and the Y chromosome tree. (i) All Australian lineages are confirmed to fall within the mitochondrial founder branches M and N and the Y chromosomal founders C and F, which are associated with the exodus of modern humans from Africa approximately 50-70,000 years ago. The analysis reveals no evidence for any archaic maternal or paternal lineages in Australians, despite some suggestively robust features in the Australian fossil record, thus weakening the argument for continuity with any earlier Homo erectus populations in Southeast Asia. (ii) The tree of complete mtDNA sequences shows that Aboriginal Australians are most closely related to the autochthonous populations of New Guinea/Melanesia, indicating that prehistoric Australia and New Guinea were occupied initially by one and the same Palaeolithic colonization event approximately 50,000 years ago, in agreement with current archaeological evidence. (iii) The deep mtDNA and Y chromosomal branching patterns between Australia and most other populations around the Indian Ocean point to a considerable isolation after the initial arrival. (iv) We detect only minor secondary gene flow into Australia, and this could have taken place before the land bridge between Australia and New Guinea was submerged approximately 8,000 years ago, thus calling into question that certain significant developments in later Australian prehistory (the emergence of a backed-blade lithic industry, and the linguistic dichotomy) were externally motivated.
Collapse
Affiliation(s)
- Georgi Hudjashov
- Estonian Biocentre and Tartu University, Department of Evolutionary Biology, Riia 23, 51010 Tartu, Estonia
| | - Toomas Kivisild
- Estonian Biocentre and Tartu University, Department of Evolutionary Biology, Riia 23, 51010 Tartu, Estonia
- Leverhulme Centre for Human Evolutionary Studies, University of Cambridge, Cambridge CB2 1QH, United Kingdom
- To whom correspondence may be addressed. E-mail: or
| | - Peter A. Underhill
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5120
| | - Phillip Endicott
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Juan J. Sanchez
- National Institute of Toxicology and Forensic Science, Canary Islands Delegation, Campus de Ciencias de la Salud, 38320 La Laguna, Tenerife, Spain
| | - Alice A. Lin
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5120
| | - Peidong Shen
- Stanford Genome Technology Center, Palo Alto, CA 94304
| | - Peter Oefner
- Institute of Functional Genomics, University of Regensburg, Josef-Engert-Strasse 9, 93053 Regensburg, Germany
| | - Colin Renfrew
- McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge CB2 3ER, United Kingdom; and
- To whom correspondence may be addressed. E-mail: or
| | - Richard Villems
- Estonian Biocentre and Tartu University, Department of Evolutionary Biology, Riia 23, 51010 Tartu, Estonia
| | - Peter Forster
- Department of Forensic Science and Chemistry, Faculty of Science and Technology, Anglia Ruskin University, East Road, Cambridge CB1 1PT, United Kingdom
| |
Collapse
|
21
|
Friedlaender JS, Friedlaender FR, Hodgson JA, Stoltz M, Koki G, Horvat G, Zhadanov S, Schurr TG, Merriwether DA. Melanesian mtDNA complexity. PLoS One 2007; 2:e248. [PMID: 17327912 PMCID: PMC1803017 DOI: 10.1371/journal.pone.0000248] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2006] [Accepted: 02/05/2007] [Indexed: 12/02/2022] Open
Abstract
Melanesian populations are known for their diversity, but it has been hard to grasp the pattern of the variation or its underlying dynamic. Using 1,223 mitochondrial DNA (mtDNA) sequences from hypervariable regions 1 and 2 (HVR1 and HVR2) from 32 populations, we found the among-group variation is structured by island, island size, and also by language affiliation. The more isolated inland Papuan-speaking groups on the largest islands have the greatest distinctions, while shore dwelling populations are considerably less diverse (at the same time, within-group haplotype diversity is less in the most isolated groups). Persistent differences between shore and inland groups in effective population sizes and marital migration rates probably cause these differences. We also add 16 whole sequences to the Melanesian mtDNA phylogenies. We identify the likely origins of a number of the haplogroups and ancient branches in specific islands, point to some ancient mtDNA connections between Near Oceania and Australia, and show additional Holocene connections between Island Southeast Asia/Taiwan and Island Melanesia with branches of haplogroup E. Coalescence estimates based on synonymous transitions in the coding region suggest an initial settlement and expansion in the region at approximately 30-50,000 years before present (YBP), and a second important expansion from Island Southeast Asia/Taiwan during the interval approximately 3,500-8,000 YBP. However, there are some important variance components in molecular dating that have been overlooked, and the specific nature of ancestral (maternal) Austronesian influence in this region remains unresolved.
Collapse
Affiliation(s)
- Jonathan S Friedlaender
- Anthropology Department, Temple University, Philadelphia, Pennsylvania, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
van Holst Pellekaan SM, Ingman M, Roberts-Thomson J, Harding RM. Mitochondrial genomics identifies major haplogroups in Aboriginal Australians. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2006; 131:282-94. [PMID: 16596590 DOI: 10.1002/ajpa.20426] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We classified diversity in eight new complete mitochondrial genome sequences and 41 partial sequences from living Aboriginal Australians into five haplogroups. Haplogroup AuB belongs to global lineage M, and AuA, AuC, AuD, and AuE to N. Within N, we recognize subdivisions, assigning AuA to haplogroup S, AuD to haplogroup O, AuC to P4, and AuE to P8. On available evidence, (S)AuA and (M)AuB are widespread in Australia. (P4)AuC is found in the Riverine region of western New South Wales, and was identified by others in northern Australia. (O)AuD and (P8)AuE were clearly identified only from central Australia. Our eight Australian full mt genome sequences, combined with 20 others (Ingman and Gyllensten 2003 Genome Res. 13:1600-1606) and compared with full mt genome sequences from regions to the north that include Papua New Guinea, Malaya, and Andaman and Nicobar Islands, show that ancestral connections between regions are deep and limited to clustering at the level of the N and M macrohaplogroups. The Australian-specific distribution of the five haplogroups identified indicates genetic isolation over a long period. Ancestral connections within Australia are deeper than those reflected by known linguistic or culturally based affinities. Applying a coalescence analysis to a gene tree for the coding regions of the eight genomic sequences, we made estimates of time depth that support a continuity of presence for the descendants of a founding population already established by 40,000 years ago.
Collapse
Affiliation(s)
- Sheila M van Holst Pellekaan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, New South Wales 2052, Australia.
| | | | | | | |
Collapse
|
24
|
|
25
|
|
26
|
Excavating the mitochondrial genome identifies major haplogroups in Aboriginal Australians. ACTA ACUST UNITED AC 2006. [DOI: 10.3828/bfarm.2006.1.3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Ricaut FX, Bellatti M, Lahr MM. Ancient mitochondrial DNA from Malaysian hair samples: Some indications of Southeast Asian population movements. Am J Hum Biol 2006; 18:654-67. [PMID: 16917897 DOI: 10.1002/ajhb.20535] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The late Pleistocene and early Holocene population history of Southeast Asia is not well-known. Our study provides new data on mitochondrial DNA (mtDNA) lineages of the aboriginal inhabitants of the Malay Peninsula, and through an extensive comparison to the known mtDNA diversity in Southeast and East Asia, provides some new insights into the origins and historical geography of certain mtDNA lineages in the region. We extracted DNA from hair samples (dating back 100 years) preserved in the Duckworth Collection and belonging to two Peninsular Malaysian individuals identified as "Negrito." Ancient DNA was analyzed by sequencing hypervariable region I (HVS-I) of the mtDNA control region and the mtDNA region V length polymorphism. The results show that the maternal lineages of these individuals belong to a recently defined haplogroup B sub-branch called B4c2. A comparison of mitochondrial haplotypes and haplogroups with those of 10,349 East Asian individuals indicates their very restricted geographical distribution (southwestern China, Southeast Asia Peninsula, and Indonesia). Recalculation of the B4c2 age across all of East Asia ( approximately 13,000 years) and in different subregions/populations suggests its rapid diffusion in Southeast Asia between the end of the Last Glacial Maximum and the Neolithic expansion of the Holocene.
Collapse
Affiliation(s)
- François-X Ricaut
- Leverhulme Centre for Human Evolutionary Studies, University of Cambridge, Cambridge CB2 1QH, United Kingdom.
| | | | | |
Collapse
|
28
|
Ohashi J, Naka I, Tokunaga K, Inaoka T, Ataka Y, Nakazawa M, Matsumura Y, Ohtsuka R. Brief communication: Mitochondrial DNA variation suggests extensive gene flow from Polynesian ancestors to indigenous Melanesians in the northwestern Bismarck Archipelago. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2006; 130:551-6. [PMID: 16425188 DOI: 10.1002/ajpa.20383] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Archaeological, linguistic, and genetic studies show that Austronesian (AN)-speaking Polynesian ancestors came from Asia/Taiwan to the Bismarck Archipelago in Near Oceania more than 3,600 years ago, and then expanded into Remote Oceania. However, it remains unclear whether they extensively mixed with indigenous Melanesians who had populated the Bismarck Archipelago before their arrival. To examine the extent of admixture between Polynesian ancestors and indigenous Melanesians, mitochondrial DNA (mtDNA) variations in the D-loop region and the cytochrome oxidase and lysine transfer RNA (COII/tRNA(Lys)) intergenic 9-bp deletion were analyzed in the following three Oceanian populations: 1) Balopa Islanders as AN-speaking Melanesians living in the northwestern end of the Bismarck Archipelago, 2) Tongans as AN-speaking Polynesians, and 3) Gidra as non-Austronesian-speaking Melanesians in the southwestern lowlands of Papua New Guinea. Phylogenetic analysis of mtDNA sequences revealed that more than 60% of mtDNA sequences in the Balopa Islanders were very similar to those in Tongans, suggesting an extensive gene flow from Polynesian ancestors to indigenous Melanesians. Furthermore, analysis of pairwise difference distributions for the D-loop sequences with the 9-bp deletion and the Polynesian motif (i.e., T16217C, A16247G, and C16261T) suggested that the expansion of Polynesian ancestors possessing these variations occurred approximately 7,000 years ago.
Collapse
Affiliation(s)
- Jun Ohashi
- Department of Human Genetics, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Merriwether DA, Hodgson JA, Friedlaender FR, Allaby R, Cerchio S, Koki G, Friedlaender JS. Ancient mitochondrial M haplogroups identified in the Southwest Pacific. Proc Natl Acad Sci U S A 2005; 102:13034-9. [PMID: 16150714 PMCID: PMC1201611 DOI: 10.1073/pnas.0506195102] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Based on whole mtDNA sequencing of 14 samples from Northern Island Melanesia, we characterize three formerly unresolved branches of macrohaplogroup M that we call haplogroups M27, M28, and M29. Our 1,399 mtDNA control region sequences and a literature search indicate these haplogroups have extremely limited geographical distributions. Their coding region variation suggests diversification times older than the estimated date for the initial settlement of Northern Island Melanesia. This finding indicates that they were among the earliest mtDNA variants to appear in these islands or in the ancient continent of Sahul. These haplogroups from Northern Island Melanesia extend the existing schema for macrohaplogroup M, with many independent branches distributed across Asia, East Africa, Australia, and Near Oceania.
Collapse
Affiliation(s)
- D Andrew Merriwether
- Department of Anthropology, Binghamton University, Binghamton, NY 13902-6000, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Friedlaender J, Schurr T, Gentz F, Koki G, Friedlaender F, Horvat G, Babb P, Cerchio S, Kaestle F, Schanfield M, Deka R, Yanagihara R, Merriwether DA. Expanding Southwest Pacific Mitochondrial Haplogroups P and Q. Mol Biol Evol 2005; 22:1506-17. [PMID: 15814828 DOI: 10.1093/molbev/msi142] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Modern humans have occupied New Guinea and the nearby Bismarck and Solomon archipelagos of Island Melanesia for at least 40,000 years. Previous mitochondrial DNA (mtDNA) studies indicated that two common lineages in this region, haplogroups P and Q, were particularly diverse, with the coalescence for P considered significantly older than that for Q. In this study, we expand the definition of haplogroup Q so that it includes three major branches, each separated by multiple mutational distinctions (Q1, equivalent to the earlier definition of Q, plus Q2 and Q3). We report three whole-mtDNA genomes that establish Q2 as a major Q branch. In addition, we describe 314 control region sequences that belong to the expanded haplogroups P and Q from our Southwest Pacific collection. The coalescence dates for the largest P and Q branches (P1 and Q1) are similar to each other (approximately 50,000 years old) and considerably older than prior estimates. Newly identified Q2, which was found in Island Melanesian samples just to the east, is somewhat younger by more than 10,000 years. Our coalescence estimates should be more reliable than prior ones because they were based on significantly larger samples as well as complete mtDNA-coding region sequencing. Our estimates are roughly in accord with the current suggested dates for the first settlement of New Guinea-Sahul. The phylogeography of P and Q indicates almost total (female) isolation of ancient New Guinea-Island Melanesia from Australia that may have existed from the time of the first settlement. While Q subsequently diversified extensively in New Guinea-Island Melanesia, it has not been found in Australia. The only shared mtDNA haplogroup between Australia and New Guinea identified to date remains one minor branch of P.
Collapse
|
31
|
Ingman M, Gyllensten U. Mitochondrial genome variation and evolutionary history of Australian and New Guinean aborigines. Genome Res 2003; 13:1600-6. [PMID: 12840039 PMCID: PMC403733 DOI: 10.1101/gr.686603] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To study the evolutionary history of the Australian and New Guinean indigenous peoples, we analyzed 101 complete mitochondrial genomes including populations from Australia and New Guinea as well as from Africa, India, Europe, Asia, Melanesia, and Polynesia. The genetic diversity of the Australian mitochondrial sequences is remarkably high and is similar to that found across Asia. This is in contrast to the pattern seen in previously described Y-chromosome data where an Australia-specific haplotype was found at high frequency. The mitochondrial genome data indicate that Australia was colonized between 40 and 70 thousand years ago, either by a single migration from a heterogeneous source population or by multiple movements of smaller groups occurring over a period of time. Some Australian and New Guinea sequences form clades, suggesting the possibility of a joint colonization and/or admixture between the two regions.
Collapse
Affiliation(s)
- Max Ingman
- Department of Genetics and Pathology, Section of Medical Genetics, Rudbeck Laboratory, University of Uppsala, S-751 85 Uppsala, Sweden.
| | | |
Collapse
|